
Best-e�ort Scheduling of (m,k)-�rm
Real-time Streams in Multihop Networks

A. Striegel and G. Manimaran

Dept. of Electrical and Computer Engineering
Iowa State University, USA

fadstrieg,gmanig@iastate.edu

Abstract. In this paper, we address the problem of best-e�ort schedul-
ing of (m; k)-�rm real-time streams in multihop networks. The existing
solutions for the problem ignore scalability considerations because the
solutions maintain a separate queue for each stream. In this context, we
propose a scheduling algorithm, EDBP, which is scalable (�xed schedul-
ing cost) with little degradation in performance. The proposed EDBP
algorithm achieves this by allowing multiplexing of streams onto a �xed
number of queues and by using the notion of a look-ahead window. In the
EDBP algorithm, at any point of time, the best packet for transmission
is selected based on the state of the stream combined together with the
laxity of the packet. Our simulation studies show that the performance
of EDBP is very close to that of DBP-M (a known algorithm for the
problem) with a signi�cant reduction in scheduling cost.

1 Introduction

Packet switched networks are increasingly being utilized for carrying real-time
tra�c which often require quality of service (QoS) in terms of end-to-end de-
lay, jitter, and loss. A particular type of real-time tra�c is a real-time stream, in
which a sequence of related packets arrive at a regular interval with certain com-
mon timing constraints [1]. Real-time streams occur in many applications such
as real-time video conferencing, remote medical imaging, and distributed real-
time applications. Unlike non-real-time streams, packets in a real-time stream
have deadlines by which they are expected to reach their destination.

Packets that do not reach the destination on time contain stale information
that cannot be used. There have been many schemes in the literature to deter-
ministically guarantee the meeting of deadlines of all packets in a stream [2, 3].
The main limitation of these schemes is that they do not exploit the ability of
streams that can tolerate occasional deadline misses. For example, in teleconfer-
encing, occasional misses of audio packets can be tolerated by using interpolation
techniques to estimate the information contained in tardy/dropped packets.

On the other hand, there are schemes that try to exploit the ability of streams
to tolerate occasional deadline misses by bounding the steady-state fraction of
packets that miss their deadlines [4]. The main problem with these approaches
is that the deadline misses are not adequately spaced which is often better than
encountering spurts of deadline misses. For example, if a few consecutive audio
packets miss their deadlines, a vital portion of the talkspurt may be missing and



the quality of the reconstructed audio signal may not be satisfactory. However,
if the misses are adequately spaced, then interpolation techniques can be used
to satisfactorily reconstruct the signal [5].

To address this problem, the (m; k)-�rm guarantee model was proposed in
[1]. A real-time stream with an (m; k)-�rm guarantee requirement states that
m out of any k consecutive packets in the stream must meet their respective
deadlines. When a stream fails to meet this (m; k)-�rm guarantee, a condition
known as dynamic end-to-end failure occurs. The probability of dynamic end-
to-end failure is then used as a measure of the QoS perceived by a (m; k) �rm
real-time stream.

Related Work: The message scheduling algorithms, such as Earliest Deadline
First (EDF) and its variants [2, 3] that have been proposed for real-time streams
are not adequate for (m; k)-�rm streams because they do not exploit the m
and k parameters of a stream. For scheduling of (m; k)-�rm streams, a best-
e�ort scheme has been proposed in [1] for single hop and has been extended to
multihop in [6], with the objective of minimizing the dynamic end-to-end failure.

DBP Algorithms: A scheduling algorithm, Distance Based Priority (DBP),
has been proposed in [1] in which each stream is associated with a state machine
and a DBP value which depends on the current state of the stream. The state
of stream captures the meeting and missing of deadlines for a certain number
of previous packets of the stream. The DBP value of a stream is the number of
transitions required to reach a failing state, where failing states are those states in
which the number of meets is less than m. The lower the DBP value of a stream,
the higher its priority. The packet from the stream with the highest priority is
selected for transmission. Figure 1 shows the state diagram for a stream with a
(2,3)-�rm guarantee whereinM and m are used to represent meeting a deadline
and missing a deadline, respectively. Each state is represented by a three-letter
(k-letter) string. For example, MMm denotes the state where the most recent
packet missed its deadline and the two previous packets met their deadlines. The
edges represent the possible state transitions. Starting from a state, the stream
makes a transition to one of two states, depending on whether its next packet
meets (denoted by M) or misses (denoted by m) its deadline. For example, if a
stream is in stateMMm and its next packet meets the deadline, then the stream
transits to stateMmM . In Figure 1, the failure states aremMm,Mmm,mmM ,
and mmm.

The Modi�ed DBP (DBP-M) [6] is a multihop version of the original DBP
algorithm. In DBP-M, for each stream, the end-to-end deadline is split into link
(local) deadlines, along the path from source to destination of the stream, such
that the sum of the local deadlines is equal to the end-to-end deadline. DBP-
M confronts the problem introduced by multihop networks by having packets
transmitted onward until they have missed their respective end-to-end deadlines.
Thus, although a packet may miss its local deadline, it is still given a chance to
meet its end-to-end deadline.



M

mM

M

m

M

m

m

m

m

M

m

Mm

MMM MMm

MmM

mMM

��
��mMm

��Mmm

��
��mmM

��mmm

M

Fig. 1. DBP state diagram of a (2,3) stream

Motivation for Our Work: DBP and DBP-M use a separate queue for each
stream at every node along the path of a stream (connection). That is, for
each stream that is 
owing across the network, a separate queue is created and
per-stream state information is maintained at each node along the path of the
stream. This solution is not scalable as the number of queues increases with the
number of streams which results in high scheduling cost in terms of computa-
tional requirements. Similarly, the per-stream state information incurs overhead
in terms of computational and memory requirements. The second aspect has
been addressed by the Di�erentiated Services model [9]. In this paper, we ad-
dress the �rst aspect by proposing an algorithm that reduces the scheduling cost
by maintaining a �xed number of queues.

There exists a tradeo� between dynamic failure performance and the schedul-
ing cost involved in achieving that performance. With the DBP and DBP-M
extreme, a signi�cant amount of scheduling cost is required to maintain the one
queue per one stream ratio. Given a link that has N streams 
owing across it, a
DBP-M implementation requires N queues and requires O(N) scheduling cost.
However, this queue to stream ratio does deliver the best dynamic end-to-end
failure performance for a given set of (m; k) streams.

In contrast, classical EDF scheduling and its variations require only one (or
a �xed number of) queue(s) per link, i.e. the streams are multiplexed onto the
queue(s), hence requiring a scheduling cost of O(1). These methods incur the
least scheduling cost but deliver the poorest end-to-end dynamic failure per-
formance for (m; k) streams. Therefore, a better algorithm would require less
scheduling cost than DBP-M but would provide better dynamic failure perfor-
mance than classic EDF scheduling. This is the principal motivation for our work;
in it, an integrated heuristic is proposed that allowsmultiplexing of streams while
still providing adequate dynamic failure performance.

2 EDBP Scheduling Algorithm

The proposed EDBP algorithm aims at providing the same dynamic failure
performance as that of DBP-M with a minimal scheduling cost by allowing
queues to have more than one stream multiplexed. EDBP meets this goal by its
integrated heuristic (EDBP value) that incorporates the DBP state of a stream
together with the laxity of the packet. The EDBP algorithm has two key parts.



The �rst part deals with selecting the best (highest priority) packet from a
window of packets in each queue (Steps 1-4). The second part selects the best
packet from those packets chosen in the �rst part and transmits it (Steps 5-6).
For the EDBP algorithm, the following notations are used:

Qi: i
th queue; Pj : j

th packet in a queue
Sx: stream that produced Pj ; w: window size
EDBP (Pj): EDBP value of packet Pj
EDBPS(Sx): EDBP state of stream Sx

The packets in a queue are stored in FIFO order. The cost of algorithm has
two parts: queue insertion cost and scheduling cost. The insertion cost is high
for EDF because it uses a priority queue and is unit cost for DBP and EDBP.
EDF has a unit scheduling cost whereas the scheduling costs of DBP and EDBP
are N and w �Q, respectively, where N is the number of streams and Q is the
number of queues. The EDBP algorithm for transmitting a packet is given in
Figure 2 below. Following it, the steps of the algorithm are discussed in detail.

Begin

For each queue Qi perform Steps 1-4
1) For each Pj from P0 to Pw�1, determine if the packet has missed its end-to-end

deadline, such packets are then dropped.

2) Local Deadline (Pj) =
End�to�EndDeadline(Pj)

Number of Hops in the path of stream Sx
Laxity (Pj) = Local Deadline(Pj) - current time
BucketWidth = Max (j(Laxity(P0)j, j(Laxity(P1)j,..., j(Laxity(Pw�1)j) + 1

3) Calculate the EDBP value for each packet Pj .
EDBP (Pj) = BucketWidth * EDBPS(Sx) + Laxity(Pj)

4) Select Pj that has the lowest EDBP value, called best packet.
5) Repeat steps 2-4, treating the best packet from each queue Qi as a packet in an

overall queue and with a window size (w) equal to the number of queues available.
6) Schedule the packet with the lowest EDBP value.
End

Fig. 2. EDBP scheduling algorithm for transmitting a packet

Step 1: The EDBP algorithm examines a window of w packets from each queue
starting from P0 (head packet in queue) up to Pw�1 to determine if the packet
has missed its end-to-end deadline. Thus, if a packet cannot meet its end-to-end
deadline, the packet is dropped and the EDBP state of the corresponding stream
for the node is adjusted accordingly. As with DBP-M, a packet is not dropped
based on its local deadline. The use of the end-to-end deadline as a dropping
mechanism is to give the packet a chance to meet its end-to-end deadline by
scheduling the packet ahead of time in the downstream nodes across its path.

Step 2: In order to combine the EDBP state of a given packet Pj with the
packet's laxity, the EDBP state must be converted to a meaningful value. There-
fore, the EDBP algorithm uses the notion of buckets and o�sets. The idea of a
bucket is to group together the streams that have similar DBP states and the
laxity is used as an o�set inside the group (bucket). The local deadline cannot
be used for the calculation of the bucket width as it is a relative value. However,
the laxity of a packet is an absolute value related to the maximum end-to-end



deadline in the network. In this step, for each queue, a window of packets is
examined to determine the packet with the largest absolute laxity value.

However, the maximum laxity value itself cannot simply be used to determine
the bucket width. Consider the case where all of the packets in the window have
missed their local deadline and the maximum laxity value is negative. Because
the maximum laxity value is negative, priority inversion would occur as a lower
EDBP heuristic value means a higher priority. To handle this case, the EDBP
heuristic uses the maximum absolute laxity value. Thus, the value is always
positive and priority inversion cannot occur.

Consider a second case where all of the packets have a local deadline of zero.
Thus, without further modi�cation, the EDBP state of the respective streams
would essentially drop out of the EDBP heuristic. To handle this case, the max-
imum laxity value is further modi�ed by adding one. This ensures that the mod-
i�ed laxity value will always be greater than or equal to one, thus eliminating
the possibility of priority inversion or the elimination of the term corresponding
to the EDBP state.

Steps 3, 4: Following the bucket width calculation, the best packet for the
queue must be selected. The EDBP heuristic itself is divided into two parts, the
bucket calculation and the bucket o�set calculation. Each packet is placed into its
appropriate bucket by multiplying the value of the EDBP state with the bucket
width. After the bucket calculation is complete, each packet is appropriately
o�set into its bucket by adding the laxity value for that packet.

For the EDBP algorithm, a modi�cation of the DBP state calculation is
proposed. As with the initial DBP algorithm, the DBP value of a stream in
the non-failing state is the number of transitions required to reach a failing
state. Consider a (2,3)-�rm stream where with a previous history of MMM .
The DBP value would be 2, representing the two transitions required to reach a
failing state. In the EDBP heuristic, the DBP state is expanded to allow negative
values, thus allowing the EDBP state to discern between levels of dynamic failure
between di�erent streams. When the stream has reached a failing state, EDBP
expands upon the initial DBP algorithm by setting the EDBP value equal to
one minus the number of transitions to return to a non-failing state. Under the
initial DBP algorithm, a (2,3) stream with a history ofMmm would yield a DBP
value of 0. However, when one examines the state diagram for the (2,3) stream,
it is discovered that two transitions are required to return to a non-failing state.
Under the EDBP algorithm, this stream would receive an EDBP value of -1, thus
appropriately placing the packet at a priority level denoting its level of dynamic
failure.

Best Packet Selection - Steps 5, 6: Once the best packet has been selected
from each queue Qi, the overall best packet is selected among these packets for
transmission. To accomplish this, Steps 2-4 are repeated again with the following
modi�cations. First, the queue being examined is now a queue of the best packets
from each queue Qi. Second, the window size for the EDBP algorithm is equal
to the number of queues available. The best overall packet thus obtained will
have the lowest EDBP value and is transmitted.



3 Performance Study

A network simulator was developed to evaluate and compare the performance
of the EDBP algorithm with that of the DBP-M and EDF algorithms. The
simulator uses a single queue for EDF, one queue per stream for DBP-M, and a
�xed number of queues (which is an input parameter to the simulator) for EDBP.
For our simulation studies, we have selected ARPANET as the representative
topology. The algorithms were evaluated using the probability of dynamic failure
as the performance metric. In our simulation, one millisecond (ms) is represented
by one simulation clock tick.

Source and destination nodes for a stream were chosen uniformly from the
node set. The local deadline for each stream was �xed with the end-to-end dead-
line equal to the �xed local deadline times the number of hops in the stream's
path. The m and k values of a stream in the network are exponentially dis-
tributed with the condition that m < k. The mean inter-arrival time of streams
in the network follow a Poisson distribution and stay active for an exponentially
distributed duration of time. Packets are assumed to be of �xed size and each
link has a transmission delay of one millisecond.

E�ect of Number of Queues: In Figure 3, the e�ect of the number of queues
on the probability of dynamic failures is examined in the EDBP algorithm.
Thus, in the best case, the number of queues is equal to the number of streams.
This is exempli�ed by the DBP-M algorithm. The EDBP algorithm has been
split into two versions, one with N=2 queues and the other with N=4 queues
(N = 16). Each increase in the number of queues results in an appropriate
increase in the dynamic failure performance of the EDBP algorithm. For this
�gure, the performance of the EDF and DBP-M algorithms remain unchanged
as the queue parameter has no e�ect on these algorithms. From Figure 3, one can
deduce that an increase of the number of queues reduces the multiplexing degree
that in turn increases the performance of the EDBP algorithm. The performance
of the EDBP algorithm at N/2 queues is extremely close to the performance of
the DBP-M algorithmwhile requiring only half of the scheduling cost of DBP-M.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1520253035404550

Dy
na

mi
c F

ailu
re 

Pro
ba

bili
ty

Inter-Arrival Time (ms)

EDF
EDBP N/4
EDBP N/2

DBP

Fig. 3. E�ect of No. of Queues

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1520253035404550

Dy
na

mi
c F

ailu
re 

Pro
ba

bili
ty

Inter-Arrival Time (ms)

EDF
EDBP w=2
EDBP w=4
EDBP w=8

DBP

Fig. 4. E�ect of Window Size

E�ect of Window Size: However, in a given setting, it may not be practical
or even possible to increase the number of queues available. Figure 3 repeats the
same settings used in Figure 3, except that the window size is varied instead of



the number of queues. Three versions of the EDBP algorithm are examined with
w = 2; 4; 8. As the window size increases, the dynamic failure performance of the
EDBP algorithm increases because the window size o�sets the penalty imposed
by the multiplexing of streams onto a given queue.

When the e�ect of window size is compared to the e�ect of additional queues
in the EDBP algorithm, our experiments show that the increase in queues pro-
duces a more profound e�ect than an increase in window size. The underlying
cause is due to the multiplexing of streams onto queues. Consider a scenario in
which a stream (Sx) with a small period (high rate) and another stream (Sy)
with a large period (low rate) are multiplexed onto the same queue. In this case,
Sx will have a higher chance of having its packets inside the window than Sy.
This results in more dynamic failure for Sy. However, as the number of avail-
able queues increases, the chance of these streams being separated into di�erent
queues increases as well, thus explaining the di�erence in performance. There-
fore, to obtain the best performance from the EDBP algorithm, the window size
must be appropriately tuned to the degree of multiplexing.

4 Conclusions
In this paper, we have addressed the problem of best-e�ort scheduling of (m; k)-
�rm real-time streams in multihop networks. The proposed algorithm, EDBP,
allows multiplexing of streams onto a �xed number of queues and aims at maxi-
mizing the dynamic failure performance with minimal scheduling cost. Our sim-
ulation studies have shown that the performance is close to that of the DBP-M
algorithm with a signi�cantly lower scheduling cost.

References
1. M. Hamdaoui and P. Ramanathan, \A dynamic priority assignment technique

for streams with (m,k)-�rm guarantees," IEEE Trans. Computers, vol.44, no.12,
pp.1443-1451, Dec. 1995.

2. D. Ferrari and D.C. Verma, \A scheme for real-time channel establishment in
wide-area networks," IEEE JSAC, vol.8, no.3, pp.368-379, Apr. 1990.

3. H. Zhang, \Service disciplines for guaranteed performance service in packet-
switching networks," Proc. IEEE, vol.83, no.10, pp. 1374-1396, Oct. 1995.

4. D. Yates, D.T.J. Krouse, and M.G. Hluchyj, \On per-session end-to-end delay
distributions and call admission problem for real-time applications with QoS re-
quirements," in Proc. ACM SIGCOMM, pp.2-12, 1993.

5. Y.-J. Cho and C.-K. Un, \Performance analysis of reconstruction algorithms for
packet voice communications,", Computer Networks and ISDN Systems, vol. 26,
pp. 1385-1408, 1994.

6. W. Lindsay and P. Ramanathan, \DBP-M: A technique for meeting end-to-end
(m,k)-�rm guarantee requirements in point-to-point networks," in Proc. IEEE

Conference on Local Computer Networks, pp. 294-303, Nov. 1997
7. S.S. Panwar, D. Towsley, and J.K. Wolf, \Optimal scheduling policies for a class of

queues with customer deadlines to the beginning of service," Journal of the ACM,
vol.35, no.4, pp.832-844, Oct. 1988.

8. S. Shenker and L. Breslau, \Two issues in reservation establishment," in Proc.

ACM SIGCOMM, pp.14-26, 1995.
9. W. Weiss, \QoS with Di�erentiated Services," Bell Labs Technical Journal, pp.

44-62, Oct.-Dec 1998.


