
Optimization of Motion Estimator for Run-Time-
Reconfiguration Implementation.

Camel. Tanougast, Yves. Berviller, Serge.Weber.

Laboratoire d’Instrumentation Electronique de Nancy - Université Henri Poincaré Nancy I
Faculté des Sciences, BP 239

F-54506 Vandoeuvre-lès-Nancy cedex, France
{tanougast, yves.berviller, serge.weber}@lien.u-nancy.fr

Abstract. In this paper, we present a method to estimate the number of
reconfiguration steps that a time-constrained algorithm can accommodate. This
analysis demonstrates how one would attack the problem of partitioning a
particular algorithm into pieces to for run time reconfiguration execution on a
Atmel 40K FPGA. Our method consist in evaluating algorithm operators
execution time from data flow graph. So, we deduce the reconfiguration number
and the algorithm partitioning for RTR implementation. The algorithm used in
this work, is a qualitative motion estimator in the Log-Polar plane.

1. Introduction.

The availability of FPGAs which supply fast and partial reconfiguration possibilities,
provides a way to dynamically reconfigurable architectures [1]. This new approach
enables the successive execution of an algorithms sequence on the same device [2].
This article propose an evaluation method for the determination of the number of
successive reconfigurations which can be made for a given algorithm. This evaluation
is obtained from the data flow graph in order to optimize its implementation on a run
time reconfigurable architecture. This architecture uses Atmel’s AT40k FPGAs,
which have short configuration times. The evaluation of this number gives us the
partitioning of the data flow graph. The aim of this paper is the optimization of
hardware resources while satisfying the real time processing constraint. The
performances like processing time and resources usage rate of the FPGA are
described.
The algorithm is an apparent motion estimator in a Log-Polar images sequence, which
estimates the normal optical flow.
Firstly we describe the algorithm. Secondly, we present the method for the
determination of the step number for a Run-Time-Reconfiguration (RTR)
implementation. Thirdly we give the results compared with a static implementation.
Finally we conclude on the contribution of this approach.

2. Qualitative motion estimation in the Log-Polar space.

The Log-Polar images are obtained by remapping the Cartesian coordinate images in a
Complex Logarithm Mapping [3]. The advantage of this transformation is that the
radial and axial motion in the original space becomes mainly horizontal in the new
space. Our solution estimates the horizontal displacements of moving objects edges.
The method uses OFC (1) (optical flow constraint) of moving points in image
sequence.

r r
V grad I

I

t
⋅ = −

∂
∂

.
(1)

r
V is the apparent velocity vector of an image point and I the intensity of this point.
From this Optical Flow Constraint we estimate the normal optical flow by dividing the
temporal derivative by the spatial gradient:

V

I

t
I

x

n = −

∂
∂
∂
∂

.

(2)

Vn is an estimate of normal optical flow in Log-Polar images.

Before this computation, two pre-processing are necessary. The first processing is a
gaussian filtering in order to guarantee the existence of the spatial derivative of image
intensity I(x, y). The second is a time averaging filter to reduce the noise.
Our apparent motion estimator algorithm in Log-Polar plane, is composed of gaussian
and averaging filters, followed by temporal and spatial derivatives and arithmetic
divider. The datapath of this algorithm is given on figure 1.

3. Determination of the possible number of steps for RTR
implementation.

3.1. Evaluation of the possible number of steps.

The images are acquired at a rate of 25 images per second, this leaves us 40 ms to
process the entire image. To satisfy the real time constraint we need to process at a
faster rate than that of pixels acquisition. The algorithms are partitioned in N steps
corresponding to N execution-reconfiguration pairs. The working frequency of each
step needs to verify the following inequality :

n t e Ti Trecj
j

N

j

N

j² × ≤ −
= =

∑ ∑
1 1

.
(3)

Where n² is the number of pixels in the image, N the number of reconfiguration, Ti is
the duration of an image (40 ms), t e j is the elementary processing time of a pixel in

the jth steps and Trec j is the reconfiguration time of the jth steps.

The objective is to make an implementation which requires the minimal logical
resources and satisfies the real time constraint.
From equation (3) we obtain the minimal number of steps that we can surely
implement :

N N
T

n K t o k C
i

rec

≥ =
× × + ×min

max max²
.

(4)

t omax is the maximum execution time of an operator of the data flow graph (without

routing), K is a coefficient which take into account the routing delay between
operators, krec is a proportionality constant between the configuration time and the

number of used logic cells and Cmax is the total available logic cells. This evaluation

is obtained with the maximal configuration time and the execution time of the slowest
operator of each step.
Our method is based on the analysis of the data flow graph of the algorithm in order to
deduce the value of these parameters. The determination of Nmin gives us the number
of partitions of the data flow graph which corresponds to the number of
reconfiguration steps.

3.2. Modelling and parameters determination.

AT40K’s technology enables partial reconfiguration. Each configuration time depends
on the quantity of logic cells used for each step [4]. We evaluate the configuration
time of the jth step by :

Trec k Cj rec j= × . (5)

Where C j is the number of Cells of the jth step. In our case, AT40K20’s capacity of

819 Cells leads to a total reconfiguration time lower than 0.6 ms at 33 MHz with 8 bits
of configuration data [5]. We obtain for krec a value of 733 ns/ cell.

The maximum execution time of an operator depends on the speed grade of the device
and the data size to process (number of bits). The following equation gives this time
for a cascaded operator :

t o Dj Tc Tr Tsetupmax max ()= × + + . (6)

Where Djmax is the maximum data size to process, Tc is the logical function path

delay, Tr is propagation delay between logical function and Tsetup is setup time.

We evaluate these values to Tc = 1.7 ns; Tr = 0.17 ns and Tsetup = 1.5 ns [5].

The maximum working frequency depends on the slowest operator and the routing
delays between operators. We determined experimentally that K is constant for a
given occupation rate. This coefficient has a value of 1.5 in our application.
The study of the Cell’s structure enables the evaluation of the cell usage for each
operator. An n bits adder or substractor, latched or not, require n cells. The same cells
number applies for n bits multiplexer or register. This allows the evaluation of logical
resources needed for each step of the application from its data flow graph.

4. Results.

From the data flow graph (see figure 1), we obtain the size and type of the different
operators used (adder, multiplier, multiplexer...). So, in accordance with the
technology used, we deduce the slowest operator execution time. With AT40K, adders
are the slowest operators of our datapath if we consider identical size operators
(number of bits). In our application, the slowest operator is an 15 bits latched adder.
Then, the equation (6), give us a value of t omax of 29.55 ns.

From the equation (4), and the parameters determination, we estimate the minimal
number of reconfiguration-execution (steps) Nmin = 3.27 for our implementation. This
result is obtained with a image size of 512 by 512 pixels.

We deduce the data from the following table for a RTR optimized implementation
with constant resources usage rate.

Total estimated
number of Cells

Mean Cells /
step number

Reconfiguration
time / step (ms)

temax (ns)

690 212 0.16 44.3

The value Nmin is calculated by considering that each step require a full device
configuration and is executed with a slowest working frequency. In fact, after
implementation we obtain reconfiguration and execution time lesser than or equal to
evaluated time. That is why four reconfiguration-execution are possible instead of a
theoretical value of 3.27.

The partitioning of the data flow graph in four step is made in the following way :

_ first step : gaussian filter
_ second step : averaging filter and temporal and spatial derivative
_ third step : first half of divider
_ fourth step : second half divider.

Fig. 1. Data flow graph of the motion estimator.

Pi Pi -1 Pi -2 Pi -3 Pi -4 Gi –n²

* 2

* 2

* 2

 / 8

 / 2

 - / +

 + / -

 +

 +

 +

 +

 +

MiMi + 1 Mi - 1

 + / -

 0 1

 >0

 / 2

 + / -

 0 1

 >0

 / 2

 + / -

 0 1

 >0
 / 2

 + / -

 0 1

 >0

 / 2

 + / -

 128

 0 1

 >0

 / 2

 + / -

 0 1

 >0
 / 2

 + / -

 0 1

 >0

 / 2

 + / -

 0 1

 >0

 / 2

 X : N[s,E].

 N : X bits number.
n = 0..N-1

 s, s[X] : IXI sign.

E : IXI integer bits number .

 IviI, n = 0

 IviI, n = 1

 IviI, n = 2

 IviI, n = 3

 IviI, n = 7

 IviI, n = 4

 IviI, n = 6

 IviI, n = 5

 Ti : 9[s, 8] Si : 9[s, 8]

 ISiI : 8[-,8] ITiI : 8[-,8]

 8[-, 8] 8[-, 8]

 Mi : 9[-, 9]

 Gi : 9[-, 9]

 gaussian filter

 temporal, spatial derivates
and Averaging filter

arithmetic divider

The divider has been split in two parts in order to homogenize the number of resources
for each step. The following table shows results obtained with our implementation.

Operators Number of
Cells

Reconfiguration
time / step (ms)

t ej (ns)

Gaussian Filter 106 0.08 27.1

average and
Derivatives

103 0.08 26.5

Divider 1 354 0.26 38.7

Divider 2 336 0.25 37.8

We notice that dynamic execution with four steps can be achieved in real time. This is
in concordance with our estimation. Indeed, we verify that maximal execution time
(38.7 ns) is lesser than the evaluated time (44.3 ns). Moreover, we obtain a global
reconfiguration time of 0.67 ms. This value is very inferior to Nmin multipled by the full
device configuration time (1.96 ms).
However, an implementation by partitioning in five steps leads to a critical time very
harsh for real time operation. Indeed, in our case we have still 5.22 ms of processing
time for a supplementary step. If we consider a configuration time of 0.26 ms (Same
number of Cells as for the divider), we obtain a value t e j lower than 19 ns. This is

incompatible with our application.
The maximal number of Cells by step allows to determine the functional density gain
factor obtained by the RTR implementation [6], [7], [8]. In our example, the gain
factor in term of functional capacity is approximately 2.

5. Conclusion and future work.

We have proposed a method to evaluate the minimum number of reconfiguration-
execution (Nmin). This value depends on resources usage rate (K) for a given
algorithm.
From the analysis of the data flow graph, we deduce resources requirement and speed
of the various operators. This leads to the determination of total processing time, from
which we deduce the optimized partitioning of the data flow graph for RTR
implementation.

We illustrate our method with an apparent motion estimation algorithm on log-polar
images. The results obtained are in accordance with our estimation. The differences
between our estimation and experimental results are mainly due to the variations of
K (which depends on routing and actual resource occupation rate). The performances
obtained are compatible with the requirements of real time processing.
A partitioning which does not rely on the algorithm’s functions, enables an
implementation very homogeneous in terms of resource used by each step. This would
allow to enhance the functional capacity.

References.

1. D. Demigny, M. Paindavoine, S. Weber : Architecture Reconfigurable
Dynamiquement pour le Traitement Temps Réel des Images. Revue technique et
Sciences de l’information, Numéro Spécial programmation des Architectures
Reconfigurables. (1998).

2. H. Guermoud, Y. Berviller, E. Tisserand, S. Weber : Architecture à base de FPGA
reconfigurable dynamiquement dédiée au traitement d’image sur flot de données.
16° colloque GRETSI. (1997).

3. M. Tistarelli, G. Sandini : On the advantage of polar and log-polar mapping for
direct estimation of time to impact from optical flow. IEEE Transactions on PAMI,
vol 15. (1993). 401-410.

4. ATMEL IDS AT40K User’ guide.
5. Atmel. AT40K FPGA. Data Sheet.
6. M. J. Wirthlin, B.L. Hutchings : Improving functional density through run-time

constant propagation. FCCM97 (1997).
7. H. Guermoud : Architecture reconfigurable dynamiquement dédiées aux

traitements en temps réel des signaux vidéo. Thèse de l’Université Henri Poincaré.
Nancy 1. (1997).

8. J.G. Eldrerge, B.L. Hutchings : Density enhancement of neural network using
FPGAs and run-time reconfiguration . FCCM94 (1994).

