
Module Allocation for Dynamically

Recon�gurable Systems

Xue-jie Zhang and Kam-wing Ng

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N. T., Hong Kong
fxjzhang, kwngg@cse.cuhk.edu.hk

Abstract. The synthesis of dynamically recon�gurable systems poses
some new challenges for high-level synthesis tools. In this paper, we deal
with the task of module allocation as this step has a direct inuence on
the performance of the dynamically recon�gurable design. We propose
a con�guration bundling driven module allocation technique that can be
used for component clustering. The basic idea is to group con�gurable
logic together properly so that a given con�guration can do as much work
as possible, allowing a greater portion of the task to be completed be-
tween recon�gurations. Our synthesis methodology addresses the issues
of minimizing recon�guration overhead by maintaining a global view of
the resource requirements at all times during the high-level synthesis
process.

1 Introduction

A dynamically recon�gurable system allows hardware recon�guration while part
of the recon�gurable hardware is busy computing, and allows a large system to
be squeezed into a relatively small amount of physical hardware[1]. Though very
promising, the development of dynamically recon�gurable systems faces many
problems.

Since the con�guration changes over time, one major problem is that there
needs to be some way to ensure that the system behaves properly for all possible
execution sequences. For this time-multiplexed recon�guration to be realized, a
new temporal partitioning step needs to be added to the traditional design ow.
Some researchers have addressed temporal partitioning heuristically, by extend-
ing existing scheduling and clustering techniques of high-level synthesis[2][3][4].
In an earlier work[5], we presented a design model for abstracting, analyzing and
synthesizing recon�guration at the operations level.

In addition to making sure that a temporal partitioning be done correctly and
producing a functionally correct implementation of the desired behavior, another
important problem is how to produce the best implementation of functionality.
With normal FPGA-based systems, one wants to map the con�gurable logic
spatially so that it occupies the smallest area, and produces results as quickly as
possible. In a dynamically recon�gurable system one must also consider the time

to recon�gure the system, and how this a�ects the performance of the system.
Con�guration can take a signi�cant amount of time, and thus recon�guration
should be kept to a minimum. This is in general a challenging problem to address,
with almost no current solution[6].

In this paper, we present an e�cient high-level synthesis technique which
can be used to synthesize and optimize dynamically recon�gurable designs. In
particular, we concentrate our investigation on the task of module allocation.
Dynamic recon�guration extends the module allocation space by an additional
dimension. The optimizing criteria in dynamic resource allocation also shift from
a single static netlist to several con�gurations of the design. We must account not
only for temporal partitioning and scheduling e�ects but global considerations
as well, such as the resource requirements of all con�gurations, recon�guration
overhead, and the combination of all of the above. We have addressed these is-
sues by using a con�guration bundling technique that balances the advantages of
dynamic recon�guration against the added cost of con�guration time by main-
taining a global view of the resource requirements of all temporal partitions at
all times during high-level synthesis.

2 Problem Formulation

The contribution of this paper can be seen in the context of our previous work
on a design model[5]. Our approach uses an extended control/data ow graph
(ECDFG) as the intermediate representation of a design. The CDFG is extended
by abstracting the temporal nature of a system in terms of the sensitization of
paths in the dataow. An ECDFG is a behavioral-level model. An ECDFG
representation of system behavior consists of three major parts: (1) possible
execution paths which are described by the product of the corresponding guard
variables, (2)temporal templates which lock several con�guration compatible
operations into temporal segments of relative schedules, (3) a control and data
ow graph (CDFG) describing data-dependency or control-dependency between
the operations. Interested readers are referred to the original references for the
details about ECDFG.

In high-level synthesis, module allocation is an important task which de-
termines the number and types of RTL components to be used in the design.
Since we have encoded the temporal nature of synthesizing such systems by
temporal templates[5], the module allocation process may be translated into a
two-dimensional placement problem of temporal templates. Instead of consider-
ing individual CDFG nodes, we restate the dynamic module allocation problem
in terms of temporal templates, a given spatial and temporal placement of con-
�gurable logic resources used by some temporal templates for a range of time
constraints represents a possible con�guration. The module allocation problem
for dynamically recon�gurable logic involves not only generating the con�gura-
tion for each of the temporal templates, but also reducing the recon�guration
overhead incurred. Our problem can be formally de�ned as follows:

Problem 1. Let F = fF1; F2; :::; Fmg be a set of function units which can be
implemented on recon�gurable logic, and C = fC1; C2; :::; Cng be a set of pos-
sible con�gurations of the con�gurable logic units. Given an extended CDFG
(ECDFG) G = (V;E; �; �) with a set of temporal templates in a given order
TT = (TT1; TT2; :::; TTp), where TTi 2 F , �nd an optimal sequence of con�g-
urations CS = (CS1; CS2; ::; CSq) for temporal template TT , where CSi 2 C

which minimizes the recon�guration cost R. R is de�ned as

R =

qX

i=2

�i (1)

Where �i is the recon�guration cost in changing con�guration from CSi�1 to
CSi.

In the remaining sections, we use a new con�guration bundling driven tech-
nique to address the module allocation problem.

3 Con�guration Bundling

The basic idea is to group logic together properly so that a given con�guration
can do as much work as possible, allowing a greater portion of the task to be
completed between recon�gurations.

We illustrate our concept with the help of a motivating example. Consider
three temporal templates of an extended CDFG shown in Figure 1. Further-
more, assume that all operations �nish in a single cycle and that all tem-
poral templates have to be implemented in three clock cycles. If each tem-
poral template is allocated as a single con�guration, the �rst temporal tem-
plate (shown in Figure 1(a)) requires a module allocation of �ve functional
units namely f3 adders; 1 multiplier; 1 subtractorg. Similarly, the second and
third temporal templates (shown in Figure 1(b)-(c)) can be implemented with
module allocations of f 2 adders; 2 multipliers; 2 subtractorsg and
f1 adder; 1 multiplier; 3 subtractorsg respectively.

+ +

+

* + -

+

* -

* *

*

* + -

*

+ -

- -

-

* + -

-

* +

(a) (b) (c)

Fig. 1. A Motivating Example

A straightforward approach to optimize the module allocation of the three
temporal templates as a dynamically recon�gurable design involves considering
the granularity of the recon�guration. Resource requirements of the temporal
templates can be reduced signi�cantly by maintaining a global view of the re-
source requirements of all temporal templates at all times during the synthesis
process. In fact, the three temporal templates can be implemented using a con-
�guration granularity of two adders, two multipliers and two subtractors. In this
research, we have developed a con�guration bundling technique to reduce the
recon�guration overhead. The concept of con�guration bundling can be de�ned
as follows:

De�nition 1. Given an extended CDFG (ECDFG) G = (V;E; �; �) with a set
of temporal templates TT = fTT1; TT2; :::; TTng, a con�guration bundle is a
subset of TT such that the hardware resource requirements of individual temporal
template in this subset fTTi1 ; TTi2 ; :::; TTimg can be implemented by an overall
resource allocation schema.

Con�guration bundling is a synthesis technique where n temporal templates
are bundled into at most m groups so that each temporal template belongs to at
least one bundle and the objective function is optimized. Following con�guration
bundling, each bundle is synthesized into a separate con�guration. The basic idea
behind our con�guration bundling technique is to attempt to identify and bundle
temporal templates with similar computation topology and hardware types into
compatible groups, such that these groups may be used to determine the choice
of granularity for con�gurations that optimize the recon�guration overhead. In
particular, the following compatibility issue should be considered during the
con�guration bundling process.

3.1 Bundling Compatibility of Temporal Templates

If two temporal templates with disparate topologies are implemented in tem-
porally consecutive con�gurations the attendant con�guration overhead will be
signi�cant. In the worst case, each functional unit has to be recon�gured and this
increases the time of recon�guration. Therefore, topological similarity between
temporal templates should be considered for bundling into the same group. For
example, in Figure 2 Temporal Template 2 can be bundled into a con�guration
implementing temporal template 4 with almost no recon�guration overhead.

In addition, resource compatibility is an important issue during con�guration
bundling. For example, in Figure 2, while Temporal Templates 2, 3 and 4 use sub-
tractors and multipliers, Temporal Template 1 uses adders. Therefore, bundling
Temporal Template 1 with either Temporal Template 2 or 3 or 4 does not yield
justi�able bene�t for reducing the recon�guration overhead. On the other hand,
based on the compatibility of the functional unit types, Temporal Templates 2,
3, 4 are good candidates to be bundled into the same group.

+ +

+

+

-

*

* *

*

-

-

-

-

*

(1) (2) (3) (4)

Fig. 2. Compatibility of Temporal Template

3.2 Measure of Con�guration Bundling

Con�guration bundling should take into account trade-o�s between maximizing
static resource requirements and minimizing recon�guration overhead in space.
Therefore, a con�guration bundle will have the smallest area and the scope for
maximum resource usage if the temporal templates in a bundle are compatible
with one another. Based on the above observations we have developed a measure
to identify bundling compatibility between temporal templates. We �rst outline
the parameters of the function for bundling below.

{ B: Set of bundles B1; B2; :::; Bk for a given TT that describes a set of possible
con�guration bundling.

{ NFj (TTi): the number of con�guration of functional unit Fj for temporal
template TTi.

{ AreaFi : the area of a con�guration of a functional unit Fi

Given a temporal template TTi, the following is an estimate of the area of
the temporal templates:

Areatti =
X

f2F

NF (TTi) � Areaf (2)

If a bundle Bi has ni temporal templates, then the area of the bundle is
estimated as below.

AreaBi
=
X

f2F

maxtt2Bi
Nf (tt) �Areaf (3)

The larger the di�erence between these areas of temporal templates, the
more incompatible the temporal template will be with the remaining temporal
templates in the bundle. Given a temporal template TTj for consideration for
bundling in Bi, the incompatibility can be obtained as the following and is used
to weigh the candidate solutions.

�Bi;TTj =
X

f2F

jmaxTT2Bi
Nf (TT)�NF (TTj)j � Areaf (4)

4 Con�guration Bundling Driven Module Allocation

Algorithm

Since there are several temporal templates in a range of time and module alloca-
tion, simultaneously considering all the temporal templates and their respective
constraints is di�cult. We propose to allocate the hardware resources from a
range of time by considering one temporal template at a time. In particular, the
following three issues must be taken into account:

{ the allocated hardware resource due to the previously considered temporal
templates

{ the estimated hardware resource of the remaining temporal templates

{ the hardware resource required by the candidate temporal templates

Here, temporal templates are �rst bundled randomly. Then, a source con-
�guration bundle is randomly chosen. From such a con�guration bundle, an
incompatible temporal template is selected and moved to another con�guration
bundle where the temporal templates are compatible with the selected temporal
template. The hardware area of all con�gurations is then computed, and the cur-
rent bundling con�guration is saved if it is the best so far. The process continues
until no more improvement is obtained for a given number of iterations.

For each con�guration bundle Bi 2 B, the module allocation algorithm is
outlined below. An initial module allocation ABi

for each con�guration bundle
Bi is �rst derived. Starting with a temporal template with the most resource
requirements, a feasible module allocation for the entire bundle is obtained.
From the total resource allocated to the con�guration bundle ABi

, the module
allocation RTTi for each candidate temporal template TTi 2 Bi is obtained.
Then, allocation and scheduling of the design are carried out using this module
allocation technique.

4.1 Initial Module Allocation

Let Nij be the maximum bound on the necessary amount of resource of a cer-
tain con�guration type Cj of functional unit for the temporal template TTi of
a con�guration bundle. For each resource type Cj and for each temporal tem-
plate TTi of a con�guration bundle Bi, relaxation based scheduling techniques
are used to derive an estimate of Nij . For a con�guration bundle Bi, a global
minimum bound of resource requirements Nj is used as the initial allocation for
the con�gurable logic Cj .

Nj = maxTTi2Bi
(Nij) (5)

This is based on the fact that there will be at least one temporal template in
the con�guration bundle that requires at least these many hardware con�gura-
tions of type Cj .

4.2 Ordering and Allocating Temporal Templates

Within our methodology, the ordering of temporal templates in the same con�g-
uration bundle has an impact on resource usage and recon�guration overhead of
the resulting resource allocation. A good order for module allocation of temporal
templates is important because this order has a pronounced impact on the �nal
resources allocation and the overall performance of the system. The proposed
algorithm for ordering temporal templates include two stages called clustering
and scheduling. The objective of the algorithm is to group temporal templates
such that they may subsequently be allocated and scheduled.

When considering functional locality in the module allocation process, it is
better to schedule and allocate together temporal templates contributing to the
same join node in the ECDFG, because this could help in the scheduling and
allocation of relative temporal templates at higher levels. Therefore, clustering
temporal templates is the �rst step in the temporal templates ordering process.
The cones partitioning algorithm provides the basis for our clustering stage[8][9].

Once temporal templates are partitioned into clusters, the cluster-based list
scheduling and allocation algorithm orders the temporal templates in the same
con�guration bundle. Our algorithm combines scheduling with module allocation
into subsequent con�gurations for temporal templates in the same con�guration
bundle, while considering functional locality of the con�guration bundle. There
are two main steps in our list scheduling algorithms: the formation of clusters
and list scheduling temporal templates.

5 Experimental Results

In this section we present results to illustrate the e�ectiveness of the con�gu-
ration binding technique. In order to experimentally verify the concept of con-
�guration bundling driven module allocation, we used three popular high-level
benchmarks - elliptical wave �lter (EWF), �nite impulse response �lter (FIR)
and bandpass �lter (BF) - for optimizing the overall resource allocation as well as
the recon�guration overhead. We assume the following con�gurations for addi-
tion and multiplication operations: look-ahead adder (Area = 1, latency = 1) and
a two-stage multiplier (Area = 4, latency = 2). Figure 3 shows the component
requirement for the static and con�guration bundling driven module allocation.

Bundles Static module allocation
(Area)

Bundling driven
module allocation

(Area)

Reduction

{EWF,FIR,BF} 24 11 54.2%
{EWF,FIR}, {BF} 24 17 29.2%
{EWF},{FIR,BF} 24 13 45.8%

Fig. 3. Bundling to minimize recon�guration cost

We have also combined our front-end algorithms with the existing DRL
scheduling algorithms[2] back end for demonstrating our results. DRL scheduling
algorithms do not consider the module allocation problem. We compare results
of the combined algorithms with a single DRL approach[2] as shown in Figure 4,
where te, np, nf and � represent the total data-path execution time, the num-
ber of partial and the number of full recon�gurations and the graph latency
respectively.

Benchmarks Total area Combined approach
 te np nf λ

DRL
te np nf λ

Elliptic
wave_filter

15
10
6

15
10
6

15
10
6

15 25 0 15
15 25 0 15
15 24 1 15
16 12 0 16
18 13 1 17
20 17 0 20
19 3 0 19
26 9 0 26
28 12 0 28

17 1 2 17
17 4 2 17
17 2 8 17
17 5 0 17
18 9 0 18
24 19 0 24
18 8 0 18
21 16 0 21
37 1 9 19

Fig. 4. Synthesis result and comparison

The results in Fig.4 have shown that the use of the combined algorithm will
lead to a faster execution time compared with a single DRL scheduling imple-
mentation, and with considerably smaller area. When the DRL scheduling is
used alone, more control steps result but when scheduling together with our
module allocation is performed the partial recon�gurations will frequently occur
instead of the full recon�gurations. This is expected as our algorithm aims at
producing a short recon�guration time by maintaining a global view of the re-
source requirements of all temporal templates at all times during the synthesis
process.

6 Conclusions and Acknowledgments

We have presented a new module allocation technique in this paper. It is based
on a con�guration bundling heuristic that tries to allocate con�gurable logic re-
sources by maintaining a global view of the resource requirements of all temporal
templates. The most important value of the con�guration bundling driven mod-
ule allocation technique is that enable trade-o�s between the granularity of the
con�guration and recon�guration overhead during high-level synthesis process.

The work described in this paper was partially supported by two grants: the
Research Grant Council of the Hong Kong Special Administrative Region (RGC
Research Grant Direct Allocation - Project ID: 2050196), and Yunnan Province
Young Scholar Grant.

References

1. Lysaght and J. Dunlop: Dynamic recon�guration of FPGAs, More FPGAs,
UK:Abingdon EE and CS Books (1994), pp82-94, 1994.

2. M.Vasilko and D.Ait-Boudaoud: Architectural Synthesis Techniques for Dynami-
cally Recon�gurable Logic, Field-Programmable Logic, Lecture Notes in Computer
Science 1142, pp290-296

3. J. Spillane and H.Owen: Temporal Partitioning for Partially Recon�gurable
Field Programmable Gate, Proceedings of Recon�gurable Architectures Work-
shop(RAW'98), 1998.

4. M. Kaul and R. Vemuri: Optimal Temporal Partitioning and Synthesis for Recon-
�gurable Architectures, Proceedings of Design and Test in Europe(DATE'98), 1998.

5. Kam-wing Ng, Xue-jie Zhang, and Gilbert H. Young: Design Representation for
Dynamically Recon�gurable Systems, Proceedings of the 5th Annual Australasian
Conference on Parallel And Real-Time Systems(PART'98), pp14-23, Adelaide, Aus-
tralia, September 1998.

6. Scott Hauck and Anant Agarwal: Software Technologies for Recon�gurable Systems,
Northwestern University, Dept. of ECE Technical Report, 1996.

7. Ivan Radivojevic and Forrest Brewer: A New Symbolic Technique for Control-
Dependent Scheduling, IEEE Trans. on Computer-Aided Design of Integerated Cir-
cuit and Systems, vol.15, no.1, pp45-56, Jan. 1996 .

8. D. Brasen, J.P. Hiol and G. Saucier: Finding Best Cones From Random Clusters for
FPGA Package Partitioning, IFIP International Conference on VLSI, pp 799-804,
Aug. 1995.

9. Sriam Govindarajan and Ranga Vemuri: Cone-Based Clustering Heuristic for List-
Scheduling Algorithms. Proceedings of the European Design and Test Conference,
Paris, France, March 1997.

