
ATLANTIS – A Hybrid FPGA/RISC Based
Re-configurable System

O. Brosch, J. Hesser, C. Hinkelbein, K. Kornmesser, T. Kuberka, A. Kugel,
R. Männer, H. Singpiel, B. Vettermann

Lehrstuhl für Informatik V, Universität Mannheim, D-68131 Mannheim, Germany
{brosch, hinkelbein, kornmesser, kuberka, kugel, maenner,

singpiel}@ti.uni-mannheim.de, jhesser@rumms.uni-mannheim.de,
b.vettermann@fh-mannheim.de

Abstract. ATLANTIS is the result of 8 years of experience with large stand-
alone and smaller PCI based FPGA processors. Dedicated FPGA boards for
computing and I/O plus a private backplane for a data rate of up to 1 GB/s sup-
port flexibility and scalability. FPGAs with more than 100k gates and 400 I/O
pins per chip are used. CompactPCI provides the basic communication mecha-
nism. Current real-time applications include pattern recognition tasks in high
energy physics, 2D image processing, volume rendering, and n-body calcula-
tions in astronomy. First measurements and estimations show an acceleration up
to a factor of 25 compared to a PC workstation, or commercial volume render-
ing hardware, respectively. Our CHDL, an object-oriented development envi-
ronment is used for application programming.

1 Introduction

8 years of experience with FPGA based computing machines show that this new class
of computers is an ideal concept for constructing special-purpose processors. As proc-
essing unit, I/O unit and bus system are implemented in separate modules, this kind of
system provides scalability in computing power as well as I/O bandwidth.

Enable-1 [1] was the first FPGA processor developed at Mannheim University in
1994, tailored for a specific pattern recognition task. More general machines were
introduced at about the same time, e.g. DecPeRLe-1 [2] or Splash-2 [3]. Enable-1 was
followed by a general-purpose FPGA processor in 1996, the Enable++ [4] system. In
addition to the large scale Enable++ system a small PCI based FPGA coprocessor –
microEnable [5] – was developed in late 1997. It turned out that the simplicity to-
gether with the tight host-coupling of the smaller system was a significant improve-
ment compared to Enable++.

The new FPGA processor ATLANTIS combines advantages of its predecessors
Enable-1, Enable++, microEnable and others, and introduces several new features.
The first is the ability to combine FPGA and RISC performance. A unique feature is
the scalability and the fast data exchange between the different modules due to the
CompactPCI and private bus backplane system. Another highlight is the configurable
memory system which complements the flexibility of the FPGAs. We use CHDL, an

unique object-oriented software tool-set that was at developed our institute, to create
and simulate hybrid applications.

2 ATLANTIS System Architecture

A well-tried means to adjust a hybrid system to different applications is modularity.
ATLANTIS implements modularity on different levels. First of all there are the main
entities host CPU and FPGA processor which allow to partition an application into
modules tailored for either target. Next the architecture of the FPGA processor uses
one board-type (ACB) to implement mainly computing tasks and another board-type
(AIB) to implement mainly I/O oriented tasks. A CompactPCI based backplane
(AAB) as interconnect system provides scalability and supports an arbitrary mix of
the two board-types, thus providing a high-speed interconnect. Finally modularity is
used on the sub-board level by allowing different memory types or different I/O inter-
faces per board type.

Only FPGA devices with a high I/O pin-count and a complexity in the 100k gate-
range are of interest for the ATLANTIS project. Two additional features are impor-
tant either for our concept or for some applications: support for read-back/test and
asynchronous dual ported memory (DP-RAM). In particular the partial reconfigura-
tion is of great interest for co-processing applications involving hardware task
switches. These features and a relatively low price guided the decision to use the
Lucent ORCA 3T125 in the ATLANTIS system. The latest Xilinx family – the
VIRTEX series – is also a good choice but was not available on the market at the time
the ACB was designed. However, the AIB carries two VIRTEX XCV600 chips.

The ACB and the AIB both use a PLX9080 as PCI interface. This chip is compati-
ble to the one used with the microEnable FPGA coprocessor. Furthermore the entire
on-board support logic – like FPGA configuration and clock control – which is im-
plemented in a large CPLD, is derived from microEnable. This high degree of com-
patibility ensures that virtually all basic software (WinNT driver, test tools, etc.) are
immediately available for ATLANTIS.

Clock generation and distribution is an important issue for large FPGA processors.
The basic approach in Atlantis is to provide a central clock from the AAB. Addition-
ally the I/O ports of all FPGAs on either ACB and AIB have their individual clock
sources. Finally each ACB and AIB provides a local clock which can be used if the
main AAB clock is not available or if the application requires an additional clock. All
clocks are programmable in the range of a few MHz up to at least 80 MHz. Program-
ming is done under software control from the CPU module.

2.1 ATLANTIS Computing Board (ACB)

The core of the main processing unit of the ATLANTIS system consists of a 2*2
FPGA matrix. Assuming an average gate count of approximately 186k per chip for
the ORCA 3T125 sums up to 744k FPGA gates. Each FPGA has 4 different ports:
· 2 ports @ 72 lines to a neighboring FPGA each in vertical and horizontal direction
· 1 logical I/O port @ 72 lines and

· 1 memory interconnect port @ 206 lines.
Theses 4 ports use a total amount of 422 I/O signals per FPGA. The 72 lines of FPGA
interconnect provide for high bandwidth as well as multi-channel communication
between chips. The memory interconnect port is built from 2 high-density 124 pin
mezzanine connectors per FPGA. Depending on the application, memory modules
with different architectures can be used to optimize system performance. E.g. the HEP
TRT trigger (see below) will employ memory modules organized as a single bank of
512k * 176 bit of synchronous SRAM per module, leading to a total of 44 MB per
ACB. The 3D-rendering algorithm will use a single module of triple width with 512
MB of SDRAM organized in 8 simultaneously accessible banks. A more generalized
module – also used for 2D image processing – will take 9 MB of synchronous SRAM
organized in 2 banks of 512k * 72 bits.

The I/O port serves different tasks on the 4 FPGAs, depending on the physical
connection of the respective chip:
· One FPGA is connected to the PLX9080 PCI interface chip thus providing the

host-I/O functionality.
· Two FPGAs are connected to the private backplane bus.
· One FPGA is attached to two parallel LVDS connectors for external I/O.
The connectors can be used to attach I/O modules, e.g. S-Link1, to set up a down-
scaled or test system without the need to add AAB and AIB modules. The 2 back-
plane ports support high-speed I/O of 1 GB/s @ 66 MHz, 2*64 bits. The host-
interface via PCI is compatible to the one used with microEnable, allowing 125 MB/s
max. data rate.

2.2 ATLANTIS I/O Board (AIB)

The task of the ATLANTIS I/O units is to connect the ATLANTIS system to its real-
world environments via the private backplane bus. To provide a maximum flexibility
in connecting to external data sources or destinations a modular design of the I/O
boards was selected. Depending on the standard CompactPCI card size every AIB is
able to carry up to four mezzanine I/O daughter-boards.

Two Xilinx VIRTEX XCV600 FPGAs control the four I/O ports. Interfacing to the
AAB and to the local PCI bridge is done in the same fashion as on the ACB. The
default capacity of any of the four channels is 32 + 4 data bits @ 66MHz (or 264
MB/s ignoring the 4 extra bits). Thus the four I/O channels provide the same band-
width as the 2 backplane ports: 1GB/s. To provide a sustained and high I/O bandwidth
even at small block sizes buffering of data can be done in two stages (numbers per I/O
channel):
· A 32k * 36 FIFO-style buffer connected directly to the I/O port, implemented with

dual-ported memory.
· A 1M * 36 general purpose buffer implemented with synchronous SRAM.
The fact that both FPGAs are connected to the PLX local bus provides a communica-
tion means in case channel synchronization, loop-back or the like is needed.

1 S-Link is a FIFO-like CERN internal standard for point-to-point links.

2.3 ATLANTIS Active Backplane (AAB)

ACBs and AIBs share the same I/O-circuit with 160 signal lines. Connections be-
tween boards are done using the private bus system of the AAB. The default configu-
ration of the I/O lines will be 4 channels of 32bit plus control, however any granular-
ity from 16 channels of a single byte to 2 channels of 64 bit might be useful.

Different backplanes can be used in order to scale the ATLANTIS system to the
respective application. A simple pipelined, passive, i.e. not configurable, backplane is
currently used for system and performance tests.

The total bandwidth is 1 GB/s per slot. For example configuring the backplane for
two independent pairs of ACBs and AIBs, an integrated bandwidth of 2 GB/s will
result for a single ATLANTIS system. Like all other boards, the backplane is con-
trolled by the host CPU via the PCI bus.

2.4 Host CPU

The host computer to be used with ATLANTIS is an industrial version of a standard
x86 PC – a CompactPCI computer – that plugs into one of the AAB slots. This indus-
trial computer is equipped with a mobile Intel Pentium-200 MMX or Celeron-450
processor and thus 100% compatible to a standard PC desktop workstation. All stan-
dard operating systems can be used, in particular Windows NT and Linux, without the
need to adapt drivers or I/O handlers, etc. The compatibility at the device driver level
of ATLANTIS with the small scale FPGA processor microEnable allows a quick start
using the tools already available.

The CPU module allows to have the complete FPGA development tool-set be run
on the target system, as well as the application itself. The ACB and AIB boards act as
coprocessors, accelerating time and resource consuming parts of an application, and
providing high I/O bandwidth. Moreover, the CPU is needed for control, when task
switching and re-configuration of FPGAs is desired. Additionally, high precision
floating point operations that are too much resource consuming on FPGAs, may be
carried out in the CPU.

2.5 CHDL Development Environment

CHDL (C++ based Hardware Description Language) was designed to support simu-
lation of FPGA coprocessors. The use of commercial VHDL products to simulate
FPGA coprocessors shows some insufficiencies:
1. A test bench must be implemented for emulating the FPGA environment using

VHDL while the application operating the FPGA is mostly written in C/C++.
2. The test bench has to emulate the behavior of the microprocessor system exactly,

including bus system and DMA controllers at the level of bus signals.
3. Implementing the test bench is redundant work because the application already

contains the whole algorithm needed for simulation.
CHDL provides a hardware description based on C++ classes for entering structural
designs and state machine definitions. A CHDL design description is a traditional
C++ program linked to a class library. This enables the developer to implement com-
plex high level software which generates the structural CHDL design automatically.

The developer uses the original application to simulate the designs. No traditional
hardware oriented test benches are needed. One single language, C++, is sufficient to
manage the whole development process. In both the application and the hardware
description the features of this powerful programming language can be used.

More details can be found in [6].

3 Applications

FPGA processors have shown to provide superior performance in a broad range of
fields, like encryption, DNA sequencing, image processing, rapid prototyping etc.
Very good surveys can be found in [3] and [7]. We are in particular interested in hy-
brid CPU/FPGA systems for:
· acceleration of computing intensive pattern recognition tasks in High Energy

Physics (HEP) and Heavy Ion Physics,
· subsystems for high-speed and high-frequency I/O in HEP,
· 2-dimensional industrial image processing,
· 3-dimensional medical image visualization and
· acceleration of multi-particle interaction (e.g. N-Body [8], SPH) calculations in

astronomy.

3.1 High Energy Physics

In the field of HEP many FPGA algorithms have been implemented at our institute
during the past 5 years. Results show speedup rates in the range from 10 to 1,0002

compared to workstation implementations [9]. The most recent HEP pattern matching
algorithm tries to find straight or curved tracks in a 2-dimensional input image deliv-
ered by a transition radiation tracking detector (TRT) with a repetition rate of up to
100 kHz. The size of the detector image is 80,000 pixels. The number of patterns
varies from 240 to more than 2,400 depending on the operating frequency. The
working principle of the algorithm is as follows:
· Predefined patterns are stored in a large look-up table (LUT) with every data bit

representing one pattern.
· Each pixel in the input image contributes to a number of patterns, defined by the

content of the LUT.
· For every pattern a counter increments if its corresponding data bit is set. The total

of all counter values builds the track histogram.
· A track is considered valid if its value is above a predefined threshold.
A description of the algorithm and its implementation can be found in [10].

In particular this algorithm is ideally suited for an FPGA implementation because it
can be extremely parallelized. Adjustable memory boards allow RAM access with a
width of e.g. 4*176 bits. Therefore, 706 straws can be processed simultaneously on a
single ACB board equipped with 4 memory modules, thus providing an enormous
speed-up compared to other systems, e.g. a state-of-the-art PC.

2 Measured on Enable-1 with parallel histogramming only, no I/O was needed.

3.2 Image processing

Almost all image processing applications involve tasks where image elements (pixels
or voxels) have to be processed with local filters. Among others, hardware imple-
mentation of algorithmically optimized real-time volume rendering is a current project
at our institute in this area.

The following rendering - or ray processing - pipeline is assumed:
· Starting from each pixel of the resulting image rays are cast into the virtual scene.
· At equally distant positions on the rays sample points are generated by tri-linear

interpolation of the neighboring voxel values.
· Sample points are classified with opacity or reflectivity according to gray values

and gradient magnitude.
· Finally, the absorption for each voxel is determined. The reflected fraction of the

light intensity reaching the sample point is calculated and added to the contribu-
tions of all other sample points on that ray.

The new architecture uses algorithmic optimizations: regions with no contribution are
skipped, and processing is aborted as soon as the remaining intensity drops under an
adjustable threshold. To overcome the resulting data and branch hazards in the ren-
dering pipeline multi-threading is introduced. Each ray is considered as a single
thread, and after each sample point the context is switched to the next ray. Our im-
plementation has the same speed-up like software implementations of this algorithm,
compared to volume rendering without algorithmic optimizations. However, com-
pared to conventional architectures the number of pipeline stalls is reduced from more
than 90% to less than 10% of rendering time.

Details of the algorithm and its FPGA implementations can be found in [11].

3.3 Astronomy

Using FPGAs to accelerate complex computations using floating-point algorithms has
not been considered a promising enterprise in the past few years. The reason is that
general floating-point [12] as well as particular N-Body [13] implementations have
shown only poor performance3 on FPGAs.

Usually N-Body calculations need a computing performance in at least Tera-FLOP
range and are accelerated with the help of ASIC based coprocessors [14]. Nonetheless
we have recently investigated the performance of a certain sub-task of the N-Body
algorithm on the Enable++ system [15]. The results indicate that FPGAs can indeed
provide a significant performance increase even in this area.

3.4 Measured and Estimated Performance

HEP. Besides principle parameters like system frequency the DMA performance
plays a dominant role for the execution time of the TRT algorithm. Therefore DMA
Read/Write access was the main focus of the measurements. Following are some

3 In 1995 approx. 10 MFLOP per Xilinx chip were reported for 18 bit precision, and 40

MFLOP with 32 bit precision on an 8 chip Altera board.

results showing the data throughput over CPCI for various applications, measured
with ATLANTIS, microEnable driver, design speed 40 MHz.

Table 1. ATLANTIS DMA performance

Block size (kByte) 1 4 32 256
DMA Read perf. (MB/s) 8.8 24.6 75.3 97.7
DMA Write perf. (MB/s) 7.4 21.6 54.3 65.3

The effect these results suggest for the performance of a distributed system largely
depend on the respective application. For the TRT algorithm, the time needed for I/O
is indeed the bottle-neck, in case the ATLANTIS sub-systems are employed as co-
processors and thus receive their data from the host CPU.

Measurements of histogramming performance were done using a single-memory
ACB (176 bit RAM access) [16]. The execution time on the test system (algorithm
plus I/O), 19.2 ms compared to 35 ms using a C++ implementation on a Pentium-
II/300 standard PC, extrapolates to 2.7 ms using 2 ACB with 4 memory modules each
(1408 bit RAM access). This corresponds to a speed-up by a factor of 13.5.

Volume Rendering. The hardware speed is limited by several factors. One is the
memory bandwidth. Assuming 100 MHz devices, simulations have shown that 4 Hz
frame rates for 10243 data sets can be achieved for typical data with hard surfaces and
otherwise empty space in between [17]. With our FPGA solution we will achieve a
clock rate of >25 MHz that reduces the frame rate accordingly.

For detailed simulation we used a CT data set with 256*256*128 voxels. This data
set is viewed from three different viewing directions and three different levels of
opacity for soft tissue is applied.

On average one achieves efficiencies of between 90% and 97%. The number of
sample points varies between 10-15% of all voxels if the data set consists mainly of
empty space and opaque objects and 25-40% for semi transparent opacity levels.

The above results correspond to rendering rates from 20 Hz on semi-transparent
data sets to 138 Hz for opaque objects and parallel projection. The results are
achieved from images of size 256*128. Perspective views reduce the rendering speed
by a factor of about 2.

Comparing these results with the performance of the only commercially available
volume rendering hardware, VolumePro [18], simulations suggest a speed-up by a
factor of 10 to 25 when using 10243 data sets.

4 Summary and Outlook

ATLANTIS is a CompactPCI based computing machine that combines the advantages
of FPGA and RISC architectures. Its unique features are scalability, flexibility with
respect to memory, configurable high-speed I/O, and it comes with a powerful object-
oriented development environment, CHDL.

ATLANTIS has proven its supreme power regarding bandwidth and speed in ap-
plications we have investigated so far. An ACB is available since 09/1999 and is

currently tested with different memory modules and a simple backplane, with differ-
ent applications. A second ACB and an AIB will be completed shortly. Though the
full system is not available by now (01/2000) it is planned to have an implementation
of a HEP trigger application run in a real experiment (FOPI at GSI, Darmstadt, Ger-
many) within this year. Other implementations concern future experiments, or have
prototype character.

References

[1] Klefenz F., Zoz R., Noffz K.-H., Männer R., “The ENABLE Machine - A Systolic Second
Level Trigger Processor for Track Finding”, Proc. Comp. in High Energy Physics, An-
necy, France; CERN Rep. 92-07 (1992) 799-802

[2] DECPeRLe-1, an FPGA processor containing 16 Xilinx XC3090 FPGAs,
http://pam.devinci.fr/hardware.html#DECPeRLe-1

[3] D. Buell, J. Arnold, W. Kleinfelder, “Splash-2 – FPGAs in a Custom Computing Ma-
chine“, CS Press, Los Alamitos, CA, 1996

[4] H. Hoegl et al., “Enable++: A Second Generation FPGA Processor”, Proc. IEEE Sympo-
sium on FPGAs for Custom Computing Machines, pp. 45-53, 1995

[5] microEnable, a PCI based FPGA co-processor by Silicon Software GmbH,
http://www.silicon-software.com/

[6] K. Kornmesser et al, “Simulating FPGA-Coprocessors Using the FPGA Development
System CHDL”, Proc. PACT Workshop on Reconf. Comp., Paris (1998) pp. 78-82

[7] J. Vuillemin et al., “Programmable Active Memories: Reconfigurable Systems Come of
Age”, Proc. of the 1996 IEEE Trans. On VLSI Systems

[8] R. Spurzem, S.J. Aarseth, “Direct Collisional Simulation of 10,000 Particles Past Core
Collapse'', Monthly Notices Royal Astron. Soc., Vol. 282, 1996, p. 19

[9] V. Dörsing et al., “Demonstrator Results Architecture – A”, ATL-DAQ-98-084, CERN, 26
Mar 1998

[10] A. Kugel et al., “50kHz Pattern Recognition on the Large FPGA Processor Enable++”,
Proc. IEEE Symp. on FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
CA, 1998, pp. 1262-3

[11] J. Hesser, B. Vettermann, “Solving the Hazard Problem for Algorithmically Optimized
Real-Time Volume Rendering”, Int. Workshop on Vol. Graph. 1999, Swansea, UK

[12] W. Ligon et al, “A Re-evaluation of the Practicality of Floating-Point Operations on
FPGAs”, Proc. IEEE Symp. on FPGAs for Custom Computing Machines, 1998

[13] H.-R. Kim et al, “Hardware Acceleration of N-Body Simulations for Galactic Dynamics”,
SPIE Conf. on FPGAs for Fast Board Develop. and Reconf. Comp. 1995, pp. 115-126

[14] J. Makino et al, “GRAPE-4: A Massively Parallel Special-Purpose Computer for Colli-
sional N-Body Simulations”, Astrophysical Journal, Vol. 480, 1997, p. 432

[15] T. Kuberka, Diploma Thesis, Universität Mannheim, Germany, 1999
[16] C. Hinkelbein et al, “LVL2 Full TRT Scan FEX Algorithm for B-Physics Performed on

the FPGA Processor ATLANTIS”, to be publ. as ATL-DAQ-Note, CERN
[17] B. Vettermann et al, “Implementation of Algorithmically Optimized Volume Rendering on

FPGA Hardware”, IEEE Visualization '99, San Francisco, CA (1999)
[18] VolumePro, a PCI based volume rendering coprocessor by Mitsubishi Electronics Amer-

ica, Inc. RTVIZ, http://www.rtviz.com/

