
Parallel low-level image processing on a

distributed-memory system

Cristina Nicolescu and Pieter Jonker

Delft University of Technology
Faculty of Applied Physics
Pattern Recognition Group

Lorentzweg 1, 2628CJ Delft, The Netherlands
email: cristina,pieter@ph.tn.tudelft.nl

Abstract. The paper presents a method to integrate parallelism in the
DIPLIB sequential image processing library. The library contains several
framework functions for di�erent types of operations. We parallelize the
�lter framework function (contains the neighborhood image processing
operators). We validate our method by testing it with the geometric mean
�lter. Experiments on a cluster of workstations show linear speedup.

1 Introduction

For e�ective processing of digital images it is essential to compute the data
using a variety of techniques such as �ltering, enhancement, feature extraction,
and classi�cation. Thus, there is a great need for a collection of image processing
routines which can easily and e�ectively be used on a variety of data. We used in
our research an image processing library called DIPLIB (Delft Image Processing
LIBrary) [11] developed in the Pattern Recognition Group, Delft University of
Technology. It provides a basic set of image handling and processing routines
and a framework for expanding the set of image processing routines.

While the library provides the necessary functionality and exibility required
for image processing applications tasks, it is clear that for real-time processing,
many important image processing tasks are too slow. For example, a �lter op-
eration which removes noise from a 1024 � 1024 pixel image requires several
minutes to complete on a common desktop workstation. This is unreasonable
in real-time image processing. A method to speedup the execution is to use ex-
isting workstation cluster for parallelism [1, 2, 3, 5]. In [3] the authors present
the design and implementation of a parallel image processing toolkit (PIPT),
using a model of parallelism designed around MPI. Currently, we are developing
a parallel/distributed extension to the DIPLIB. We developed 2 parallel versions
of the library on top of MPI [7] and CRL [6], respectively. As a consequence, the
code remains portable on several platforms.

The paper is organized as follows. Section 2 presents a classi�cation of low-
level image processing operators. Section 3 describes an approach of integrating
parallelism in the sequential image processing library. Execution times obtained
for the geometric mean �lter are presented and interpreted in Section 4. Section
5 concludes the paper and Section 6 presents future work.



��
��
��
��

��
��
��
��Transform

Input image Output image

Fig. 1. Point low-level operator

����
����
����
����

����
����
����
����

��
��
��
��

����
����
����
����

����
����
����
����

��
��
��
��

Transform

Transform

Input image Output image

Fig. 2. Neighborhood low-level operator

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��
��
��
��

Input image Output image

Fig. 3. Global low-level operator

2 Low-level image processing operators

Low-level image processing operators can be classi�ed as point operators, neigh-
borhood operators and global operators, with respect to the way the output pixels
are determined from the input pixels [4].

The simplest case are the point operators where a pixel from the output
image depends only on the value of the same pixel from the input image, see
Figure 1. More generally, neighborhood operators compute the value of a pixel
from the output image as an operation on the pixels of a neighborhood around
a corresponding pixel from the input image, possibly using a kernel mask. The
values of the output pixels can be computed independently, see Figure 2. The
most complex case consists of global operators where the value of a pixel from
the output image depends on all pixels from the input image, see Figure 3. It
can be observed that most of the image processing operators exhibit natural
parallelism in the sense that the input image data required to compute a given
area of the output is spatially localized. This high degree of natural parallelism
exhibited by many image processing algorithms can be easily exploited by using
parallel computing and parallel algorithms.

3 Integrating parallelism in an image processing library

To quicken the development of image processing operators, the DIPLIB library
supplies several framework functions.

One of the available frameworks is responsible for processing di�erent types
of image �lters (neighborhood image processing operators). The framework is



intended for image processing �lters that �lter the image with an arbitrary �lter
shape. By coding the shape with a pixel table (run length encoding), this frame-
work will provide the �lter function with a line of pixels from the image it has
to �lter. The �lter function is allowed to access pixels within a box around each
pixel. The size of this box is speci�ed by the function that calls the framework.
A description of the framework is presented in Figure 4. Each neighborhood
operator calls a framework function which sequentially compute each line of
the image. We parallelize the framework approach by data decomposition on a
distributed-memory system and in this way we obtain parallelization on all im-
age processing operators (i.e. �lters) that are using the framework. So, given a
neighborhood image processing operator, the operator calls the framework func-
tion on the master processor. The image is distributed by the master processor
row-stripe across processors, each processor is computing its part of the image
and then the master processor gathers the image back, see Figure 5.

0

n-1

i

filtershape

line i

image

Fig. 4. Library framework function

0

n-1

image decomposition

processor 0

processor k
processor j

to processor 0

to processor k

filtershape

Fig. 5. Library framework function after parallelization



4 Experimental results

We measure the execution time of applying a k� k window size geometric mean
�lter on di�erent image sizes. Geometric mean �lter is used to remove the gauss-
sian noise in an image. The de�nition of the geometric mean �lter is as follows:

GeometricMean =
Y

(r;c)2W

[I(r; c)]
1

k2

where (r; c) are the image pixel coordinates in window W , I(r; c) is the pixel
value and k is the width of the window, measured in pixels.

The �lter has been implemented under CRL (C Region Library) [6] and MPI
(Message Passing Interface) [7] on a distributed memory system. Two arti�cial
images sizes 256�256 and 1024�1024 are tested on up to 24 processors. The run
times in seconds using CRL are tabulated in Table 1. The run times in seconds
using MPI are tabulated in Table 2.

The relative speedups computed as SP (N) = T (1)
T (N) are plotted in Figures

6,7,8 and 9 for each image and window sizes of 3 � 3, 9 � 9 and 15 � 15. One
may note the sharp increase of the speedup with increasing number of proces-
sors for both images. One may also observe that better performance is obtained
with larger image sizes and larger window sizes. Thus, the lowest speedup corre-
sponds to the 256�256 image and 3�3 window while the highest speedup to the
1024� 1024 image and 15� 15 window. The reason is the image operator gran-
ularity increases with the image size and the window size. As a consequence,
communication time is less predominant compared to computation time and
better performance is obtained. Some di�erences can be noted in the run times
between CRL and MPI. This is because on our distributed memory system CRL
runs on LFC (Link-level Flow Control) [8] directly while our MPI port uses
Panda [9] as a message passing layer and Panda runs on top of LFC, so some
overhead appears.

Table 1
Parallel geometric mean �ltering execution time (in seconds) with CRL

N 256x256 256x256 256x256 1024x1024 1024x1024 1024x1024

3x3 9x9 15x15 3x3 9x9 15x15

1 1.10 9.23 24.30 16.93 145.89 398.05

2 0.61 4.68 12.21 8.79 73.19 199.35

4 0.31 2.24 5.86 4.46 36.71 99.99

8 0.17 1.13 2.99 2.34 18.46 50.31

16 0.12 0.61 1.57 1.29 9.42 25.47

24 0.10 0.47 1.13 0.94 6.40 17.19

Table 2
Parallel geometric mean �ltering execution time (in seconds) with MPI

N 256x256 256x256 256x256 1024x1024 1024x1024 1024x1024

3x3 9x9 15x15 3x3 9x9 15x15

1 1.10 9.23 24.30 16.93 145.89 398.05

2 0.69 5.44 14.72 9.12 74.89 202.35

4 0.35 2.72 7.35 5.35 37.25 100.89

8 0.19 1.36 3.66 2.79 19.84 51.08

16 0.13 1.01 1.81 1.48 11.45 26.42

24 0.82 0.97 1.2 1.12 8.23 18.58



2 4 8 16 24

1

2

4

8

16

24

linear speedup

15x15 window size

9x9 window size

3x3 window size

SP(N)

N

Fig. 6. Speedup of geometric mean �ltering on a 256 � 256 image size for di�erent
window sizes, with CRL

2 4 8 16 24

1

2

4

8

16

24

linear speedup

15x15 window size

9x9 window size

3x3 window size

SP(N)

N

Fig. 7. Speedup of geometric mean �ltering on a 256 � 256 image size for di�erent
window sizes, with MPI



2 4 8 16 24

1

2

4

8

16

24

linear speedup

15x15 window size

9x9 window size

3x3 window size

SP(N)

N

Fig. 8. Speedup of geometric mean �ltering on a 1024 � 1024 image size for di�erent
window sizes, with CRL

2 4 8 16 24

1

2

4

8

16

24

linear speedup

15x15 window size

9x9 window size

3x3 window size

SP(N)

N

Fig. 9. Speedup of geometric mean �ltering on a 1024 � 1024 image size for di�erent
window sizes, with MPI



5 Conclusions

We present a very easy approach of adding parallelism to a sequential image
processing library. The method parallelizes a framework function of the library
responsible for processing �lter operators. Linear speedups are obtained on a
cluster of workstations for very intensive computational �lters, such as geometric
mean �ltering.

6 Future work

Nowadays, most of the cluster of workstations consist of workstations containing
Intel processors with MMX technology [10]. By exploiting the features added by
the MMX technology, an image processing library can be further parallelized.
We are working to integrate MMX features into the parallel version of DIPLIB.

MMX technology is designed to accelerate multimedia and communications
applications. The technology includes new instructions and data types that allow
applications to achieve a new level of performance. It exploits the parallelism
inherent in many multimedia and communications algorithms, yet maintains full
compatibility with existing operating systems and applications.

The highlights of the technology are:

{ Single Instruction, Multiple Data (SIMD) technique
{ 57 new instructions
{ Eight 64-bit wide MMX technology registers
{ Four new data types

A process technique called Single Instruction Multiple Data (SIMD) behaves
as a SIMD parallel architecture but at a lower level. Special MMX instructions
to perform the same function on multiple pieces of data. MMX technology pro-
vides eight 64-bit general purpose registers. These registers are aliased on the
oating point (FP) registers. This means that physically MMX registers and FP
mantissas are the same but the content is interpreted in a di�erent way depend-
ing on the MMX/FP mode. The MMX registers are accessed directly using the
register names MM0 to MM7. The principal data type of MMX technology is
the packed �xed-point integer. The four new data types are: packed byte, packed
word, packed double word and quad word all packed into one 64-bit quantity
in quantities of 8, 4, 2 and 1 respectively. For this reason, given an array of
element type byte, word or double word the processing of that array with simple
operations (addition, subtraction, etc.) will be 8, 4 and respective 2 times faster.
In Figure 10 we show an approach of including MMX features in our DIPLIB
library. We begin by parallelizing the point framework which is similar to the
�lter framework, except that we use point operators instead of neighborhood
operators. A master processor is distributing the image in a row-stripe way to
the slave processors and each slave processor is computing its part of the image
by applying the point operator to each line of that part of image. If the slave



processor is enabled with MMX technology we exploit the MMX features of pro-
cessing in parallel more elements of a line. This part has to be coded using MMX
instructions.

0

n-1

image decomposition

processor 0

processor k
processor j

to processor 0

to processor k

operation

MMX register + operation

Fig. 10. Adding MMX features to DIPLIB image processing library

References

1. P.Challermvat, N. Alexandridis, P.Piamsa-Niga, M.O'Connell: Parallel image pro-
cessing in heterogenous computing network systems, Proceedings of IEEE Interna-
tional Conference on Image Processing 16-19 sept. 1996,Lausanne,vol.3,pp.161-164

2. J.G.E. Olk, P.P. Jonker: Parallel Image Processing Using Distributed Arrays of
Buckets, Pattern recognition and Image Analysis, vol. 7, no. 1,pp.114-121,1997

3. J.M. Squyres, A. Lumsdaine, R. Stevenson: A toolkit for parallel image processing,
Proceedings of the SPIE Conference on Parallel and Distributed Methods for Image
processing, San Diego, 1998

4. S.E.Umbaugh: Computer Vision and Image Processing - a practical approach using
CVIPtools, Prentice Hall International Inc.,1998

5. I.Pitas: Parallel Algorithms for Digital Image Processing, Computer Vision and
Neural Networks, John Wiley&Sons, 1993

6. K.L.Johnson, M.F.Kaashoek and D.A.Wallach: CRL: High-Performance All-
Software Distributed Shared Memory, Proccedings of the Fifteenth Symposium on
Operating Systems Principles, 1995

7. M.Snir, S.Otto, S.Huss, D.Walker and J.Dongarra: MPI - The Complete Reference,
vol.1, The MPI Core, The MIT Press, 1998

8. R.A.F. Bhoedjang, T. Ruhl and H.E. Bal: E�cient Multicast on Myrinet Using
Link-level Flow Control, Proceedings of International Conference on Parallel Pro-
cessing, pp. 381-390, Minneapolis MN, 1998

9. T.Ruhl, H, Bal, R. Bhoedjang, K. Langendoen and G. Benson: Experience with
a portability layer for implementing parallel programming systems, Proceedings of
International Conference on Parallel and Distributed Processing Techniques and
Applications, pp. 1477-1488, Sunnyvale CA, 1996

10. J.E. Lecky: How to optimize a machine vision application for MMX, Image Pro-
cessing Europe, March Issue, pp. 16-20, 1999.

11. http://www.ph.tn.tudelft.nl/Internal/PHServices/onlineManuals.html

This article was processed using the LATEX macro package with LLNCS style


