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Abstract maintaining a similar torus/mesh topology. Thus, it is pos-
This paper considers the multi-node multicast problem insible to apply the best a\_/ailable.multicgst schemes on these

. subnetworks. The details are in Section 2, where several
a wormhole-routed 2D toru_s/mesh, where an arbitrary num'Ways to partition the torus/mesh are proposed. It is worth
ber of source nodes each intending to multicast a messa

. L 3980ting that the network-partitioning idea was originally pro-
to an arbitrary set of destinations. To resolve the contentio g P g 9 yp

d th i bl ¢ ition th osed by the same authors in [7] and [8] for single-node
an € congestion problems, we propose to partiion roadcast and single-node multicast, respectively. The con-
network into subnetworks to distribute, and thus balance

i ) tribution of this paper is in extending its applicability to
the traffic load among all network links. Several ways tomuIti-node multicast, demonstrating its capability to balance

partition the network are explored. Simulation results Showload, and exploring more ways to partition a torus/mesh.

significant improvement over existing results for torus andThrough extensive simulations, we justify that our network-

mesh networks [2, 3, 5]. partitioning approach can achieve better load balance and
_ reduce multicast latency[2, 3, 5].
1. Introduction

In a multicomputer network, processors often need t02' Preliminaries
communicate with each other for various reasons, such ag 1. Network Model
data exchange and event synchronization. Efficient commu- ) )
nication is critical for high-performance computing. Thisis A wormhole-routed mU|tI-C0mputer_network consists of a
especially true for thoseollective communication patterns number of computers (nodes) each with a sepacatter to
such asbroadcastand multicast which involve more than handle its communication tasks [4]. From the connectivity
one source and/or destination. between routers, we can define the topology of a wormhole-

This paper considers theulti-node multicasproblem ~ routed network as a graggh = (V, ¢'), whereV’ is the node
in a 2D torus/mesh with wormhole, dimension-ordered, and€t @0 specifies the channel connectivity. We assume the
one-port routing capability[1]. There are an arbitrary num-On€-Port modelwhere a node can send, and simultaneously
ber of source nodes each intending to send a multicast me£€C€IVe, One message at a time.
sage to an arbitrary set of destination nodes. We approach A message is partitioned into a numberfids to be sent
this problem by using multiple unicasts to implement multi- in the network. Théxeadetlit governs the routing, while the
cast. The challenge is that there may exist serious contentidigmaining flits simply follow the header in a pipelined fash-
when the source set or destination set is large or when thei@n- In the contention-free case, the communication latency
exists hot-spot effect (i.e., sources and/or destinations corfor sending a message 6fbytes is commonly modeled by
centrate in some particular area). To resolve the contentiohs + LT. [4], whereT; is thestartup time(for initializing
problem, we apply two schemesetwork partitioningand the communication) anfl. is thetransmission timger byte.
load balancing We first partition the network into a num- Also, we consider networks that are connected as torus or
ber of “subnetworks” and then evenly distribute these mul/nesh. Due to the space limitation, we omit the presentation
ticasts, by re-routing them, to these subnetworks, with thé@Pout meshes.
expectation of balancing the traffic load among all networ
links.

Our work is not to propose a completely brand-newDefinition 1 Given a wormhole networld = (V,C), a
scheme, in the sense that after a torus/mesh is partitionedybnetworlG’ = (V',C") of G is one such that’ C V
the obtained subnetworks are each a “dilated” network stilandC’ C C.

k2.2. Subnetworks of a Wormhole Network



DCNoo @G pgG mG& Qg6 to an important issue of making each subnetwork less depen-
a — Linko ——Linkl — Link2 = Link3 . .
000002, gy . : dent of other subnetworks, as formulated in the following
1= L L LI definition.
'ﬂr;'ﬂr;ﬂr;ﬂrj_‘_' Definition 2 Given two subnetwork&?; = (V4, E;) and
el . T 0 LT 0 ' ] EI Gs = (Vs, Es), G1 and@, are said to beode-contention-
:[] 5 AE] 5 [ [ ; freeif V1 NV, = B, andlink-contention-freéf £, N E» = (.
I —[?-[]_[?_D_[?_D_ [:']D_-_- Definition 3 Given a set_of subnetworl@_l,Gz, .. .,G_k,

VIR g T 8 A Y W A S thelevel of node contenuo(*rgsp.,le_vel of link content|o)j
T} 0 ; L [ ! among these subnetworks is defined to be the maximum
£ ,E]_ 2 ["]_ it [:___[: S number of times that a node (resp., link) appears in these

18 oy i - subnetworks, among all nodes (resp., links) in the network.

1 . 1 b (o | | D
e = n : L-Ir - I'Jw : : H H
i+tH - {H [H 2.3. A General Model for Multi-Node Multicasts
P "ﬂ';" 1 D‘ﬁ' PR ] Dr £ A multi-node multicast instance can be denoted by a set

e B ] £ N o R R J'EI_ of 3-tuple {(s;, M;, D;),i = 1_..m}. There arem source

G—F= Tk nodess, s, ..., Sm. Eachs;,i = 1..m, intends to multi-
X__DCNGo» ®___DCNG2)

cast a messag¥/; to a setD; of destinations.

Next, we derive a general approach to multi-node
multicast based on the concept of subnetworks. Given
any network G, we construct fromG two kinds of
subnetworks: data-distributing networks (DDNs)and
data-collecting networks (DCNs) Suppose we have
a DDNs, DDNy, DDNy,...,DDN, 1, and 3 DCNs,
DCNy,DCNy,...,DCNg_1. We require the following

e A subnetwork is not necessarily a “graph” in standardProperties in our model:

graph theory. Specifically, suppose chanfely) € p1: ppN,, DDN,,...,DDN, _, together incur on each

C'. Then the vertices andy are not necessarily in the node about the same level of node contention, and sim-
) : -

vertex setl”’. For instance, in Fig. 1, the subnetwork ilarly on each link about the same level of link con-

Gy contains links(po,0,po,1) and (po,1,po,2). How- tention.

ever, only nodey ( is in Gy's node set.

Figure 1. Four dilated-4 subnetworks, each as
an undirected 4 x 4 torus, ina 16 x 16 torus.

For instance, Fig. 1 shows four subnetworks, i =
0..3,in a16 x 16 torus. There are some subtleties in the
above definition that need of special attention:

P2: DCNy, DCNy,...,DCNg_; are disjoint and they to-
e The previous point in fact carries special meanings for gether contain all nodes 6f.

wormhole routing. For instance, ea€h in Fig. 1 can
be considered as 4 x 4 torus, with each link “di-
lated” by four links. However, the dilated torus can
work almost like an ordinary torus, since communica-  Now given a problem instandés;, M;, D;),i = 1..m},
tion in wormhole routing is known to be quite distance- 5 general approach is derived as follows.
insensitive.

P3: DDN; and DC'N; intersect by at least one node, for
al0 <i<aandd <j<g.

Phase 1:Each multicas{s;, M;, D;),i = 1..m, selects a
target data distribution network, sal) DN, to dis-
tribute its message. The selection should be done
with load balancein mind. Thens; chooses a node
r; € DDN, as a representative @f in DDN, and
sendshM; tor;.

¢ A subnetwork, though capable of using all links in its
link set, should be constrained in its capability in initi-
ating/retrieving packets into/from the subnetwork sub-
ject to its node set. For instance, in Fig. 1, noggs
andpg» of Gy are neither allowed to initiate a new
worm into, nor allowed to retrieve a pass-by worm
from, the subnetwork. They can only passively relayPhase 2:From noder;, perform a multicastr;, M;, D;)
worms it receives according to the routing function. on DDN,, where the destination sé; is obtained

from D; by the following transformation. For each

Our approach in this paper is to use multiple subnetworks
in a torus to balance the communication load in different
parts of the torus, thus eliminating congestion and hot-spot
effects. This is of importance particular for massive commu-
nication problems such as multi-node multicast. This leads

DCNy,b = 0.8 — 1, if DC' N, contains one or more
destination nodes iD;, then select any nodé €
DDN, Nn DCN, (by P3) as the representative of the
recipients of messag#&/; in DC'N,. Then we joind
into D}.



Phase 3:1In eachDC Ny, b = 0..8 — 1, after the representa- In the above definition, every node and every link have
tive noded receivesh/;, it performs another multicast been used by some subnetwork(s), so it is impossible to add
(d, M;, D; " DC'Ny) on the subnetwor®®C' Ny,. more subnetworks without increasing node and link con-
tentions. However, we have only considered subnetworks
The following two properties are not a necessity, butwith undirectedinks. With duplex capability, an undirected
would offer regularity in designing phases 2 and 3. link can be regarded as tvbrectedlinks in opposite direc-
P4: DDNy, DDN,,...,DDN,_, are isomorphic. tions: If we allow suc_h separation.,.fur.the.r i_mprovement is
possible. Let’s call a direct link positivelink if it goes from
P5: DCNy, DCNy,...,DCNg_; are isomorphic. a lower index to a higher one, anchagativeink otherwise.
The following is an extension of Definition 4.
Definition 6 Given a torusTy; and any integem that
‘divides both s and ¢, define h subnetworksG;} =

In the next section, we will discuss how to define the
DDNs and DCNs in tori and meshes that satisfy our needs

3. Subnetworks of a 2D Torus (Vt,EF),i =0..h — 1, such that (refer to Definition 4):
3.1.DDN’s and DCN's in a 2D Torus Vit o=V
A 2D torusT;; consists of x ¢ nodes each denoted as Ci = {allpositive links inC;},
Da,y» Where) < z < sand0 < y < t. Nodep,, , has a link
connected to each @f, +1)mods,y @NAP,, (y+1)moat- andh subnetworksz; = (V;",E;),i = 0..h — 1, such

Definition 4 Given a torusT}; and any integeh that di- that:
g'd}fs_%ot‘agg“t’kfégef'”eh subnetworksz; = (Vi, Ei), i = Vi = {peylt=ah+i, y=>bh+i+s, foral

s t
a=0 5 andb =0 5 }

Vi = Apeyle=ah+i, y=>h+i,
C; = {all negative links at rowah + i
foralla:0..f—1andb:0..£—1} { 9 i '
h h and at column$h + i + 6},
C; = {allchannels at rowah + i

and at columnsh + i}. whered is any constant satisfying< § < h — 1.

Intuitively, G is the same a&; except thatz;” contains
only positive links. Subnetwor’;” is obtained fronGj by
shifting each of the latter’s nodes along the second dimen-
sion byd positions and using only negative links. This is to
resolve the node contention. For instance, Fig. 2 illustrates
this definition in al6 x 16 torus withh = 4 and§ = 2 (for
clarity, the eight subnetworks are drawn separately accord-
ing to their link directions).

Intuitively, Go contains all nodes at the intersection of rows
ah and columnsh, andG; is obtained fromG, by shift-
ing Go's nodes byi positions on both indices. In our ter-
minology, each subnetwork is a “dilatéd-torus of size
(s/h) x (t/h). Fig. 1 shows an example, with four sub-
networks (each as a dilatedt4 4 torus) in al6 x 16 torus.

Lemma 1 The subnetworks/;,i = 0..h — 1, defined in
Definition 4 are free from both node and link contention.

DCNoo [ Go: OF» G+ B Gor 0> Gae DCNeo) Ml+-Gi= [ 4= Go- Me=Gi- [Oe Gi-
Observe that in D_ef_ini_tion 4, QII links in the original torus : DR R R ‘_t_“ Lt ‘ t1d
have been used, so it is impossible to add more subnetwork btz [T ool Pyt O R oSSR B, =908 =
without increasing link contention. However, there are still *’GD Tol ol DE’ N 'I!"""!‘ B e L
some nodes (e.g., nodes, andpy,1) that are notincluded iz =5 a0y L S PR, A=, 1
in any subnetwork. i [ [ B omel | ome e ome
e . . il m| O m ; * DR
Definition 5 Given a torusTy; and any integeth that s | 3 | e e i
i 2 I P s R ) S S P v
divides boths and ¢, define h° subnetworkG;; = JE ekl o e A S o e f S ** AR TR e T e
(Vi Eij),i,7 = 0..h — 1, such that: R i W et 0 e IS * * g
KR A1~ {H (= e P P S PR S P
. . - i il Cnl R R B O o DS i
Vii = A{peylr=ah+1i, y=>0bh+j, forall 7-‘»?D “?I‘_“I :‘TI’J : ?,D» ¢!¢,,»,*,,,,,!«mff,-“,?,
a=0.2—1andb=0.L -1} AR RASAA A Sl T
h h @) (b)
Ci; = {allchannels atrowsh + ¢ Figure 2. Eight dilated-4 subnetworks, each as
and at columnsh + j}. a directed 4 x 4 torus, ina 16 x 16 torus.

Lemma 2 Theh? subnetworkss; ;,i,j = 0..h—1, defined Lemma 3 The2h subnetworks?;” andG; ,i = 0..h — 1,
in Definition 5 are free from node contention, but have linkdefined in Definition 6 are are free from both node and link
contention ofh. contention.



Table 1. Comparison on levels of node and link
contention incurred by different definitions of
subnetworks in a torus.

[typd subnet. [no of subnef. links  [node contlink cont]
| Gi,i=0.h—1 h undirected no no
] Gij,i,j=0.Rh—1 h? undirectedd no h
nler,G i=0.h—1 2h directed| no no
V|G;,,i,=0.h—1 h? directed no h/2

The following is an extension of Definition 5.
Definition 7 Given a torusT,y; and any integer that
divides boths and ¢, define h* subnetworksG}; =
(V55 Ef;),i,j = 0..h — 1, such that (refer to Definition 5):

Vii = Vi

. { {all positive links ofC; ; }
Ci’]‘ =

{all negative links ofC; ; }
Lemma 4 Theh? subnetwork&:; ;,i,j = 0..h—1, defined

(3

if i +jiseven
if i 4+ j is odd

DDN, each node should be responsible for about the same
number of multicasts. If the multicast pattern is given in
advance, these are not hard to achieve.

A more distributed approach is to have eachandomly
choose a DDN as its target subnetwork. This approach is
more appropriate if multicasts arrive in an unpredictable or
asynchronous manner or irseochastianodel, such as that
assumed in [6]. In particular, if subnetworks of types Il and
IV are used (where each node must belong to some subnet-
work), it is possible to skip this phase by lettingserve as
its own representative node. Load balance is achieved auto-
matically if multicasts arrive stochastically randomly.

4.2. Phase 2: Multicasting in DDNs

In this phase, each multicaét;, M;, D;) is translated
into a (r;, M;, D}) to be performed in a DDN. Since each
DDN is still a torus under our definition (except that there is
some link dilation), this is still a multicast on a conceptually
smaller torus (due to the distance-insensitive characteristic
of wormhole routing). Also, it should be commented that

in Definition 7 are free from node contention, but have a linkipo way thatD; is translated td), will incur a concentration

contention ofy/2.

In Table 1, we summarize the above definitions on th
levels of node and link contention incurred by different sub

networks.

Definition 8 Given a torusls«; and any integeh that di-
vides boths andt, definest/h? data collecting networks
DCNgyp = (Va,b,Ca,b),a = 0..S/h —1,b = 0..t/h -1,
such that

Vap = A{pzylr=axh+i,y=>bxh+ jforall
i,j=0.h—1}
C.p = {all (undirected) links induced by, }.

For instance, wheh = 4, Fig. 1 illustrates the 16 DCNs
(each as @ x4 block) in al16 x 16 torus. The same DCN def-
inition will be used on all earlier four DDN definitions. Fi-

effect and thus there is a high probability thaX,| < |D;|.
So, the multicast is on a smaller network with a smaller des-

Sination set. Statistically, we can say thaX,| ~ |D;|/«.

Overall, each DDN will still need to perform a multi-
node multicast. With the dimension-ordered routing con-
straint, one possibility is to use the U-torus scheme [5] for
each multicast.

4.3. Phase 3. Multicasting in DCNs

In this phase, each multicast;, M;, D}) will incur a
multicast(d, M;, D,NDCN.) oneachDCN,,c =0..—1.
SinceDC N, is a mesh and dimension-ordered routing is re-
quired, one possibility is to apply thé-meshscheme [3].
4.4, Simulation and Performance Comparison

We have developed a simulator to study the performance
issue. We mainly compared our scheme against the U-torus

nally, it is not hard to see that these definitions satisfy propscheme [5] under various situations. The parameters used in

ertiesP1-P5

4. Multi-Node Multicast in a 2D Torus
Given a multi-node multicast instangés;, M;, D;),i =

1..m}, next we show in more details how to apply the
multi-node multicast model in Section 2.1 using the DDNs
Throughout this section, let o

and DCNs defined above.
DDNy,DDN,,...,DDN,_1 be h DDNs obtained from
Definition 4, 5, 6, or 7, andC' Ny, DCNy,...,DCNg_4
bek DCNSs obtained from Definition 8.

4.1. Phase 1: Balancing Traffic among DDNs
In this phase, each multicagt;, M;, D;),i = 1..m,

should be distributed to one of the DDNs. There are two
concerns to distribute the load. First, each DDN should re-
ceive about the same number of multicasts. Second, in each

our simulations are listed below.
e The torus size ig6 x 16.

e Startup timeTs = 30 or 300usec; transmission time
perflitT. = lusec.

Dilation h = 2 or 4 (refer to Table 1).

e The problem instance i§s;, M;, D;),i = 1..m} with
|M;| = 32 ~ 1024 flits, andm = |D;| = 16 ~ 240
nodes.

e A hot-spot factor ofp = 25%, 50%,80%, or 100% is
used. Specifically, when generatihg, we first choose
p|D;| destination nodes which are common to all des-
tination setsD;,i = 1..m. Then the restl — p)|D;]



destination nodes are chosen randomly from the net-
work. A largerp thus indicates higher contention on ., :
destination nodes. EN

Below, we show our simulation results from several
prospects. Based on the subnetworks that are used, od”

schemes will be denoted as “HT[B]”, where H reflects the

value ofh, T indicates the type of subnetworks (= I, I, IIl, = o o T e
or 1IV), and an optional B indicates whether we attempt to @ )
achieve load balance in Phase 1 or not. With a B, attempts. " ‘
will be made to evenly distribute multicasts to each DDN £
and each node in a DDN. If the network type is Il or IV, a

no-load-balance option is possible by skipping Phase 1 (re< *

Z 20
=

fer to the discussion in Section 4.1). )

A) Effects of Numbers of Sources and Destinations: Nuber o e e e
Fig. 3(a) shows the multicast latency whén = 300usec, Figure 3. Multicast latencyina 16 x 16 torus at
T = lpsec, |M;| = 32 f.l'ts’ and|D;| = 80 at various num- various numbers of sources when there are:
bers of sources. Undirected subnetworks (types | and .”) (a) 80, (b) 112, (c) 176, and (d) 240 destination
have higher latency than that of the U-torus scheme, while _ _ _

. (Ts = 300usec, T, = 1usec, and |M;| = 32).
directed subnetworks (types Il and 1V) have lower latency
than that of the U-torus scheme. This is because the later
will utilize more subnetworks, thus giving higher communi-
cation parallelism. Generally speaking, subnetworks with-_
out link contentions perform better than those with link con- £ ...
tentions, so type | is better than type Il, and type Il is better & °
than type IV. Overall, type Il performs the best. g

In Fig. 3(b), (c), and (d), we enlarge the number of des-Z ..,

E o
z
0

tination nodes to observe the effect. The relative trend re-
mains the same, but the advantage of using our schemes
over the U-torus becomes more evident as there are more
destinations. When there are 240 destinations (Fig. 3(d))§
all our schemes deliver better performance than the U-torusg «
scheme. This shows the importance of load balance espe-

0

cially at high traffic load. When using type Il subnetworks, ~

the performance gain over the U-torus scheme ranges be-
tween 2 to 6 times.

B) Effects ofl; /7. Ratio: We repeated the same simu-
lations in part A using a smalléF, /T ratio of 30. Fig. 4
shows the results. As compared to Fig. 3, we see that the
advantage of our schemes over the U-torus scheme becomes
slightly larger. Recall that in Phase 1 we have to pay for the
costs of re-distributing the multicasts to achieve better load
balance. The extra costs in fact reduce as the Bjd".
decreases.

C) Effects of Message LengttSg. 5 shows the multicast £ .
latency at various message sizes. The gain of our schemes™”
over the U-torus scheme enlarges as message size increas‘gr,w
This again indicates the importance of load balance at heav- °

Number of sources Number of sources

c d
Figure 4. M(u)lticast latency ina 16 x 1(6)torus at
various numbers of sources when there are:
(a) 80, (b) 112, (c) 176, and (d) 240 destination
(Ts = 30usec, T. = 1usec, and |M;| = 32).

7000
# ste=80 A

6000 ;
# dest=80 -
/.

5000

ency(msec)

et 1,,,,;:7_"5:

e

128 512 1024

128 512

ier traffic load. The same observation applies too if we com- , Mcséfg)c Sizes " Message Sizes
; L . . ®)
pare Fig. 5(a) and (b) (the latter has more sources and desti- Figure 5. Multicast latency in a 16 x 16 torus
nations). _ at various message sizes: (a) 80 sources and
D) Effects ofh: The value ofh has two effects. First, destinations and (b) 176 sources and destina-

it reflects the number of subnetworks, and thus the level of tions ( T, = 300usec and T, = 1usec).
communication parallelism. So a largegenerally delivers



—-®—-2IB 4 dest=176
e 2IVB R
——A——41IB ad

6 48 80 112 144 176 208 240 6 48 80 112 144 176 208 240
Number of sources Number of sources

Figure 6. Ef%aécts of h on multicast Iate(r?cy ina
16 x 16 torus: (a) 80 destinations and (b) 176
destinations ( 75 = 300usec, T. = lusec, and
|M;| = 32).

16 48 80 112 144 176 208 240 16 48 80 112 144 176 208 240
Number of sources Number of sources

a b
Figure 7. Efg‘e)cts of load balance on mljlt)icast
latency in a 16 x 16 torus: (a) 80 destinations
and (b) 176 destinations ( 75 = 300usec, T, =
lusec, and |M;| = 32).

P

Multicast latency(msec)

Multicast lat

25% 50 0% 50%
Hot-Spot Factor (p) Hot-Spot Factor (p)
b)

Figure 8. Eéfiacts of the hot-spot factor on mul-
ticast latency ina 16 x 16 torus: (a) 80 and (b)
112 sources and destinations ( 75 = 300usec,
T. = lusec, |M;| = 32).

and nodes are thus separated evenly to the whole network.
Extensive simulations have been conducted, which show
significant improvement over existing U-torus, U-mesh, and
SPU schemes. For space limit, simulation on meshes are
omitted and can be found in [9].
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