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Abstract
Optimal scheduling of tasks of a directed acyclic
graph (DAG) onto a set of processors is a strong
NP-hard problem. In this paper we present a
scheduling scheme called TDS to schedule tasks
of a DAG onto a heterogeneous system. This
models a network of workstations, with
processors of varying computing power. The
primary objective of this scheme is to minimize
schedule length and scheduling time itself. The
existing task duplication based scheduling
scheme is primarily done for totally
homogeneous systems. We compare the
performance of this algorithm with an existing
scheduling scheme for heterogeneous processors
called BIL. In initial simulations TDS has been
observed to generate scheduling lengths shorter
than that of BIL, for communication-to-
computation cost ratios (CCR) of 0.2 to 1.
Moreover TDS is far more superior than BIL as
far as scheduling time is concerned.

1. Introduction
With the advent of high speed

communication technologies and the concept of
NOW, network of workstations, distributed
processing has been investigated extensively for
parallel computing purposes. The computing
power of a local network, can even exceed that
of a super computer. Not only will this be a cost
effective measure, where you only have to invest
money on a few moderately powerful computers,
applications can be partitioned in such a manner
so as to extract the maximum benefits of using a
particular architecture. Some applications which
can use such computing environments are fluid
flow, weather modeling, database systems and
image processing. To achieve full benefits, a
parallel application is first transformed into a
task DAG by a task partitioning algorithm. Then
these tasks are mapped onto processors using a
scheduling algorithm.

The problem of mapping DAG’s onto
processors is proven to be NP-hard [4], in it’s

pure form. There are large number of static
heuristic scheduling schemes for homogeneous
processors. These can be classified into three
broad categories, namely, priority based
scheduling, cluster based scheduling, task
duplication based scheduling.

Priority based scheduling assigns priorities
to tasks and use priorities to map tasks onto
processors. These methods are fairly simple to
implement, but, their solutions are sub optimal.
Some examples of such schemes can be found in
[5],[6]. The algorithms we use to compare the
performance of our proposed algorithm, BIL [7],
too, falls into this category but it is far superior.

 Then, there are number of algorithms based
on clustering. The essence of these methods is to
cluster tasks that communicate among
themselves onto the same processor. If the
available number of processors is less than the
number of clusters, their solutions may not be
very efficient. Some examples can be found in
[8-13].

 The main idea behind duplication based
scheduling is to utilize processor idling time to
duplicate predecessor tasks. This may avoid
transfer of results from a predecessor, through a
communication channel which bring IPC in to
the picture. This may eliminate waiting slots on
other processors. Some of these schemes are
found in [1-3], [14-16]. There are genetic based
variants of this algorithm as well [18].

In heterogeneous processor environments,
one of the earliest algorithms resulted from the
works of G.C. Sih and E.A. Lee [6]. The
techniques discussed in this paper gave rise to a
scheme called ‘General Dynamic Level
Scheduling (GDL)’. However a more recent
work by Hyunok Oh and Soohoi Ha [7],
generated another scheme called ‘Best Imaginary
level scheduling (BIL)’, which the authors claim
is about 20% faster than the GDL scheme. BIL is
proven to generate optimal results if the topology
of the DAG is linear. We have used the BIL
scheme for comparison purposes, and have seen
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that our method is superior than this scheme in
several aspects.

Another related piece of work can be found
in [17]. The basis of their research is the best-
first search technique known as the A*
algorithm, from the area of artificial intelligence.
The athors claim that “The algorithm, in its
traditional form, guarantees optimal solutions,
but does not work for large problems, due to its
high time and space complexity”. Since we are
interested in a more general algorithm to suit any
type of a DAG, we have not used this method for
comparison purposes.    

Another interesting piece of work has been
carried out by C.C. Hui and S.T. Chanson [19].
However their representation of the parallel
application is a task interaction graph, which
does not take into account the precedence among
tasks. Therefore their work is not applicable in
our context.

This paper introduces a task duplication
based scheduling scheme (TDS), which initially
generates a set of clusters similar to linear
clusters. Then duplication is carried out until
system resources are exhausted.

The rest of the paper is organized as follows.
In Section 2, we present the new algorithm. We
shall demonstrate the way the algorithm works
using an example in Section 3. We present our
results in Section 4. Section 5 will provide
conclusions and plans for future work.

2. TDS Algorithm.
What we planed to do is to minimizing the

schedule length, also called makespan, and to
minimize the complexity, which ensures
reasonable runtime. Roots of this algorithm is
found in [1], [2] and [3].

The input to the algorithm consist of the a
directed acyclic graph, DAG, which is defined
by the tuple (V,E,P,τ,c). V is a set of task nodes,
E is a set of communication edges, P is a set of
processors, τ=τ(j,p) where j∈V and p∈P and
τ(j,p) indicates the running time of jth node on Pth

processor, c=c(j,k) where j,k∈V and
c(j,k)indicates the communication cost between
tasks j and k. The actual figure may depend on
the processor to which tasks j and k are
ultimately assigned, but that can be taken care of
by slightly modifying the equations in table 1,
but to receive it as an input means a very large
input.  Therefore we assume that communication
cost to be equal between all processors.

A task is assumed to be an indivisible unit of
work which is non preemptive. The underlying
architecture is assumed to be heterogeneous. We
also assume that there are dedicated

communication channels available, i.e. any
number of message passing can take place at any
given time.

The crux of the algorithm lies in a few
computed quantities. Namely these are, Earliest
Start Time of a node, est, Earliest Completion
Time of a node, ect, Latest Allowable Start Time
of a node, last, Latest Allowable Completion
Time, lact, fpred which stands for the favorite
predecessor task of a given task, fproc which
stands for the favorite processor. ‘fproc’,  is the
favorite processor of a given task, to which when
the said task is assigned, ensures that the task has
the smallest completion time. It must be
emphasized here that fproc of a given task may
not be the processor on which the said task will
have the shortest running time.

The algorithm runs in four steps and they are
as follows. In the first step, the DAG is traversed
in a top-down fashion to compute the est, ect,
fpred, fproc1 to fprocn and level for each task.
The level is defined to be the highest value of the
summation of computational costs along
different paths to the exit node from the node
under consideration. The elements in the array
queue are the nodes sorted in the ascending order
of level. In the second step lact and last for each
node are computed in a bottom-up fashion.

The third step will generate an initial set of
task clusters, using a reasonably small number of
processors. In the fourth step task duplication
and message forwarding is carried out. Since the
first two steps involve traversing all tasks and
edges, in the homogeneous case, the worst case
complexity will be Ο(E). But in the
heterogeneous case, since at each task, to
compute the favorite processors, P steps are
taken, the worst case complexity will be Ο(PE).

The algorithm for the third step is given in
figure 2. Since this is similar to a depth first
search the order will be Ο(V+E). For a
connected graph it will be Ο(E) in the worst
case.

In the fourth step, duplication is carried out.
We assume that there are enough number of
processors to allocate the initial set of clusters.
We check clusters to see whether the preceding
node of a given node is it’s fpred. If this is not
the case, we replace the tail of that cluster
starting with the fpred of the given cluster. This
is done recursively until the entry node is
reached. The initial tail is assigned to a new
processor, which is the next available fproc, of
the last node of that tail. Sometimes duplication
increases makespan, if this is the case, we nullify
that change and start from the next cluster and
proceed with duplication.



Table 1. Mathematical equations used.

PRED(j) : Set of predecessors of any task j.
SUCC(j) : Set of successors of any task j.
P             : Set of processors available.
est(j/p)    : Earliest start time of task j given that it will execute in processor p.
τ(j,p)       : Execution time of the jth task on pth processor.
c(j,k)      : Communication cast between tasks j and k

est(j)                   =   0 , for the entry node.
fproc(j)               =   p ∈ P s.t. ( est(j/p) + τ(j,p) < est(j/q) + τ(j,q) where q ∈ P).

                                               (In other words, assigning task j to processor p will yield a minimum completion time for task j).

              est(j/p)                =   Max       ( ect(k)     ect(k)+c(k,j) ).
                                               k∈PRED(J)           fproc(k)=p            fproc(k)≠p

 (In other words, if task j is assigned to a processor which was the favorite processor of a
predecessor   k of j take ect(k); else take communication cost into account)  

              est(j)                   =   est(j/fproc(j)).
              ect(j)                   =   est(j) + τ(j,fproc(j)).
              fpred(j)               =   k ∈ PRED(j) s.t. ect(k) + c(k,j) > ect(l) +c(l,j) where l ∈ PRED(j) && k≠l.
              lact(j)                 =   ect(j), for the exit node.

lact(j)                 =   min(           min  (last(k) – c(j,k),       min            (last(k))).
                                         k ∈ SUCC(j),  j ≠ fpred(k)                              k ∈ SUCC(j),  j = fpred(k)

last(j)                 =   lact(j) - τ(j/fproc(j)).

    An additional check is carried out to see if the
completion time of a task is greater than the time
it takes (completion plus communication time) to
get the results of the same task executed in
another processor. If so the task is removed from
the current processor and the results from the
other processor is forwarded. This is a result of
each task having different run times on different
processors. This is what we mean by message
forwarding. Following is an example.

Figure 1. Sample DAG.
( * signifies that all communication costs are 2units)

Input              : DAG(V,E,P,τ,c)
Output            : Set of initial clusters
Uses               : PRED(i) and SUCC(i)
Queue            : Array[1..|v|]; /* Has tasks in ascending order of level */

Begin{
    x=First element of queue;
    current processor = fproc1 of x;
    assign x to current processor;
    While(NOT all tasks assigned){
          y=fpred(x);
          if x has more than one predecessors{
               if ((last(x)-lact(y))>c(x,y)) /* y is not critical */{

y = predecessor of x which has the lowest
running time on this processor ;}

               else{
    if y is already assigned{

y = predecessor of x which has the lowest
running time on this processor;  }}}

          assign y to current processor;
          x = y;
          if x is the entry node{
                assign x to current processor;
                x = next unassigned element in queue;
                current processor = next available fprocm of x; }
          }

Figure 2. Algorithm for step 3 of TDS.

3. Running trace of the algorithm.
    Consider the DAG in Figure 1. The runtimes
of tasks in different processors is tabulated in
table 1 below.  We have taken communication
costs for all edges to be equal but it is not a
necessary condition.
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Table  2. Run times of tasks.

Processor ⇒

Task ⇓

1 2 3 4 5

1 5 6 7 5 5

2 3 2 2 2 3

3 4 3 3 2 3

4 9 8 8 8 9

5 3 3 3 3 3

6 7 6 6 7 6

7 4 3 3 4 3

8 8 7 7 6 8

9 3 2 3 2 3

10 3 4 3 4 4

11 5 5 5 5 5

3.1.   Step 1 & 2.
     Using the mathematical equations defined in
table 1, the computed values are tabulated in
table 3.

Table 3. Start and completion times.
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1 36 0 4 5 1 2 5 - 0 5
2 23 5 4 5 1 2 7 1 9 11
3 24 5 4 2 3 5 7 1 9 11
4 29 5 4 1 5 3 13 1 5 13
5 16 9 4 5 1 2 12 2 15 18
6 20 13 4 2 3 5 20 4 13 20
7 17 13 4 2 3 5 17 4 14 18
8 13 20 4 2 3 5 26 6 20 26
9 8 20 4 2 3 5 22 6 22 24
10 9 20 4 2 3 5 24 6 20 24
11 5 26 4 2 3 5 31 8 26 31

        The queue  will be as follows.
Queue = {11,9,10,8,5,7,6,2,3,4,1}

3.2.   Step 3.
     The first cluster will begin from task 11. It’s
fpred is task 8. Task 8’s fpred is task 6. This
selection process will follow until the cluster 11-
8-6-4-1 is generated. This cluster is assigned to
processor 4 which is fproc1 of task 11. The next
set of linear clusters start at task 9. But since
fproc1 of task 9 is already selected, fproc2 of
task 9, which is processor 2 is selected to carry
the second cluster. Task 9’s fpred is task 6, but
since task 6 has been allocated to processor 4
already, we can choose either task  5 or 7. On
processor 2, both these have a runtime of 3 units.
Therefore since it is a tie, we make a random
choice between them. Hence task 7 is selected or
comes the entry node this cluster. Task 7’s fpred
is task 4, which is already assigned. So we

choose task 2. Next So the cluster will be 9-7-2-
1. This process will continue and the third cluster
will be 10-5-3-1. Now all tasks have been
assigned, using just three processors. This
completes the third step. The generated schedule
will be as in Figure 3 and the makespan is 32.

3.3. Step 4.

     Duplication is not required for the first
cluster. Since the third cluster is the one which
forces an idle slot in the critical cluster. So we
try duplicating the fpred tail of task 10. The
schedule after the duplication of fpred of task 10
is depicted in Figure 4. Time for completion is
now 31 units. In duplicating, task 10 had retained
processor 3. The remaining chain starts from task
5 and since fproc1 of task 5, which is processor
4, is not available, that cluster is assigned to
processor 5, which is fproc 2 of task 5.
      Figure 5 depicts the schedule after the  fpred
of task 9 has been duplicated. Now, however, the
time taken to complete the whole set of task has
gone back to 32. This is even after cutting down
the actual completion time of task 7 by not
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Figure 3  Initial clusters.

4 4 4 4 64 4 4 4 8886666661 111 1 888

1 2 2 97771 111 1 9

10 10

4 4 4 4 64 4 4 4 8886666661 111 1 11111111 11111111888 11

Time

5 10 15 20 25 30

P4

P2

P3

1 1 3 3 3 5 5 51 111 1

4 4 4 4 64 4 4 4 6666661 111 1 1 1 4 4 44 4 4 4 6666641 111 1 6 10

P5

Figure 4.  fpred of task 10 duplicated.
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Figure 5- fpred of task 9 duplicated.



duplicating task 4 on processor 1 because it will
have 9 time units as run time which will further
delay the completion time of task 7. Instead use
the results of task 4 from processor 1 to get task
7 going. Since this is more time consuming than
the previous one, we  stick to the previous one.
Therefore the ultimate makespan will be 31 time
units.

4. Results.

      We first observe an absolute performance
indicator, which is the ratio of actual completion
time (ACT) to earliest possible completion time
(ECT) for varying values of diversity and CCR.
ECT is an absolute minimum. Therefore
closeness of ACT to ECT is an indication of how
good the schedule is. The quantity diversity is
defined as follows.

Diversity =Average of
[(Max node cost –Min node cost)/2)/ Average node cost]

Similarly to compute CCR, we used the
following formula.

CCR  = (Average edge cost)/(Average Node cost).

We used the original communication times but
generated random runtimes to introduce
heterogeneity. Therefore diversity is an indicator
of how diverse the system is.
       We used two inputs in this simulation. One
is the DAG from Cholesky decomposition
algorithm, which has 2925 nodes and 5699
edges. The other is a Diamond DAG. It has 2502
nodes and 4902 edges. Each experiment was
repeated 10 times with different random seeds.

Figure 6. (ACT/ECT) Vs diversity.

The closeness of ACT/ECT to 1 for small
values of diversity can be attributed to the fact
that the system gets closer to a homogeneous
system and because the mother algorithm is

proven to be optimal for homogeneous system.
The variation of ACT/ECT for varying CCR is
given below. Once again the closeness of the
algorithm to optimality can be seen for small
CCR values.

Figure 7. (ACT/ECT) Vs CCR.

     Next we look at a relative performance
indicator by comparing our method and the
scheduling scheme BIL, for heterogeneous
processors presented in [7].  We used the same
input mentioned above. We looked at makespan
and scheduling time (time taken to generate the
schedule) for varying number of processors. The
results of the experiments carried out are
depicted in figure 6. It is quite evident that TDS
is very much faster than BIL for large inputs.
This was true even for smaller inputs with
number of node from 10 to 100’s even. Most of
the time TDS generated shorter schedules than
those generated by BIL when CCR was more
than 0.2. However these improvements
diminished for CCR greater than 1.0.
Performance of the two algorithms were
comparable when CCR was smaller than 0.2 and
larger than 1. However the running time of BIL
heavily depended on the number of processors as
it’s time complexity was Ο(v2p log p).

5. Conclusions and future work.

In this paper we presented a task duplication
based scheduling scheme for heterogeneous
systems called TDS. Performance of this
algorithm has been compared with a similar
scheme called BIL. Inputs used for comparison
were Cholesky decomposition DAG, Diamond
DAG and the DAG for Gaussian elimination
code. It was observed that TDS much faster than
BIL for large inputs. For CCR of 0.2 to 1.0, TDS
outperformed BIL also when makespan is
concerned. We plan to improve this algorithm by
selectively carrying out the duplication process
and by making this algorithm completely
scalable.
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Figure 8. Performance comparison,
Task Duplication based Scheduling Scheme
(TDS) and Best Imaginary Level Scheduling
Scheme (BIL).
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