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Abstract

Execution behavior of a Java application can be non-
deterministic due to concurrent threads of execution, th-
read scheduling, and variable network delays. This non-
determinism in Java makes the understanding and debug-
ging of multi-threaded distributed Java applications a dif-
ficult and a laborious process. It is well accepted that
providing deterministic replay of application execution is
a key step towards programmer productivity and program
understanding. Towards this goal, we developed a replay
framework based on logical thread schedules and logical
intervals. An application of this framework was previously
published in the context of a system called DejaVu that pro-
vides deterministic replay of multi-threaded Java programs
on a single Java Virtual Machine(JVM). In contrast, this
paper focuses on distributed DejaVu that provides deter-
ministic replay of distributed Java applications running on
multiple JVMs. We describe the issues and present the de-
sign, implementation and preliminary performance results
of distributedDejaVu that supports both multi-threaded and
distributed Java applications.

1. Introduction

The relative simplicity of the Java programming lan-
guage and its platform API has made Java attractive as an
application development platform. Certain features of Java,
such as multiple threads and network events, however, intro-
duce non-determinism in application’s execution behavior.
Non-deterministic execution is a well known characteristic
of concurrent systems and makes program understanding
and debugging a difficult and a laborious process. For ex-
ample, repeated execution of a program is common while
debugging a program. Non-determinism may result in a
bug to appear in one execution instance of the program and
not appear in another execution instance of the same pro-
gram. Further, the performance can be different from one

execution of a program to another execution of the same
program.

Providing deterministic replay of application execution
is a key step towards programmer productivity and program
understanding [5, 8, 4]. Towards this goal, we developed
a replay framework based on logical thread schedules and
logical intervals. An application of this framework was
previously published in the context of a system called De-
jaVu that provides deterministic replay of multi-threaded
Java programs on a single Java Virtual Machine(JVM)[2].
No modifications are necessary for standalone Java appli-
cations to take advantage of this replay facility. In contrast,
this paper describes deterministic replay for distributed Java
applications running on multiple JVMs. Our techniques for
handling distributed events seamlessly integrate with our
earlier work on replay for multi-threaded applications on a
single JVM. The result of the integration is an efficient deter-
ministic replay tool for multithreaded and distributed Java
applications. We have implemented the deterministic replay
techniques for distributed Java applications as extensions to
the Sun Microsystems’ JVM. We refer to the extended JVM
as DJVM.

There are three major cases to consider for a distributed
Java application, in terms of how much control the distrib-
uted DejaVu system can have over an application: 1) closed
world case, where all the JVMs running the application are
DJVMs; 2) open world case, where only one of the JVMs
running the application is a DJVM; and 3) mixed world case,
where some, but not all the JVMs running the application
are DJVMs.

For a distributed Java application, DJVM needs to replay
execution behavior as defined by Java network communi-
cation API. At the core, this API is centered around com-
munication end points called sockets. Three socket types
are supported: 1) a point-to-point stream or TCP socket that
supports reliable, streaming delivery of bytes; 2) a point-
to-point datagram or packet based UDP socket on which
message packets can be lost or received out of order; and
3) a multicast (point-to-multiple-points) socket on which a
datagram may be sent to multiple destination sockets. With
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respect to replay, multicast sockets are just a special case
of UDP sockets. Behaviors of TCP and UDP sockets differ
and therefore need different solutions for execution replay.

A DJVM runs in two modes: (1) Record mode, wherein,
the tool records the logical thread schedule information and
the network interaction information of the execution while
the Java program runs; and (2) Replay mode, wherein, the
tool reproduces the execution behavior of the program by
enforcing the recorded logical thread schedule and the net-
work interactions. DJVM uses a portable approach that is
independent of the underlying thread scheduler. DJVM is,
to our knowledge, the first tool that addresses the issues in
handling all the non-deterministic operations in the context
of deterministic replay of distributedand multithreaded Java
applications. The approach is general and can be applied
to distributed and multithreaded applications written in a
language with features similar to Java.

The rest of the paper is organized as follows: Section 2
describes our replay framework and methodology and sum-
marizes the application of these concepts for multithreaded
Java applications. More detailed description can be found
in [2]. Section 3 sets the context for describing distributed
replay by providing a general idea on how the framework
can be applied for replaying network activity. Section 4 ex-
plains the replay techniques for closed worlds for TCP and
UDP sockets. Section 5 describes the techniques for TCP
and UDP sockets for open and mixed world cases. Section 6
presents the DJVM implementation and some performance
results. Section 7 compares our approach to previous ap-
proaches, and Section 8 concludes the paper.

2. Replay Framework

Replaying a multithreaded program on a uniprocessor
system can be achieved by first capturing the thread sched-
ule information during one execution of the program, and
then enforcing the exact same schedule when replaying the
execution [8]. A thread schedule of a program is essentially
a sequence of time intervals (time slices). Each interval
in this sequence contains execution events of a single th-
read. Thus, interval boundaries correspond to thread switch
points.

2.1. Logical Thread Schedule

We refer to the thread schedule information obtained from
a thread scheduler as the physical thread schedule informa-
tion, and each time interval in a physical thread schedule as
a physical schedule interval. Capturing the physical thread
schedule information is not always possible, in particular,
with commercial operating systems. Rather than relying
on the underlying physical thread scheduler (either an oper-
ating system or a user-level thread scheduler) for physical

thread scheduling information, we capture the logical thread
schedule information [2] that can be computed without any
help from the thread scheduler.

An execution behavior of a thread schedule can be dif-
ferent from that of another thread schedule, if the order
of shared variable accesses is different in the two thread
schedules. Thus, it is possible to classify physical thread
schedules with the same order of shared variable accesses
into equivalence classes. We collectively refer to all the
physical thread schedules in an equivalence class as a logi-
cal thread schedule.

Synchronization events can affect the order of shared
variable accesses. Examples of such synchronization oper-
ations in Java are synchronized methods/blocks and wait.
We collectively refer to the events, such as shared variable
accesses and synchronization events, whose execution order
can affect the execution behavior of the application as criti-
cal events. A logical thread schedule is a sequence of inter-
vals of critical events, wherein each interval corresponds to
the critical and non-critical events executing consecutively
in a specific thread.

2.2. Logical Schedule Intervals

The logical thread schedule of an execution instance on a
uniprocessor system is an ordered set of critical event inter-
vals, called logical schedule intervals. Each logical sched-
ule interval,LSIi, is a set of maximally consecutive critical
events of a thread, and can be represented by its first and last
critical events as: LSI i = hFirstCEvent i;LastCEvent ii.

The approach to capture logical thread schedule informa-
tion is based on a global counter (i.e., time stamp) shared by
all the threads and one local counter exclusively accessed
by each thread. The global counter ticks at each execution
of a critical event to uniquely identify each critical event.
Therefore, FirstCEventi and LastCEvent i can be repre-
sented by their corresponding global counter values. Note
that the global counter is global within a particular DJVM,
not across the network (over multiple DJVMs). A local
counter also ticks at each execution of a critical event. The
difference between the global counter and a thread’s local
counter is used to identify the logical schedule interval on-
the-fly [2].

The general idea of identifying and logging schedule in-
terval information, and not logging the exhaustive informa-
tion on each critical event is crucial for the efficiency of our
replay mechanism. In the log file generated by the system,
we have found it typical for a schedule interval to consist of
thousands of critical events, all of which can be efficiently
encoded by two, not thousands of counter values.

Each critical event is uniquely associated with a global
counter value, which determines the order of critical events.
Updating the global counter for a critical event and exe-
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cuting the critical event, therefore, are performed in one
atomic operation for shared-variable accesses. We have
implemented an application transparent, light-weight GC-
critical section (for Global Counter critical section) code
within the Java Virtual Machine that is used to to implement
a single atomic action of critical events. It is used when
the critical event is a general event, e.g. a shared variable
access. Synchronization events with blocking semantics,
such as monitorenter and wait, can cause deadlocks
if they cannot proceed in a GC-critical section. Therefore,
we handle these events differently by executing them out-
side a GC-critical section. (Detailed description on these
can be found in [2].)

Updating the global counter and executing the event
both in one single atomic operation is only needed dur-
ing the record phase. For a thread to execute a sched-
ule interval LSI i = hFirstCEventi;LastCEventii, during
the replay phase, the thread waits until the global counter
value becomes the same asFirstCEventi without executing
any critical events. When the global counter value equals
FirstCEventi, the thread executes each critical event and
also increments the global counter value until the value be-
comes the same as LastCEvent i.

3. Distributed DejaVu

In this section, we give a general idea of how the frame-
work can be applied to DJVM in an extensible manner to
handle both multi-threaded and distributed Java applications
in closed, open and mixed world environments. In each of
these environments, we ensure deterministic replay of the
distributed Java application by identifying network events
as critical events (we describe the details for each network
event in the subsequent sections). These network events can
potentially change the observable execution behavior of the
distributed Java application.

Performing critical events with blocking semantics, such
as connect, accept and read, in a GC-critical sec-
tion can lead to deadlocks. We avoid deadlocks due to
these blocking network events by executing them out of a
GC-critical section. We provide more details on avoiding
deadlocks due to blocking network events in the subsequent
sections.

Execution order of critical events up to the first network
event will be preserved by the DJVM even without the sup-
port for network events. The support in DJVM for network
events ensures that the network events happen in the same
execution order as in the record mode. With network sup-
port in DJVM, we can conclude by induction that DJVM
can deterministically replay all critical events, network or
non-network. In the following sections, we describe the
different solutions in DJVM for replay of network events.

The closed world case is by far the more complex. The

replay techniques for TCP and UDP sockets in this world
is described in Section 4. We then give an overview in
Section 5 of how replay can be supported for both stream
and datagram sockets in open and mixed worlds.

4. Closed World Case

Replay for TCP sockets is described in Section 4.1, and
that for UDP sockets is described in Section 4.2.

4.1. Supporting Stream Sockets

We first outline the Java APIs for stream sockets fol-
lowed by issues in replaying distributed applications that
use stream sockets, and our techniques to record and replay
for deterministic replay.

4.1.1. Java Stream Socket API

In Java, stream sockets are created by Socket and
ServerSocket classes. A client constructs a Socket
object to connect to a server. In the process of execut-
ing the Socket() constructor, the client will execute the
connect() call. The construction is blocked until a con-
nection is established by a server. A server constructs a
ServerSocket object to specify the port to listen on. It
then invokes the accept() method of the object to ac-
cept a connection request. The accept() blocks until
a connection is established. It then creates and returns a
Socket object. The server can close the socket connection
via close() method of the ServerSocket object.

Once a socket is created, getInputStream() and
getOutputStream() of the Socket object return In-
putStream and OutputStream objects to be used
for reading (via read() method call) and writing (via
write() method call) stream data over the socket stream.

Other socket APIs include: method to listen for con-
nections on a stream socket (listen()), method to bind
a socket to a local port (bind()), and method to deter-
mine the number of bytes that can be read without blocking
(available()).

4.1.2. Issues in Replaying Stream Socket Events

Each stream socket call (accept, bind, create, lis-
ten, connect, close, available, read, write) is
mapped into a native method call in a JVM implementation.
We identify each of these native calls as a network event.
For convenience, in the rest of the paper, we use the names
of the Java calls for the corresponding native calls when
referring to the critical events. For replaying stream socket
network events, the following issues are relevant.
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Variable network delays: Since network delays can vary
for different executions of the same distributed Java appli-
cation, socket connections can be non-deterministic. There-
fore, the first step for deterministic replay of network
events is deterministic re-establishment of socket connec-
tions among threads. The relevant socket calls that are
affected by this issue are accept() and connect().

Figure 1 illustrates this issue with an example. The server
application in the figure has three threads t1, t2, t3
waiting to accept connections from clients. (This would be
a typical scenario in distributed Java applications). Client1,
Client2 and Client3 execute the connect() call, making
connection requests to the server. The solid and dashed ar-
rows indicate the connections between the server threads and
the clients during two different executions of the distributed
Java application.

Variable message sizes: The stream-oriented nature of the
connections can result in variable length messages read by
the receiver of the messages. In other words, the read()
method calls can return less than or equal to the number
of bytes requested. A simple re-execution of the read()
method during the replay phase can result in a different
number of bytes being read than the number read in the
record phase.

Network queries: Operations related to the status and at-
tributes of a connection need to be replayed. For instance, if
the particular port number was allocated to a socket during
the record phase, the application should see the same port
number during the replay phase. The relevant socket calls
affected by this issue are available() and bind().

Blocking calls: Socket calls such as accept, connect,
read, and available are blocking calls. Hence, if these
calls are placed within the GC-critical section, they can
cause the entire DJVM to be blocked until the call com-
pletes, and can result in deadlocks and inefficient and heav-
ily perturbed execution behaviour.

4.1.3. Record and Replay Mechanism for Stream Sockets

Each DJVM is assigned a unique JVM identity (DJVM-
id) during the record phase. This identity is logged in the
record phase and reused in the replay phase. The DJVM-id
allows us to identify the sender of a message or connection
request. A network event on a DJVM is identified by a net-
workEventId defined as the tuple hthreadNum ; eventNumi,
where threadNum is the thread number of the specific th-
read executing the network event and eventNum is a number
that identifies the network event within that thread. The
eventNum is used to order network events within a specific
thread. In addition, we also use the connectionId to identify

connection during 2nd execution.

server

client1 client2 client3

t1 t2 t3

connection during 1st execution

Figure 1. Figure illustrating network-delays is-
sue

L3:  <Server3Id, Client3Id>,   Client3Id = <Client3VMID, tNum3> >

server

client1 client2 client3

t1 t2 t3

L1 L2 L3

L2:  <Server2Id, Client2Id>,    Client2Id = <Client2VMID, tNum2> >

L1:  <Server1Id,Client1Id>,     Client1Id = <Client1VMID, tNum1> >

Figure 2. Figure illustrating mechanism for de-
terministic replay of connections

a connection request at a connect network event. The
connectionId is the tuple, hdJVMId ; threadNumi, where
dJVMId is the identity of the DJVM at which the connect
event is being generated, and threadNum is the thread num-
ber of the client thread generating the connection request.
Since threads are created in the same order in the record and
replay phases, our implementation guarantees that a thread
has the same threadNum value in both the record and replay
phases. In addition, since events are sequentially ordered
within a thread, the eventNum of a particular network event
executed by a particular thread is guaranteed to be the same
in the record and replay phases.

In the rest of this section, we discuss our techniques for
record and replay phases that handle the issues previously
outlined. In the following, we refer to a client’s DJVM as
DJVM-client and a server’s DJVM as DJVM-server. Fur-
ther, we use the name NetworkLogFile to denote the per
DJVM log file where information required for replaying
network events is recorded.
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Replaying accept and connect: Since these calls are
a source of non-determinism, these are made DJVM crit-
ical events. Although this guarantees the execution order
within a DJVM, it alone is not sufficient for correctness
because of non-determinism introduced by network delays.
So additional data regarding the connection is stored at the
server DJVM. Further, as mentioned earlier, these calls are
blocking calls and executing these calls within a GC-critical
section reduces application parallelism and introduces po-
tential for deadlocks. We therefore allow the operating sys-
tem level network operations to proceed and then mark the
network operations as critical events. This marking strategy
allows threads performing operations on different sockets to
proceed in parallel with minimal perturbation.

In the record phase, at theconnect, DJVM-client sends
the socket-connection request to the server, possibly ac-
cepted by a peer thread on the server. When the socket con-
nection is finally established, the client thread on DJVM-
client sends the connectionId for the connect over the
established socket as the first data (meta data). Note that
the connectionId is sent to the server via a low level (na-
tive) socket write call and is done before returning from
the Socket() constructor call. This ensures that the con-
nectionId is indeed the first data sent over this connection.
Finally, just before the connect call returns, DJVM-client
performs the GC-critical section for atomically updating the
global counter.

In the replay phase, DJVM-client executes theconnect
and sends the connectionId of the connect to the server
as the first meta data, just as in the record phase. Since
connect is a critical event, DJVM-client ensures that the
connect call returns only when the globalCounter
for this critical event is reached.

On the server side, during the record phase, at an ac-
cept, the DJVM-server accepts the connection and receives
the connectionId sent by the client as the first meta data at the
corresponding connect. The DJVM-server also logs the
information about the connection established into the Net-
workLogFile. For each successful accept call, the log con-
tains an entry, called a ServerSocketEntry, which is the tuple,
hserverId ; clientIdi, where serverId is the networkEventId
of the corresponding accept event and clientId is the con-
nectionId sent by the DJVM-client. Given the information
stored in a tuple, it is possible for two different threads to
have identical ServerSocketEntry tuples in their part of the
NetworkLogFile. However, this lack of unique entries is
not a problem. The core, single DJVM ensures the replay of
invocation order (not completion) of accepts across threads
since accept is a synchronized call. Thus for example, if
during record phase, a thread t1 invoked the accept method
on a socket before thread t2, the thread t1 will invoke the ac-
cept method before t2 during replay. Since the client threads
also execute their connects in the original order, the connec-

enterFDCriticalSection( socket )
write
enterGCCriticalSection
leaveGCCriticalSection
leaveFDCriticalSection(socket)

----

done = false;
while(!done) \{

enterFDCriticalSection( socket )
if (ReplayPhase) {

n = read(.. recordedValue .. )
if ( n == recordedValue)

done = true;
if (n < recordedValue)

recordedValue = recordedValue - n;
if (n > recordedValue)

error;
}
if (RecordPhase) {

n = read(..)
recordedValue = n
done = true;

}
enterGCcriticalSection
leaveGCcriticalSection
leaveFDCriticalSection( socket )

}

Figure 3. Efficient replay of read, write

tion gets re-established between the same two threads as
during original execution. Further, note that an exception
thrown by a network event in the record phase is logged and
re-thrown in the replay phase.

To replay accept events, a DJVM maintains a data
structure called connection pool to buffer out-of-order con-
nections. During the replay phase, when an accept is
executed by a server thread ts on DJVM-server, it first
identifies the networkEventId for this accept event, i.e.,
hthreadNumof ts; eventNumofacceptwithintsi. It then
identifies the connectionId from the NetworkLogFile with
matching networkEventId value. DJVM-server then checks
the connection pool to see if a Socket object has al-
ready been created with the matching connectionId. If
the Socket object has been created, it simply returns the
Socket object to complete the accept. If a Socket
object has not already been created with the matching con-
nectionId, the DJVM-server continues to buffer information
about out-of-order connections in the connection pool until
it receives a connection request with matching connectionId.
It then creates and returns aSocket object for the matching
connection.
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Example: For the example in Figure 1, suppose the
solid arrows indicate the connections established during
the record phase. Figure 2 shows our mechanism for de-
terministically replaying the same connections. L1, L2,
L3 are the log entries made during the accept events
by threads t1, t2, t3 respectively during the record phase.
Server1Id, Server2Id, Server3Id are the networkEventId
values when t1, t2, t3 respectively execute the accept
events. The figure also shows the connectionIds sent by
each client. For example, the connectionId from Client2 is
Client2Id = hClient2VMId ; tNum2 i.

Replaying read: Socket read event is identified as a
critical event in a DJVM. Since the number of bytes read
via a socket read can vary for different executions, in the
record phase, the DJVM executes the read and logs the
thread-specific eventNum and number of bytes read (num-
Recorded) in the NetworkLogFile. Sinceread is a blocking
call, it is not placed within a GC-critical section. Instead,
just before theread call returns, the DJVM marks theread
as a critical event. In the replay phase, at the corresponding
read event, the DJVM thread retrieves the numRecorded
number of bytes from the NetworkLogFile corresponding to
the current eventNum. Further, the thread reads only num-
Recorded bytes even if more bytes are available to read or
will block until numRecorded bytes are available to read.
Finally, the execution returns from the read call only when
the globalCounter for this critical event is reached.

Replaying write: write is a non-blocking call and a
critical event. write is handled by simply placing it within
GC-critical section similar to how we handle critical events
corresponding to shared variable updates.

Since SocketInputStream.read and Sock-
etOutputStream.write are not synchronized calls,
multiple writes on the same socket may overlap. While re-
playing the writes and the corresponding reads, we have to
ensure that all the writes to the same socket happen in the
same order and all the reads (from the socket) read the bytes
in the same order in both the record and replay modes.

A solution is to just record the occurrence of such an
event and allow other unrelated events (i.e., events that do
not operate on the same socket) to proceed. Events that do
use the same socket will be blocked by using a lock variable
for each socket (Figure 3). This scheme allows some par-
allelism in the record and replay modes and also preserves
the execution ordering of the different critical events. The
additional cost in this scheme is the cost of the extra lock
variables per socket and the slightly increased implementa-
tion complexity.

Replaying available and bind: The available
and bind events are also treated as critical events. Both

these events implement network query. In the case of
available, it checks the number of bytes available on
the stream socket, and bind returns the local port to which
the socket is bound.

Sinceavailable is a blocking call, in the record phase,
it is executed before the GC-critical section. In addition, the
DJVM records the actual number of bytes available. In the
replay phase, the available event can potentially block
until it returns the recorded number of bytes, i.e., until the
recorded number of bytes are available on the stream socket.

In the case of bind, in the record phase, it is executed
within a GC-critical section and the DJVM records its return
value. In the replay phase, we execute the bind event,
passing the recorded local port as argument.

Other stream socket events: The other stream socket
events that are marked as critical events are create,
close and listen, all of which have to be recorded
to preserve execution order. We handle these critical events
by simply enclosing them within our GC-critical section,
similar to how we handle critical events corresponding to
shared variable updates.

4.2. Supporting Datagrams Sockets

TCP socket is designed to be reliable. If data is lost
or damaged during transmission, TCP ensures that the data
is sent again. If data or packets arrive out of order, TCP
rearranges them to be in the correct order. UDP, User Data-
gram Protocol, is an alternative protocol to send data over
the network, and is unreliable. The packets, called data-
grams, can arrive out of order, duplicated, or some may not
arrive at all. It is the (Java) application’s responsibility to
manage the additional complexity.

For deterministic replay of applications using UDP,
DJVM needs to ensure the same packet delivery behav-
ior during the replay phase as during the record phase. In
other words, the replay mechanism must ensure that the
packet duplication, packet loss and packet delivery order
in the record phase is preserved in the replay phase. The
following sections describe how we achieve this replay for
datagram sockets. Multicast sockets can be easily accom-
modated by extending the mechanism for datagram sockets
from a point-to-single-point scheme to a point-to-multiple-
points scheme.

4.2.1. Datagram Socket API

UDP sockets are created via DatagramSocket class. A
DatagramPacket object is the datagram to be sent or re-
ceived through theDatagramSocket object via send()
and receive() methods of the DatagramSocket ob-
ject. They are both blocking calls. A datagram socket is
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closed via close() method of the socket object. As in
the case of stream sockets, each of the datagram socket call
can be implemented in a JVM via a low-level native call.
We use the names of the UDP socket calls to refer to the
low level native calls (network events). The UDP send,
receive and close events are critical events in DJVM.

4.2.2. Record Phase

During the record phase, the sender DJVM intercepts a UDP
datagram sent by the application, called application data-
gram, and inserts the DGnetworkEventId of the send event
at the end of the data segment of the application datagram.1

The DGnetworkEventId is the pair hdJVMId ; dJVMgci,
where dJVMId is the id of the sender DJVM and dJVMgc is
the globalcounter at the sender DJVM associated with the
send event. The receiver DJVM intercepts a datagram to
be received by a thread, and delivers to the application only
the application datagram by stripping out the datagram id.
The datagram size, due to the meta data, can become larger
than the maximum size allowed for a UDP datagram (usu-
ally limited by 32K). When this happens, the sender DJVM
splits the application datagram into two, which the receiver
DJVM combines into one again at the receiver side. A split
datagram carries the same DGnetworkEventId, and a flag to
indicate the portion, i.e. front or rear, it represents so that
it can be combined correctly at the receiver. A non-split
datagram carries its own flag that distinguishes it from a
split datagram.

The receiver DJVM logs all the datagrams received into
a log called RecordedDatagramLog. Each entry in the log
is a tuple hReceiverGCounter ; datagramIdi, where Re-
ceiverGCounter is the global counter value at thereceive
event in the receiver DJVM, and datagramId is the DGnet-
workEventId of the received datagram. Multiple datagrams
with identical DGnetworkEventId are also recorded during
the record phase.2

4.2.3. Replay Phase

For reliable delivery of UDP packets during replay, we use
a reliable UDP mechanism3 that guarantees reliable, but
possibly out of order, delivery of intrinsically unreliable
UDP datagrams. Note that a datagram delivered during
replay need be ignored if it was not delivered during record.

1The DJVM also increases the length field of the datagram to include
the added size for the datagram id.

2Note that the same datagram can be delivered more than once during
the record phase, all of which must be delivered to the application during
record and replay.

3If no reliable UDP is available, a pseudo-reliable UDP can be im-
plemented as part of the sender and the receiver DJVMs by storing sent
and received datagrams and exchanging acknowledgment and negative-
acknowledgment messages between the DJVMs.

For UDP delivery, the DGnetworkEventId of each UDP
packet is used for uniquely identifying each datagram. A
datagram entry that has been delivered multiple times during
the record phase due to duplication is kept in the buffer until
it is delivered to the same number of read requests as in
the record phase.

5. Open and Mixed World Cases

In the open world case, only one component of the dis-
tributed application is running on a DJVM. Network events,
in this case, are handled as general I/O: any input mes-
sages are fully recorded including their contents during the
record phase. During the replay phase, any network event
at the receiver DJVM is performed with the recorded data,
not with the real network. For example, during the record
phase, a client DJVM requesting a stream socket connection
to a non-DJVM server logs the connection data. During the
replay phase, the results of the corresponding connection
request are retrieved from the log. The actual operating
system-level connect call is not executed. Likewise, any
message sent to a non-DJVM thread during the record phase
need not be sent again during the replay phase.

In a mixed-world case, some components of the appli-
cation are running on DJVM and others on non-DJVM. If
the environment is known before the application executes,
one could simply fall back on the DJVM scheme for the
open-world case. However, with a little bit more machin-
ery, it is possible to optimize on space overheads by using
the closed-world scheme for communication with DJVMs
and saving additional state during the communication with
non-DJVMs.

6. Implementation and Performance Results

We modified Sun’s implementations of the JDK on Win-
dows NT operating system to provide record and replay
functionality of stream sockets for both closed and open
world environments. In this section, we use a synthetic,
multi-threaded, client-server benchmark to demonstrate the
performance and various overheads of Dejavu. This bench-
mark, that uses only stream socket API for network calls,
has been written to deliberately contain non-determinism
in updating both shared variables and passing the result of
computation over these shared variables between the client
and the server. For instance, the number of connections
performed for the client is a shared variable that is updated
without exclusive access by the client threads and this vari-
able is used in the individual thread computations. Further,
the client threads perform multiple connects per “session”
that introduces additional non-determinism in the order of
establishing connections. Because of these many sources
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of non-determinism, repeated executions of the benchmark
invariably complete with different results computed by each
thread. However, when DJVM is used, a perfect replay is
observed.

The benchmark was run on a IBM Thinkpad with one
300Mhz Pentium processor, running Windows NT operat-
ing system. The client and server were run on different
DJVMs on the same machine. The performance results of
DJVMs for this benchmark are shown under the open and the
closed scenarios in table 1 and table 2, respectively. The ta-
bles show how the implementation performs with increasing
number of threads in each component. Since there are two
parts to the application, i.e., the client and the server part, the
results are so tabulated. The first and the second columns of
each table are self-explanatory. The column labeled #nw
events is the number of critical events that are also network
events, such as accept, connect, and read. The col-
umn labeled log size is the total size in bytes of the recorded
information. This includes the list of scheduling intervals
for each thread and information related to network activity.
The column rec ovhd is the percentage increase in applica-
tion execution time due to our modifications to the JVM for
supporting replay.

First, notice that the number of network events for the
server component in both closed and open world cases is the
same. (See table 1(a) and table 2(a).) This is because the
identification of a network critical event is independent of
the recording methodology. For the same reason, the client
component exhibits the same number of network events
under closed and open scenarios. Second, as expected,
the recording overhead in space and time (log size and rec
ovhd) for the closed world is less than that for the open
world because the amount of information that is recorded
differs. Note that increasing the size of messages sent
to the client would not change the size of closed-world
log but would cause a consequent increase in the open-
world log. Finally, in all cases, as the total number of
application threads (client and server threads) executing on
the machine increase from 4 to 64, the recording overhead
rises super linearly. We attribute to this to the extensive
thread context switching, that results in larger number of
invocations of replay support code, and thread contention
for the GC-critical section. The worst-case overhead for
this benchmark is 57% for closed-world implementation
and 69.57% for open-world. Given that the implementation
is still work-in-progress with unoptimized and debugging
code, the result demonstrates that the tool can be practical.
However, this needs to be verified against real applications.

7. Related Work

Replay is a widely accepted technique for debugging
deterministic sequential applications. Replay for debug-

ging, however, fails to work for non-deterministic applica-
tions, such as distributed and multithreaded Java applica-
tions. BUGNET’s handling of non-deterministic message
sent and received by processes is similar to our handling
of UDP datagrams [3]. It logs the received message id’s
during the record phase, and consumes the received mes-
sages according to the log during the replay phase while
buffering yet to be consumed messages. It does not address
the issue of non-deterministic events due to multithreading
within a process that interact with non-deterministic mes-
sage receives, nor does it address non-deterministic partial
receive of messages through “reliable” connections.

Replay systems based on Instant Replay [5, 9] address
both non-determinism due to shared-variable accesses and
messages. Each access of a shared variable, however, is
modeled after interprocess communication similar to mes-
sage exchanges. When the granularity of the communi-
cation is very small, such is the case with multithreaded
applications, the space and time overhead for logging the
interactions becomes prohibitively large. Instant Replay
also addresses only atomic network messages like the UDP
datagram.

Russinovich and Cogswell’s approach [8] addresses
specifically multithreaded applications running only on a
uniprocessor system. They modified the Mach operating
system to capture the physical thread scheduling informa-
tion. This makes their approach highly dependent on an
operating system. The scheme by Levrouw et. al. for event
logging computes consecutive accesses for each object, us-
ing one counter for each shared object [6]. Our scheme dif-
fers from theirs in that ours computes logical thread sched-
ule, using a single global counter. Our scheme is, thereby,
much simpler and more efficient than theirs on a uniproces-
sor system. Neither of these addresses replaying distributed
applications.

Netzer et. al. address the issue of how to balance the
overhead of logging during the record phase with the replay
time [7]. Even for a closed world system, they store con-
tents of messages selectively to avoid executing the program
from the start. Combined with checkpointing [10], storing
contents of messages allows for bounded-time replay to ar-
bitrary program points.

8. Conclusions

We have developed a record/replay tool for distributed
and multi-threaded Java applications, called DJVM that pro-
vides a deterministic replay of a non-deterministic execu-
tion. DJVM is implemented by modifying Sun Microsys-
tem’s Java Virtual Machine (JVM). Our approach is in-
dependent of the underlying thread scheduler such as the
operating system. It also does not require modifications of
the user application to enable replay. Future work includes
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#threads #critical #nw log rec
events events size(bytes) ovhd(%)

2 493758 69 504 0.7
4 512374 113 824 1.1
8 550021 201 1464 2.4
16 627076 377 4692 4.5
32 781717 729 16072 16.9

#threads #critical #nw log rec
events events size(bytes) ovhd(%)

2 492505 72 436 2.3
4 510020 120 676 2.9
8 545130 216 1260 9.3

16 617318 408 1868 16.0
32 761662 792 3908 57.0

(a) Server (b) Client

Table 1. Closed-world results

#threads #critical #nw log rec
events events size(bytes) ovhd(%)

2 20762 69 3856 0.75
4 34328 113 6392 1.62
8 61658 201 11391 2.02
16 117872 377 21571 10.08
32 230084 729 40903 18.44

#threads #critical #nw log rec
events events size(bytes) ovhd(%)

2 19354 72 4030 3.63
4 31950 120 6691 4.7
8 57417 216 12010 5.18

16 110084 408 22714 29.13
32 215301 792 44266 69.57

(a) Server (b) Client

Table 2. Open-world results

integrating the system with checkpointing to bound the re-
play time. DJVM is the first tool that completely addresses
the issues in handling all the non-deterministic operations in
the context of deterministic replay of distributed and mul-
tithreaded Java applications. The approach is general and
can be applied to distributed and multithreaded applications
written in a language with features similar to Java. We also
plan to apply the techniques to Jalapeño, a JVM for SMP
machines, being developed at IBM Research [1].
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