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Abstract

Execution behavior of a Java application can be non-
deterministic due to concurrent threads of execution, th-
read scheduling, and variable network delays. This non-
determinism in Java makes the understanding and debug-
ging of multi-threaded distributed Java applications a dif-
ficult and a laborious process. It is well accepted that
providing deterministic replay of application execution is
a key step towards programmer productivity and program
understanding. Towards this goal, we developed a replay
framework based on logical thread schedules and logical
intervals. An application of this framework was previously
publishedinthe context of a systemcalled DejaVu that pro-
vides deterministic replay of multi-threaded Java programs
on a single Java Mrtual Machine(JVM). In contrast, this
paper focuses on distributed DejaVu that provides deter-
ministic replay of distributed Java applications running on
multiple JVMs. We describe the issues and present the de-
sign, implementation and preliminary performance results
of distributed DejaVu that supportsboth multi-threaded and
distributed Java applications.

1. Introduction

The relative simplicity of the Java programming lan-
guage and its platform APl has made Java attractive as an
application development platform. Certain features of Java,
such as multiplethreadsand network events, however, intro-
duce non-determinism in application’s execution behavior.
Non-deterministic execution isawell known characteristic
of concurrent systems and makes program understanding
and debugging a difficult and a laborious process. For ex-
ample, repeated execution of a program is common while
debugging a program. Non-determinism may result in a
bug to appear in one execution instance of the program and
not appear in another execution instance of the same pro-
gram. Further, the performance can be different from one

execution of a program to another execution of the same
program.

Providing deterministic replay of application execution
isakey step towards programmer productivity and program
understanding [5, 8, 4]. Towards this goal, we developed
areplay framework based on logical thread schedules and
logical intervals. An application of this framework was
previously published in the context of a system called De-
jaVu that provides deterministic replay of multi-threaded
Java programs on a single Java Virtual Machine(JVvM)[2].
No modifications are necessary for standalone Java appli-
cations to take advantage of thisreplay facility. In contrast,
thispaper describesdeterministicreplay for distributed Java
applications running on multiple 3V Ms. Our techniques for
handling distributed events seamlesdy integrate with our
earlier work on replay for multi-threaded applications on a
singleJVM. Theresult of theintegrationisan efficient deter-
ministic replay tool for multithreaded and distributed Java
applications. We haveimplemented thedeterministicreplay
techniques for distributed Java applications as extensionsto
the Sun Microsystems' VM. Werefer to the extended VM
asDJIVM.

There are three major cases to consider for a distributed
Java application, in terms of how much control the distrib-
uted DejaVu system can have over an application: 1) closed
world case, where al the VMs running the application are
DJIVMs; 2) open world case, where only one of the VMs
running theapplicationisaDJVM; and 3) mixed world case,
where some, but not al the JVMs running the application
are DIVMs.

For adistributed Java application, DJVM needsto replay
execution behavior as defined by Java network communi-
cation API. At the core, this API is centered around com-
munication end points called sockets. Three socket types
are supported: 1) a point-to-point stream or TCP socket that
supports reliable, streaming delivery of bytes; 2) a point-
to-point datagram or packet based UDP socket on which
message packets can be lost or received out of order; and
3) amulticast (point-to-multiple-points) socket on which a
datagram may be sent to multiple destination sockets. With



respect to replay, multicast sockets are just a specia case
of UDP sockets. Behaviors of TCP and UDP sockets differ
and therefore need different solutionsfor execution replay.

A DIVM runsin two modes: (1) Record mode, wherein,
thetool records thelogical thread schedul e information and
the network interaction information of the execution while
the Java program runs; and (2) Replay mode, wherein, the
tool reproduces the execution behavior of the program by
enforcing the recorded logical thread schedule and the net-
work interactions. DIVM uses a portable approach that is
independent of the underlying thread scheduler. DIVM is,
to our knowledge, the first tool that addresses the issuesin
handling all the non-deterministic operationsin the context
of deterministicreplay of distributed and multithreaded Java
applications. The approach is genera and can be applied
to distributed and multithreaded applications written in a
language with features similar to Java

The rest of the paper is organized as follows. Section 2
describes our replay framework and methodol ogy and sum-
marizes the application of these concepts for multithreaded
Java applications. More detailed description can be found
in[2]. Section 3 sets the context for describing distributed
replay by providing a generd idea on how the framework
can be applied for replaying network activity. Section 4 ex-
plainsthe replay techniques for closed worldsfor TCP and
UDP sockets. Section 5 describes the techniques for TCP
and UDP socketsfor open and mixed world cases. Section6
presents the DIVM implementation and some performance
results. Section 7 compares our approach to previous ap-
proaches, and Section 8 concludes the paper.

2. Replay Framewor k

Replaying a multithreaded program on a uniprocessor
system can be achieved by first capturing the thread sched-
ule information during one execution of the program, and
then enforcing the exact same schedule when replaying the
execution [8]. A thread schedule of aprogramisessentialy
a sequence of time intervals (time dlices). Each interval
in this sequence contains execution events of a single th-
read. Thus, interval boundaries correspond to thread switch
points.

2.1. Logical Thread Schedule

Werefer tothethread schedul einformation obtained from
athread scheduler as the physical thread schedule informa-
tion, and each timeinterva in aphysica thread schedule as
aphysical scheduleinterval. Capturing the physical thread
schedule information is not aways possible, in particular,
with commercia operating systems. Rather than relying
on the underlying physical thread scheduler (either an oper-
ating system or a user-level thread scheduler) for physica

thread schedulinginformation, we capturethelogical thread
schedule information [2] that can be computed without any
help from the thread scheduler.

An execution behavior of a thread schedule can be dif-
ferent from that of another thread schedule, if the order
of shared variable accesses is different in the two thread
schedules. Thus, it is possible to classify physical thread
schedules with the same order of shared variable accesses
into equivalence classes. We collectively refer to al the
physical thread schedules in an eguivalence class as alogi-
cal thread schedule,

Synchronization events can affect the order of shared
variable accesses. Examples of such synchronization oper-
ationsin Java are synchronized methods/blocksand wai t .
We collectively refer to the events, such as shared variable
accesses and synchroni zati on events, whose execution order
can affect the execution behavior of the application as criti-
cal events. A logical thread scheduleis a sequence of inter-
vals of critical events, wherein each interval correspondsto
the critical and non-critical events executing consecutively
in aspecific thread.

2.2. Logical Schedule Intervals

Thelogical thread schedule of an executioninstanceon a
uniprocessor system isan ordered set of critical event inter-
vals, called logical schedule intervals. Each logical sched-
uleinterval, LSI;, isaset of maximally consecutive critical
eventsof athread, and can berepresented by itsfirst and last
critical eventsas: LSI; = (FirstCEvent;, LastCEvent;).

The approach to capturelogical thread scheduleinforma
tionisbased on aglobal counter (i.e., time stamp) shared by
all the threads and one local counter exclusively accessed
by each thread. The global counter ticks at each execution
of acritical event to uniquely identify each critical event.
Therefore, FirstCEvent; and LastCEvent; can be repre-
sented by their corresponding global counter values. Note
that the global counter is global within a particular DIVM,
not across the network (over multiple DIVMSs). A local
counter also ticks at each execution of acritical event. The
difference between the global counter and a thread's local
counter is used to identify the logical schedule interval on-
the-fly [2].

The general idea of identifying and logging schedule in-
terval information, and not logging the exhaustive informa-
tion on each critical event iscrucial for the efficiency of our
replay mechanism. In thelog file generated by the system,
we have found it typical for ascheduleinterval to consist of
thousands of critical events, all of which can be efficiently
encoded by two, not thousands of counter values.

Each critica event is uniquely associated with a global
counter value, which determinesthe order of critical events.
Updating the globa counter for a critical event and exe-



cuting the critical event, therefore, are performed in one
atomic operation for shared-variable accesses. We have
implemented an application transparent, light-weight GC-
critical section (for Global Counter critical section) code
withinthe Java Virtual Machinethat isused to to implement
a single atomic action of critical events. It is used when
the critical event is a genera event, eg. a shared variable
access.  Synchronization events with blocking semantics,
such asmoni t or ent er and wai t , can cause deadlocks
if they cannot proceed in a GC-critical section. Therefore,
we handle these events differently by executing them out-
side a GC-critical section. (Detailed description on these
can befoundin[2].)

Updating the global counter and executing the event
both in one single atomic operation is only needed dur-
ing the record phase. For a thread to execute a sched-
uleinterval LSI; = (FirstCEvent;, LastCEvent;), during
the replay phase, the thread waits until the global counter
valuebecomes the sameas First CEvent,; without executing
any critical events. When the globa counter value equals
FirstCEvent;, the thread executes each critical event and
also increments the global counter value until the value be-
comes the same as LastCEvent;.

3. Distributed Dgjavu

In this section, we give a general idea of how the frame-
work can be gpplied to DIVM in an extensible manner to
handleboth multi-threaded and distributed Javaapplications
in closed, open and mixed world environments. In each of
these environments, we ensure deterministic replay of the
distributed Java application by identifying network events
as critical events (we describe the details for each network
event inthe subsequent sections). These network events can
potentially change the observable execution behavior of the
distributed Java application.

Performing critical eventswith blocking semantics, such
as connect, accept and read, in a GC-critical sec-
tion can lead to deadlocks. We avoid deadlocks due to
these blocking network events by executing them out of a
GC-critical section. We provide more details on avoiding
deadl ocks due to blocking network eventsin the subsequent
sections.

Execution order of critical events up to the first network
event will be preserved by the DIVM even without the sup-
port for network events. The supportin DIVM for network
events ensures that the network events happen in the same
execution order as in the record mode. With network sup-
port in DIVM, we can conclude by induction that DIVM
can deterministically replay al critica events, network or
non-network. In the following sections, we describe the
different solutionsin DIVM for replay of network events.

The closed world case is by far the more complex. The

replay techniques for TCP and UDP sockets in this world
is described in Section 4. We then give an overview in
Section 5 of how replay can be supported for both stream
and datagram sockets in open and mixed worlds.

4. Closed World Case

Replay for TCP sockets is described in Section 4.1, and
that for UDP socketsis described in Section 4.2.

4.1. Supporting Stream Sockets

We first outline the Java APIs for stream sockets fol-
lowed by issues in replaying distributed applications that
use stream sockets, and our techniquesto record and replay
for deterministic replay.

4.1.1. Java Stream Socket API

In Java, stream sockets are created by Socket and
Ser ver Socket classes. A client constructs a Socket
object to connect to a server. In the process of execut-
ing the Socket () constructor, the client will execute the
connect () cal. The construction is blocked until a con-
nection is established by a server. A server constructs a
Server Socket object to specify the port to listen on. It
then invokes the accept () method of the object to ac-
cept a connection request. The accept () blocks until
a connection is established. It then creates and returns a
Socket object. The server can close the socket connection
viacl ose() method of the Ser ver Socket object.

Once a socket is created, get | nput Stream() and
get Qut put St ream() of theSocket object return| n-
put St ream and Qut put St r eam objects to be used
for reading (via r ead() method cal) and writing (via
wri t e() method cal) stream data over the socket stream.

Other socket APIs include: method to listen for con-
nections on a stream socket (I i st en() ), method to bind
a socket to a local port (bi nd()), and method to deter-
mine the number of bytesthat can be read without blocking
(avai | abl e()).

4.1.2. Issuesin Replaying Stream Socket Events

Each stream socket call (accept, bi nd,create, | i s-

ten, connect,cl ose,avail abl e,read,wite)is
mapped into a native method call inaJvM implementation.
We identify each of these native calls as a network event.
For convenience, in the rest of the paper, we use the names
of the Java calls for the corresponding native calls when
referring to the critical events. For replaying stream socket
network events, the following issues are relevant.



Variablenetwork delays.  Since network delays can vary
for different executions of the same distributed Java appli-
cation, socket connections can be non-deterministic. There-
fore, the first step for deterministic replay of network
events is deterministic re-establishment of socket connec-
tions among threads. The relevant socket calls that are
affected by thisissueareaccept () and connect ().

Figurelillustratesthisissuewithan example. Theserver
application in the figure has three threadst 1, t2, t3
waiting to accept connections from clients. (Thiswould be
atypical scenario in distributed Java applications). Client1,
Client2 and Client3 execute the connect () cal, making
connection requests to the server. The solid and dashed ar-
rowsindicatethe connectionsbetween the server threadsand
the clientsduring two different executions of the distributed
Java application.

Variablemessagesizes: Thestream-oriented natureof the
connections can result in variable length messages read by
the receiver of the messages. In other words, ther ead()
method calls can return less than or equa to the number
of bytes requested. A simple re-execution of the r ead()
method during the replay phase can result in a different
number of bytes being read than the number read in the
record phase.

Network queries; Operationsrelated to the status and at-
tributesof aconnection need to bereplayed. For instance, if
the particular port number was alocated to a socket during
the record phase, the application should see the same port
number during the replay phase. The relevant socket cals
affected by thisissue areavai | abl e() and bi nd() .

Blockingcalls: Socket callssuchasaccept ,connect,
read,and avai | abl e areblocking calls. Hence, if these
cals are placed within the GC-critical section, they can
cause the entire DIVM to be blocked until the call com-
pletes, and can result in deadlocks and inefficient and heav-
ily perturbed execution behaviour.

4.1.3. Record and Replay M echanism for Stream Sockets

Each DIVM s assigned a unique VM identity (DJVM-
id) during the record phase. This identity is logged in the
record phase and reused in the replay phase. The DIVM-id
alows usto identify the sender of a message or connection
request. A network event on aDJIVM isidentified by a net-
workEventld defined asthetuple (thread Num, eventNum),
where threadNum is the thread number of the specific th-
read executing the network event and eventNumisanumber
that identifies the network event within that thread. The
eventNum is used to order network events within a specific
thread. In addition, we also use the connectionld to identify

et L)

<—= connection during 1st execution
<--> connection during 2nd execution.

el

Figurel. Figureillustrating network-delays is-
sue

{Clientl J [CIientZ ] [ client3 ]

L1 <Serverlld,Clientlld>, Clientlld = <ClientlVMID, tNum1> >

L2: <Server2ld, Client2ld>, Client2ld = <Client2VMID, tNum2> >

L3: <Server3ld, Client3ld>, Client3ld=<Client3VMID, tNum3> >

Figure2. Figure illustrating mechanism for de-
terministic replay of connections

a connection request at a connect network event. The
connectionld is the tuple, (dJVMId, threadNum), where
dJVMId istheidentity of the DJVM at whichtheconnect

event isbeing generated, and threadNum is the thread num-
ber of the client thread generating the connection request.
Sincethreads are created in the same order in the record and
replay phases, our implementation guarantees that a thread
has the same threadNum value in both the record and replay
phases. In addition, since events are sequentially ordered
within athread, the eventNum of a particular network event
executed by a particular thread is guaranteed to be the same
in the record and replay phases.

In the rest of this section, we discuss our techniques for
record and replay phases that handle the issues previously
outlined. In the following, we refer to a client'sDIVM as
DJVM-client and a server’'s DIVM as DIVM-server. Fur-
ther, we use the name NetworkLogFile to denote the per
DJVM log file where information required for replaying
network eventsis recorded.



Replayingaccept and connect: Sincethesecallsare
a source of non-determinism, these are made DIVM crit-
ica events. Although this guarantees the execution order
within a DIVM, it alone is not sufficient for correctness
because of non-determinism introduced by network delays.
So additiona data regarding the connection is stored at the
server DIVM. Further, as mentioned earlier, these calls are
blocking callsand executing these callswithina GC-critical
section reduces application paralelism and introduces po-
tential for deadlocks. We therefore allow the operating sys-
tem level network operationsto proceed and then mark the
network operationsas critical events. Thismarking strategy
allowsthreads performing operationson different socketsto
proceed in parallel with minimal perturbation.

Intherecord phase, a theconnect , DIVM-client sends
the socket-connection request to the server, possibly ac-
cepted by a peer thread on the server. When the socket con-
nection is finally established, the client thread on DJVM-
client sends the connectionld for the connect over the
established socket as the first data (meta data). Note that
the connectionld is sent to the server via alow leve (na-
tive) socket wr i t e call and is done before returning from
the Socket () constructor call. Thisensures that the con-
nectionld is indeed the first data sent over this connection.
Finaly, just beforetheconnect call returns, DJVM-client
performsthe GC-critical section for atomically updatingthe
global counter.

Inthereplay phase, DIV M-client executestheconnect
and sends the connectionld of the connect to the server
as the first meta data, just as in the record phase. Since
connect isacritical event, DIVM-client ensures that the
connect cal returns only when the gl obal Count er
for thiscritical event isreached.

On the server side, during the record phase, a an ac-
cept ,theDIVM-server acceptsthe connection and receives
the connectionld sent by the client asthefirst metadataat the
corresponding connect . The DIVM-server aso logs the
information about the connection established into the Net-
workLogFile. For each successful accept cal, the log con-
tainsan entry, called aServer SocketEntry, whichisthetuple,
(serverld, clientId), where serverld is the networkEventld
of the correspondingaccept event and clientld isthe con-
nectionld sent by the DIVM-client. Given the information
stored in a tuple, it is possible for two different threads to
have identical ServerSocketEntry tuplesin their part of the
NetworkLogFile. However, this lack of unique entriesis
not aproblem. The core, singleDIVM ensuresthereplay of
invocation order (not completion) of accepts across threads
sinceaccept isasynchronized call. Thusfor example, if
during record phase, athread t1 invoked the accept method
on asocket beforethread t2, thethread t1 will invokethe ac-
cept method beforet2 during replay. Sincethe client threads
also execute their connectsin the origina order, the connec-

enterFDCriti cal Section( socket )
wite

enterGCCritical Section

| eaveGCCriti cal Section

| eaveFDCri ti cal Section(socket)

done = fal se;
whi | e(!done) \{
enterFDCriti cal Section( socket )
if (ReplayPhase) {
n = read(.. recordedValue .. )
if ( n == recordedVal ue)
done = true;
if (n < recordedVal ue)
recordedVal ue = recordedVal ue - n;
if (n > recordedVal ue)
error;

if (RecordPhase) {
n =read(..)
recordedVal ue = n
done = true;

}

enterGCcritical Section

| eaveGCcri ti cal Section

| eaveFDCri ti cal Section( socket )

}

Figure 3. Efficient replay of read, write

tion gets re-established between the same two threads as
during origina execution. Further, note that an exception
thrown by anetwork event intherecord phaseislogged and
re-thrown in the replay phase.

To replay accept events, a DIVM maintains a data
structure called connection pool to buffer out-of-order con-
nections. During the replay phase, when an accept is
executed by a server thread ¢; on DIVM-server, it first
identifies the networkEventld for thisaccept event, i.e,
(threadNumoft,, eventNumofacceptwithint;). It then
identifies the connectionld from the NetworkLogFile with
matching networkEventld value. DIV M-server then checks
the connection pool to see if a Socket object has a-
ready been created with the matching connectionld. If
the Socket object has been created, it smply returns the
Socket object to complete the accept . If a Socket
object has not aready been created with the matching con-
nectionld, the DIV M-server continuesto buffer information
about out-of-order connectionsin the connection pool until
it recelves aconnection request with matching connectionl d.
Itthen createsand returnsaSocket object for the matching
connection.



Example: For the example in Figure 1, suppose the
solid arrows indicate the connections established during
the record phase. Figure 2 shows our mechanism for de-
terministically replaying the same connections. L1, L2,
L3 are the log entries made during the accept events
by threads t1, t2, t3 respectively during the record phase.
Serverlld, Server2ld, Server3id are the networkEventld
values when t1, t2, t3 respectively execute the accept
events. The figure aso shows the connectionlds sent by
each client. For example, the connectionld from Client2is
Client2ld = (Client2VMId, tNum2).

Replaying r ead: Socket r ead event is identified as a
critical event in a DJVM. Since the number of bytes read
viaasocket r ead can vary for different executions, in the
record phase, the DIVM executes the r ead and logs the
thread-specific eventNum and number of bytes read (num-
Recorded) inthe NetworkLogFile. Sincer ead isablocking
cal, it is not placed within a GC-critical section. Instead,
just beforether ead call returns, theDJVM marksther ead
asacritical event. Inthereplay phase, a the corresponding
read event, the DIVM thread retrieves the numRecorded
number of bytesfrom the NetworkL ogFilecorrespondingto
the current eventNum. Further, the thread reads only num-
Recorded bytes even if more bytes are available to read or
will block until numRecorded bytes are available to read.
Finally, theexecution returnsfromther ead call only when
thegl obal Count er for thiscritical event isreached.

Replayingwrite: wite isanon-blockingcall and a
critical event. wr i t e ishandled by simply placingit within
GC-critical section similar to how we handle critical events
corresponding to shared variable updates.

Since Socket | nput Streamread and Sock-
et Qut put Stream write are not synchronized calls,
multiple writes on the same socket may overlap. Whilere-
playing the writes and the corresponding reads, we have to
ensure that all the writes to the same socket happen in the
same order and al the reads (from the socket) read the bytes
in the same order in both the record and replay modes.

A solution is to just record the occurrence of such an
event and allow other unrelated events (i.e., events that do
not operate on the same socket) to proceed. Eventsthat do
use the same socket will be blocked by using alock variable
for each socket (Figure 3). This scheme alows some par-
alelismin the record and replay modes and also preserves
the execution ordering of the different critical events. The
additiond cost in this scheme is the cost of the extra lock
variables per socket and the slightly increased implementa-
tion complexity.

Replaying avai | abl e and bi nd: The avail abl e
and bi nd events are also treated as critical events. Both

these events implement network query. In the case of
avai | abl e, it checks the number of bytes available on
the stream socket, and bi nd returnsthelocal port to which
the socket is bound.

Sinceavai | abl eisablockingcal,intherecord phase,
itisexecuted beforethe GC-critical section. In addition, the
DJVM records the actual number of bytes available. In the
replay phase, theavai | abl e event can potentially block
until it returns the recorded number of bytes, i.e., until the
recorded number of bytesare available on the stream socket.

In the case of bi nd, in the record phase, it is executed
withinaGC-critical sectionandthe DJVM recordsitsreturn
value. In the replay phase, we execute the bi nd event,
passing the recorded local port as argument.

Other stream socket events: The other stream socket
events that are marked as critica events are cr eat e,
cl ose and | i st en, al of which have to be recorded
to preserve execution order. We handlethese critical events
by simply enclosing them within our GC-critical section,
similar to how we handle critical events corresponding to
shared variable updates.

4.2. Supporting Datagrams Sockets

TCP socket is designed to be reliable. If data is lost
or damaged during transmission, TCP ensures that the data
is sent again. If data or packets arrive out of order, TCP
rearranges them to bein the correct order. UDP, User Data
gram Protocol, is an aternative protocol to send data over
the network, and is unreliable. The packets, called data-
grams, can arrive out of order, duplicated, or some may not
arrive at dl. It isthe (Java) application’s responsibility to
manage the additional complexity.

For deterministic replay of applications using UDP,
DJVM needs to ensure the same packet delivery behav-
ior during the replay phase as during the record phase. In
other words, the replay mechanism must ensure that the
packet duplication, packet loss and packet delivery order
in the record phase is preserved in the replay phase. The
following sections describe how we achieve thisreplay for
datagram sockets. Multicast sockets can be easily accom-
modated by extending the mechanism for datagram sockets
from a point-to-single-point scheme to a point-to-multiple-
points scheme.

4.2.1. Datagram Socket API

UDP sockets are created via Dat agr anSocket class. A
Dat agr anPacket objectisthedatagram to be sent or re-
ceived throughtheDat agr anSocket objectviasend()
and r ecei ve() methods of the Dat agr anSocket ob-
ject. They are both blocking calls. A datagram socket is



closed viacl ose() method of the socket object. Asin
the case of stream sockets, each of the datagram socket call
can be implemented in a VM via a low-level native call.
We use the names of the UDP socket cals to refer to the
low level native cdls (network events). The UDP send,
recei ve and cl ose eventsare critical eventsin DIVM.

4.2.2. Record Phase

Duringtherecord phase, thesender DIVM interceptsaUDP
datagram sent by the application, called application data-
gram, and insertsthe DGnetwor kEventld of thesend event
at the end of the data segment of the application datagram.!
The DGnetworkEventld is the pair (dJVMId, dJVMgc),
where dJVMIdistheid of the sender DIVM and dJVMgcis
the global counter at the sender DIVM associated with the
send event. The receiver DIVM intercepts a datagram to
be received by athread, and delivers to the application only
the application datagram by stripping out the datagram id.
The datagram size, due to the meta data, can become larger
than the maximum size allowed for a UDP datagram (usu-
aly limited by 32K). When this happens, the sender DIVM
splitsthe application datagram into two, which the receiver
DJVM combinesinto one again at the receiver side. A split
datagram carries the same DGnetwor kEventld, and aflag to
indicate the portion, i.e. front or rear, it represents so that
it can be combined correctly at the receiver. A non-split
datagram carries its own flag that distinguishes it from a
split datagram.

Thereceiver DIVM logs dl the datagrams received into
alog called RecordedDatagramLog. Each entry in the log
is a tuple (ReceiverGCounter, datagramld), where Re-
ceiver GCounter istheglobal counter valueat ther ecei ve
event in the receiver DIVM, and datagramld isthe DGnet-
workEventld of thereceived datagram. Multiple datagrams
with identical DGnetworkEventld are also recorded during
the record phase.

4.2.3. Replay Phase

For reliable delivery of UDP packets during replay, we use
a reliable UDP mechanism® that guarantees reliable, but
possibly out of order, delivery of intrinsicaly unreliable
UDP datagrams. Note that a datagram delivered during
replay need beignored if it was not delivered during record.

1The DIVM also increases the length field of the datagram to include
the added size for the datagramid.

2 Note that the same datagram can be delivered more than once during
the record phase, all of which must be delivered to the application during
record and replay.

31f no reliable UDP is available, a pseudo-reliable UDP can be im-
plemented as part of the sender and the receiver DIVMs by storing sent
and received datagrams and exchanging acknowledgment and negative-
acknowledgment messages between the DIVMs.

For UDP ddlivery, the DGnetworkEventld of each UDP
packet is used for uniquely identifying each datagram. A
datagram entry that has been delivered multipletimesduring
therecord phase dueto duplicationiskept inthe buffer until
it is delivered to the same number of r ead requests as in
the record phase.

5. Open and Mixed World Cases

In the open world case, only one component of the dis-
tributed applicationisrunningonaDJVM. Network events,
in this case, are handled as genera 1/O: any input mes-
sages are fully recorded including their contents during the
record phase. During the replay phase, any network event
at the receiver DIVM s performed with the recorded data,
not with the real network. For example, during the record
phase, aclient DJVM requesting astream socket connection
toanon-DIVM server logs the connection data. During the
replay phase, the results of the corresponding connection
request are retrieved from the log. The actual operating
system-level connect cal isnot executed. Likewise, any
message sent to anon-DJV M thread during therecord phase
need not be sent again during the replay phase.

In a mixed-world case, some components of the appli-
cation are running on DJVM and others on non-DIVM. If
the environment is known before the application executes,
one could ssimply fall back on the DIVM scheme for the
open-world case. However, with alittle bit more machin-
ery, it is possible to optimize on space overheads by using
the closed-world scheme for communication with DIVMs
and saving additiond state during the communication with
non-DJVMs.

6. Implementation and Performance Results

We modified Sun’simplementations of the JDK on Win-
dows NT operating system to provide record and replay
functionality of stream sockets for both closed and open
world environments. In this section, we use a synthetic,
multi-threaded, client-server benchmark to demonstrate the
performance and various overheads of Dejavu. Thisbench-
mark, that uses only stream socket APl for network calls,
has been written to deliberately contain non-determinism
in updating both shared variables and passing the result of
computation over these shared variables between the client
and the server. For instance, the number of connections
performed for the client is a shared variable that is updated
without exclusive access by the client threads and thisvari-
ableisused in the individual thread computations. Further,
the client threads perform multiple connects per “session”
that introduces additional non-determinism in the order of
establishing connections. Because of these many sources



of non-determinism, repeated executions of the benchmark
invariably complete with different results computed by each
thread. However, when DIVM is used, a perfect replay is
observed.

The benchmark was run on a IBM Thinkpad with one
300Mhz Pentium processor, running Windows NT operat-
ing system. The client and server were run on different
DJVMs on the same machine. The performance results of
DJV Msfor thisbenchmark are shown under the open and the
closed scenariosintable 1 and table 2, respectively. Theta
bles show how theimplementation performswithincreasing
number of threads in each component. Since there are two
partstotheapplication, i.e., theclient and the server part, the
resultsare so tabulated. Thefirst and the second columns of
each table are self-explanatory. The column labeled #nw
events is the number of critical eventsthat are aso network
events, such asaccept , connect ,andr ead. The col-
umn labeled log sizeisthetota sizein bytes of the recorded
information. This includes the list of scheduling intervals
for each thread and information related to network activity.
The column rec ovhd is the percentage increase in applica-
tion execution time dueto our modificationsto the VM for
supporting replay.

First, notice that the number of network events for the
server component in both closed and open world casesisthe
same. (Seetable 1(a) and table 2(a).) Thisis because the
identification of a network critical event is independent of
the recording methodology. For the same reason, the client
component exhibits the same number of network events
under closed and open scenarios.  Second, as expected,
the recording overhead in space and time (log size and rec
ovhd) for the closed world is less than that for the open
world because the amount of information that is recorded
differs.  Note that increasing the size of messages sent
to the client would not change the size of closed-world
log but would cause a consequent increase in the open-
world log. Findly, in al cases, as the total number of
application threads (client and server threads) executing on
the machine increase from 4 to 64, the recording overhead
rises super linearly. We dattribute to this to the extensive
thread context switching, that results in larger number of
invocations of replay support code, and thread contention
for the GC-critical section. The worst-case overhead for
this benchmark is 57% for closed-world implementation
and 69.57% for open-world. Given that the implementation
is still work-in-progress with unoptimized and debugging
code, the result demonstrates that the tool can be practical.
However, this needs to be verified against real applications.

7. Related Work

Replay is a widely accepted technique for debugging
deterministic sequentia applications. Replay for debug-

ging, however, fails to work for non-deterministic applice-
tions, such as distributed and multithreaded Java applica-
tions. BUGNET's handling of non-deterministic message
sent and received by processes is similar to our handling
of UDP datagrams [3]. It logs the received message id’s
during the record phase, and consumes the received mes-
sages according to the log during the replay phase while
buffering yet to be consumed messages. It does not address
the issue of non-deterministic events due to multithreading
within a process that interact with non-deterministic mes-
sage receives, nor does it address non-deterministic partial
receive of messages through “reliable’ connections.

Replay systems based on Instant Replay [5, 9] address
both non-determinism due to shared-variable accesses and
messages. Each access of a shared variable, however, is
modeled after interprocess communication similar to mes-
sage exchanges. When the granularity of the communi-
cation is very small, such is the case with multithreaded
applications, the space and time overhead for logging the
interactions becomes prohibitively large. Instant Replay
also addresses only atomic network messages likethe UDP
datagram.

Russinovich and Cogswell’s approach [8] addresses
specifically multithreaded applications running only on a
uniprocessor system. They modified the Mach operating
system to capture the physical thread scheduling informa-
tion. This makes their approach highly dependent on an
operating system. The scheme by Levrouw et. a. for event
logging computes consecutive accesses for each object, us-
ing one counter for each shared object [6]. Our scheme dif-
fersfrom theirsin that ours computes logical thread sched-
ule, using a single global counter. Our scheme is, thereby,
much simpler and more efficient than theirs on a uniproces-
sor system. Neither of these addresses replaying distributed
applications.

Netzer et. a. address the issue of how to balance the
overhead of logging during the record phase with the replay
time[7]. Even for a closed world system, they store con-
tents of messages sel ectively to avoid executing the program
from the start. Combined with checkpointing [10], storing
contents of messages allows for bounded-time replay to ar-
bitrary program points.

8. Conclusions

We have developed a record/replay tool for distributed
and multi-threaded Javaapplications, called DIVM that pro-
vides a deterministic replay of a non-deterministic execu-
tion. DIVM isimplemented by modifying Sun Microsys-
tem's Java Virtual Machine (JVM). Our approach is in-
dependent of the underlying thread scheduler such as the
operating system. It aso does not require modifications of
the user application to enable replay. Future work includes



#threads | #critical | #nw log rec #threads | #critical | #nw log rec
events | events | size(bytes) | ovhd(%) events | events | size(bytes) | ovhd(%)
2 493758 69 504 0.7 2 492505 72 436 23
4 512374 113 824 11 4 510020 120 676 29
8 550021 | 201 1464 24 8 545130 | 216 1260 9.3
16 627076 | 377 4692 45 16 617318 | 408 1868 16.0
32 781717 | 729 16072 16.9 32 761662 | 792 3908 57.0
(a) Server (b) Client
Table 1. Closed-world results
#threads | #critical | #nw log rec #threads | #critical | #nw log rec
events | events | size(bytes) | ovhd(%) events | events | size(bytes) | ovhd(%)
2 20762 69 3856 0.75 2 19354 72 4030 3.63
4 34328 113 6392 1.62 4 31950 120 6691 4.7
8 61658 201 11391 2.02 8 57417 216 12010 5.18
16 117872 377 21571 10.08 16 110084 408 22714 29.13
32 230084 | 729 40903 18.44 32 215301 | 792 44266 69.57
(a) Server (b) Client

Table 2. Open-world results

integrating the system with checkpointing to bound the re-
play time. DIVM isthefirst tool that completely addresses
theissuesin handling al the non-deterministic operationsin
the context of deterministic replay of distributed and mul-
tithreaded Java applications. The approach is general and
can be applied to distributed and multithreaded applications
written in alanguage with festures similar to Java. We aso
plan to apply the techniques to Jalapefio, a VM for SMP
machines, being developed at IBM Research [1].

Acknowledgments:  Wethank theanonymousrefereesfor
hel pful commentsand Olivier Gruber for useful discussions.
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