
Efficiency of Dynamic Load Balancing Based on Permanent Cells
for Parallel Molecular Dynamics Simulation

Ryoko Hayashi and Susumu Horiguchi
School of Information Science,

Japan Advanced Institute of Science and Technology,
Tatsunokuchi, Ishikawa 923-1292. Japan

TEL: +81-761-51-1268, FAX: +81-761-51-1149
ryoko@jaist.ac.jp hori@jaist.ac.jp

Abstract

This paper addresses a dynamic load balancing method
of domain decomposition for 3-dimensional Molecular Dy-
namics on parallel computers. In order to reduce inter-
processor communication overhead, we are introducing a
concept of permanent cells to the dynamic load balanc-
ing method. Molecular Dynamics simulations on a par-
allel computer T3E prove that the proposed method using
load balancing much improves the execution time. Further-
more, we analyze theoretical effective ranges of the dynamic
load balancing method, and compare them with experimen-
tal effective ranges obtained by parallel Molecular Dynam-
ics simulations. As the result, the theoretical upper bounds
predict experimental effective ranges and are also valid on
commercial parallel computers.

1 Introduction

The Molecular Dynamics (MD) method has been hailed
as one of the important research strategies in physics, chem-
istry, and material computer design[1]. Simulations on con-
ventional computers are limited to cases of103 to 106 par-
ticles, because of the huge execution time and the limited
memory space. Parallel computers, on the other hand, are
capable of much larger scale and more detailed MD simu-
lations. However, the communication overhead in parallel
computers sometimes prevents high performance parallel
computing. Tamayoet al.[2] applied a Domain Decompo-
sition Method (DDM) to short-range MD simulations and
achieved high performance in parallel simulations. Beaz-
ley et al.[3] reviewed the parallelization methods of MD
simulations. They mentioned DDM as one of the efficient
parallelization methods of MD simulations.

Although DDM is an excellent parallelization method,

computational load unbalance much reduces parallel perfor-
mance as the concentration of molecules increases. Brug´e
and Fornili[4] proposed a load balancing method for one di-
mensional DDM which partitions 2-dimensional simulation
space along one axis into domains and assigns a domain
to a processing element (PE). Their load balancing method
changes a domain boundary along one axis of simulation
space continuously. Kohring[5] also proposed one dimen-
sional DDM by discretely moving boundary. These meth-
ods are, however, effective only for 2-dimensional MD sim-
ulations and are not extended to 3-dimensional MD simula-
tions easily, since it is difficult to keep neighboring relation-
ships among PEs regular and the communication overhead
among PEs is extremely large.

For the 3-dimensional short-range MD simulations, we
proposed a dynamic load balancing method (DLB) by in-
troducing a concept ofpermanent cellsto minimize inter-
processor communication overhead [6][7][8]. DLB was
proved to achieve computational load balancing among PEs
by 3-dimensional parallel MD simulations on CM-5[6][7].
However, permanent cells restrict redistribution of compu-
tational load. This paper describes theoretical upper bounds
of load balancing for MD simulation on parallel comput-
ers with different architectures. The experimental DLB ef-
fective ranges are obtained by parallel 3-dimensional MD
simulations on T3E[9].

This paper is organized as follows: Section 2 describes
DLB based on permanent cells in DDM. Section 3 shows
implementation of DDM and DLB on a parallel computer
T3E and the parallel performances are discussed in detail.
In Section 4, theoretical effective ranges of DLB are ana-
lyzed by estimating the upper bounds of the particle concen-
tration ratio. Section 4 also shows that the theoretical upper
bounds can predict the effective range of load balancing for
parallel MD simulations by comparing the theoretical upper
bounds with experimental effective ranges. Section 5 is the

1

conclusion.

2 Parallel Molecular Dynamics Simulation

2.1 Molecular Dynamics simulation

MD computes the interaction between particles using
equations of motion. The new position and the velocity of
each particle are computed by the numerical integration of
the classical equations of motion at every time step. The
forces between particles are obtained by the summation of
interactions between two particles.

The interaction between two particles is obtained by the
Lennard-Jones potential as follows,

V (rij) = 4�

(�
�

rij

�12

�

�
�

rij

�6)
; (1)

whererij is the distance between thei-th particle and thej-
th particle.� and� are parameters given for each substance.
The Lennard-Jones potential is one of the short-range po-
tentials, because an increase ofrij makes the interaction
very small. This type of potential generally uses a “cut-off
distance”rc. MD simulations compute all forces between
N particles, and requireN(N � 1)=2 interactions. Using
cut-off distancerc, the complexity of interaction calculation
is improved toO(N) by DDM.

2.2 Domain decomposition method

DDM allocates domains of the simulation space on PEs.
Figure 1 illustrates DDM in 2-dimensional simulations.
Figure 1 shows an example of DDM in a 2-dimensional sim-
ulation space. A space containing particles is divided into
small squares referred to as “cells” as shown in Figure 1.
Each row of cells is allocated to each PE as a “domain”.
In this case, PEs are virtually inter-connected as a ring.
If the size of cells is greater thanrc, essential forces be-
tween the particles are obtained by computing interactions
of particles within 8 neighboring cells for the 2-dimensional
space. Since interactions between particles are restricted to
neighboring cells, the computational complexity of DDM
is O(N). DDM greatly reduces computation time and inter-
processor communication overhead.

For 3-dimensional MD simulation, DDM cells are cu-
bic, thus essential forces between the particles are obtained
by computing interactions of particles within their own cell
and 26 neighboring cells. DDM in 3-dimensional simu-
lation space has several domain shapes closely related to
inter-processor communication overhead. Figure 2 shows
three domain shapes in 3-dimensional MD simulations. We
discussed relationships of these domain shapes and commu-
nication overhead[8], and we pointed out that square pillar

PE0

PE2

PE3

PE1

cut-off distance

: interprocessor communication (required)

: interprocessor communication (not required)

: cell : particle, molecule

allocation

Figure 1. An illustrated example of Domain
Decomposition Method in 2-dimensional MD
simulation.

domain as shown in Figure 2 (b) is the best domain shape for
mid-size MD simulations on mid-size parallel computers.
With square pillar domain, PEs are virtually connected as a
2-dimensional torus, and PEs and domains have 8 neighbor
relationships virtually.

Square pillar domain is suitable for DLB as the first step,
because neighboring relationship between domains is sim-
ple. Cube domain in Figure 2 (c) is suitable for large-scale
MD simulations on massively parallel computers. However,
the number of neighboring PEs with cube domain is large
and DLB becomes more difficult. From this reason, we dis-
cuss DLB using square pillar domain.

2.3 Dynamic load balancing method

DLB realizes uniform load allocation on PEs by mov-
ing cells among neighboring PEs, that is,cell redistribution.
However, cell redistribution may break the 8 neighbor rela-
tionships among the PEs. The PE neighboring relationships
must be preserved because an irregular communication pat-
tern increases the communication overhead. Therefore we
introduce a concept of permanent cells in order to keep the
PE neighboring relationships and to reduce the communica-
tion overhead among PEs.

To keep the 8 neighbor relationships among PEs, each
domain should avoid contact with other domains except for
its neighboring 8 domains. DLB classifies cells in each do-
main into two types: movable cells and permanent cells.
Figure 3 shows a 2-dimensional cross-section of the square
pillar domain and the case of 81 cells’ simulation space dis-
tributed to 9 PEs. The permanent cells consist of a row and
a column of cells. They are not redistributed among the

2

: PE
: connection

A space containing particles
devided into cells

distribution to PEs

: cells

to a PE
distributed

(a) plane (b) square pillar (c) cube
domain domain domain

Figure 2. Three domain shapes in 3-
dimensional MD simulations.

neighboring PEs. They make a wall between a PE and PEs
that should not communicate with the PE. Thus the perma-
nent cells maintain the 8 neighbor relationships.

To explain DLB procedure, we consider the case of 9
PEs and 81 cells as shown in Figure 3.PE(i; j) denotes
the address of a PE. All the cells have their own addresses
as well. LetCi;j be the cell contained in a domain allocated
onPE(i; j). A permanent cell is expressed asCp

i;j , and a
movable cell is expressed asCm

i;j . In Figure 3, the PE has 4
movable cells and 5 permanent cells. The cell redistribution
is executed as follows:

1. PE(i; j) sends its execution time of the last time step
to neighboring PEs.

2. PE(i; j) finds the fastest PE (PEfast) among itself
and the neighboring 8 PEs.

3. PE(i; j) decides a cellCsend to be sent toPEfast as
follows,
Case 1:PEfast = PE(i� 1; j� 1); PE(i� 1; j); or
PE(i; j � 1)
If PE(i; j) has movable cells,Csend = Cm

i;j . If
PE(i; j) has no movable cells,Csend = 0.
Case 2:PEfast = PE(i�1; j+1) orPE(i+1; j�1)
For these PEs,PE(i; j) has no cells which can be sent,
soCsend = 0.
Case 3:PEfast = PE(i; j + 1); PE(i + 1; j); or
PE(i+ 1; j + 1)
If PE(i; j) has received any cells fromPEfast, then
PE(i; j) returns one of these cells. For the case of
PEfast = PE(i + 1; j), thenCsend = Cm

i+1;j . If
PE(i; j) has noCm

i+1;j , thenCsend = 0.

PE(i-1, j) PE(i-1, j+1)PE(i-1, j-1)

PE(i, j) PE(i, j+1)PE(i, j-1)

PE(i+1, j) PE(i+1, j+1)PE(i+1, j-1)

allocation

: movable cell
: permanent cell

: domain allocated
 to PE(i, j)

Figure 3. An example of allocation of cells to
processing elements.

: cells allocated to
 PE(i, j)

cells allocated to
PE(i, j+1)

cells allocated to
PE(i+1, j+1)

cells allocated to PE(i+1, j)

Figure 4. Cell redistribution example for the
case PE(i; j) has the maximum number of
cells (A PE has 3� 3 cells initially).

4. PE(i; j) sends addresses ofPEfast and Csend to
neighboring PEs.

These operations are carried out for load balancing among
neighboring PEs to allocate cells to PEs whose computa-
tional load is lighter than other PEs.

The overhead of DLB is small so that MD simulations
are able to execute DLB operations every time step. If one
PE receives too much cells from its neighboring PEs, the PE
can return cells to the neighboring PEs during several time
steps.

Figure 4 shows an extreme example of DLB. Let
PE(i; j) be the fastest PE among 9 PEs.PE(i; j) is able
to receive cells from 3 PEs as shown in Figure 4. After the
cell redistribution,PE(i; j) has up to2:3 times the num-
ber of cells allocated initially. The permanent cells keep 8
neighbor structure, but they limit computational load redis-

3

tribution of DLB because they restrict direction and number
of cells for cell redistribution. Here we call itDLB limit.

3 Implementation result

3.1 Parallel Computer T3E

DLB and DDM are implemented on a parallel com-
puter T3E [9] to study parallel performances. T3E has
128 PEs, and each PE has a DECchip 21164 (300MHz,
600MFLOPS, 1200 MIPS). DECchip 21164 contains 8KB
of data cache, 8KB of instruction cache, and 96KB of sec-
ondary cache. The PEs are connected with 3-dimensional
torus interconnection and communication performance is
2.8GB/second per PE. T3E supports MPI(Message-Passing
Interface) and FORTRAN90, and we use them for imple-
mentation. We implement DDM on T3E using a SPMD
type algorithm. Execution time in this paper is measured by
MPI’s function: MPI Wtime.

3.2 Physical condition

Parallel MD simulations were executed for the case with
the reduced temperatureT �

ref = 0:722 and the reduced den-
sity �� = 0:256. The Lennard-Jones parameters are cho-
sen for the Argon value[1]. Since the reduced temperature
is equivalent to the temperature under the Argon’s boiling
point, these physical conditions simulate supercooled gas
phase. A cut-off distancerc between2:5 and3:5 reduced
distance is chosen for the Lennard-Jones potential in gen-
eral, here2:5 is used. The system keeps the number of par-
ticlesN , the volumeV , and the energyE constant. The
time step�t is 0.064. The temperature is scaled toT �

ref

every 50 time steps. The boundary condition of the simula-
tion space is the periodic boundary condition. Under these
physical conditions, particles keep concentrating.

Here we represent the numerical methods in our DLB
program and DDM program. The programs use the same
size cells. The size of the cells is equal torc, or a little
larger thanrc. For the numerical integration of the equa-
tions of motion, we implemented the velocity form of the
Verlet algorithm[1]. In order to obtain neighbor molecules
for each molecule, the programs compute distances between
two molecules with every combination of molecules within
each cell and its neighboring 26 cells. Our programs re-
compute and replace the relationships between cells and
molecules every time step.

3.3 Execution time

Here we use the following values to explain execution
conditions of MD simulations.

0.00

0.05

0.10

0.15

0.20

0 5000 10000

T
im

e
st

ep
 e

xe
cu

tio
n

tim
e

[s
ec

on
d]

Number of time steps

DDM

DLB-DDM

(a)m = 4; N = 59319; C = 13824

0.00

0.005

0.01

0.015

0.02

0.025

500 1000 1500 2000

T
im

e
st

ep
 e

xe
cu

tio
n

tim
e

[s
ec

on
d]

Number of time steps

DDM

DLB-DDM

(b)m = 2; N = 8000; C = 1728

Figure 5. Execution time as a function of time
step of domain decomposition method and
DLB domain decomposition method on 36
PEs of T3E (T �

ref = 0:722; �� = 0:256).

N : Number of particles.

C: Number of cells.

P : Number of PEs.

m: The size of square pillar domain’s cross-section.m is
given asm = C1=3=P 1=2, and the square pillar do-
main hasm2C1=3 cells.

To discuss parallel simulation performances of DLB and
DDM, we explain two cases:m = 2 andm = 4. In the
m = 2 case,1=4 of a domain is movable cells. On the
other hand, in them = 4 case,9=16 of a domain is mov-
able cells. Because the ratio of movable cells in them = 4
case is larger than in them = 2 case, DLB has larger load
balancing capability in them = 4 case than in them = 2
case.

Figure 5 shows the execution time per time step of MD
simulations as a function of the number of time steps. Fig-
ure 5(a) is the result of anm = 4 simulation, and Fig-
ure 5(b) is that of anm = 2 simulation. The solid lines

4

0.00

0.05

0.10

0.15

0.20

0 5000 10000

E
xe

cu
tio

n
tim

e/
tim

e
st

ep

[s
ec

on
d]

Number of time steps

Tt
Fmax
Fave
Fmin

(a) DDM execution time

0.00

0.05

0.10

0.15

0.20

0 5000 10000

E
xe

cu
tio

n
tim

e/
tim

e
st

ep

[s
ec

on
d]

Number of time steps

Tt
Fmax
Fave
Fmin

(b) DLB-DDM execution time

Figure 6. Execution time and force calcula-
tion time of domain decomposition method
and DLB domain decomposition method on
36 PEs of T3E (m = 4; N = 59319; C =
13824; T �

ref = 0:722; �� = 0:256).

(DLB-DDM) in the figures show execution time of DDM
with DLB and broken lines (DDM) shows execution time
of DDM without DLB. In both cases, DLB-DDM almost
maintains the same execution time during thousands of time
steps in the simulation, but the execution time of DDM
rapidly increase with time steps. Inm = 4 case, efficiency
of DLB is clearer than them = 2 case. Because the load
balancing capability in them = 4 case is larger than the
capability in them = 2 case.

Next, we investigate the force computing time among the
execution time of the simulation. Figure 6 shows the detail
of execution time withm = 4. Figure 6(a) is the detail
of execution time of DDM, and Figure 6(b) is the detail of
DLB-DDM. The four lines in Figure 6 represent execution
time as follows:

Tt Execution time of each time step.

Fmax The maximum values of force calculation time
among PEs.

C cells, P domains

allocation

P
P

P PEs
1/2

1/2

C1/3

m=C /P1/3 1/2

Figure 7. Square pillar domain for 3-
dimensional Molecular Dynamics simulations
and the relationships of parameters C, P , m
(C = 216; P = 9; m = 2).

Fave The average values of force calculation time among
PEs.

Fmin The minimum values of force calculation time
among PEs.

The execution timeTt depends on the maximum time of
force computingFmaxin both, because of the synchroniza-
tion among PEs. Differences betweenFmaxandFmin of
DDM rapidly increases with the time step in Figure 6(a).
On the other hand, DLB-DDM maintains the small differ-
ence betweenFmax and Fmin during thousands of time
steps in the simulation. This means that DLB effectively
achieves the uniform load allocation. After the 7000 time
step in Figure 6(b), the difference betweenFmaxandFmin
of DLB-DDM increases. This means particles’ concentra-
tion becomes too much, and the concentration is beyond
DLB limit after the 7000time step.

4 Effective ranges of DLB

4.1 Theoretical upper bounds of particle concen-
tration ratio

DLB with the permanent cells much improves parallel
simulation performances for most cases. However, DLB
has limits of load balancing capability, thus the parallel sim-
ulation performance of DLB depends on the simulation con-
ditions. Next, we discuss the theoretical boundary of effec-
tive ranges of DLB by introducing a particle concentration
ratio.

5

: cell (contains no particle)

: largest allocated area

: cell (contains 2 particles)

: domain

: particle

Figure 8. Relationships of parameters n, C,
C0, C 0, C 0

0 for the analysis (N = 90; C =
81; P = 9; m = 3; C0 = 36; C 0 = 21; C 0

0 = 16).

First, we show the basic parameters for theoretical per-
formance estimation of DLB. Figure 7 shows a square pil-
lar domain decomposition for MD simulation. LetC be the
number of cells,P be the number of PEs, andm be the size
of square pillar domain as shown in Figure 7.m is given by
m = C1=3=P 1=2 > 1.

Next, we introduce several parameters in order to explain
the concentration of computational load. Figure 8 shows
a 2-dimensional example where a PE has maximum num-
ber of cells (maximum domain). The maximum domain
containsC 0 cells. C 0 is the summation of the number of
cells in a square pillar domain and all the movable cells
in the 3 neighboring PEs. SinceC 0 = m2 + 3(m � 1)2

in the 2-dimensional case,C 0 = [m2 + 3(m � 1)2]C1=3

in the 3-dimensional case. LetC0 be the number of cells
in the whole simulation space which contain no particles,
andC 0

0 be the number of cells containing no particle in the
maximum domain. We explain particle concentration ra-
tio in the whole simulation space byC0=C. Suppose the
caseC � C0 cells contains an average number of particles
N=(C � C0). In Figure 8,N = 90; C = 81; C0 = 36,
thus N=(C � C0) = 2 and each cell containing parti-
cles has 2 particles. Letn be the concentration factor
defined byn = (C 0

0=C
0)=(C0=C) � 1. In Figure 8,

n = (16=21)=(36=81)' 1:7.
We introduced particle concentration ratioC0=C and

other parameters to explain computational load allocation.

C0=C might be smaller than the upper bounds function
f(m;n), when DLB achieves the uniform computational
load allocation. Let’s estimatef(m;n). Average number of
particle per PE isN=P . In the maximum domain, the ratio
of the number of cells containing particlesC 0 � C 0

0 to the
number of cellsC 0 is given by,

C 0 � C 0

0

C 0
= 1� n �

C0

C
: (2)

If the number of particles in the maximum domain is larger
than the average number of particles per PE, DLB can allo-
cate computational loads to PE uniformly. Then the follow-
ing inequality is given for uniform load balancing,

[m2 + 3(m� 1)2]C1=3

�
1�

nC0

C

�
N

C � C0

�
N

P
: (3)

The above inequality is transformed into the following in-
equalities;

[m2 + 3(m� 1)2]C1=3P

�
1�

nC0

C

�
� C � C0; (4)

[m2 + 3(m� 1)2]C1=3P � C

� fn[m2 + 3(m� 1)2]
P

C2=3
� 1gC0: (5)

Multiplying both sides of the above inequality bym2=C
and replacingC1=3=P 1=2 by m, the following inequality is
obtained,

[m2 + 3(m� 1)2]�m2

� fn[m2 + 3(m� 1)2]�m2g
C0

C
: (6)

Usingn[m2 + 3(m� 1)2]�m2 > 0, the above inequality
becomes as follows,

3(m� 1)2

n[m2 + 3(m� 1)2]�m2
�

C0

C
: (7)

Then,f(m;n) is given by,

f(m;n) =
3(m� 1)2

m2(n� 1) + 3n(m� 1)2
�

C0

C
: (8)

In the cases ofm = 2, 3 and4, we have

f(2; n) =
3

7n� 4
; (9)

f(3; n) =
4

7n� 3
; (10)

f(4; n) =
27

43n� 16
: (11)

Then, the following relationship is obtained,

f(2; n) � f(3; n) � f(4; n) for n � 1: (12)

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 2.0 4.0 6.0 8.0 10.0

Concentration factor n

C
 /

C
0

first time step

last time step

Experimental boundary
point of DLB effective

range

Figure 9. An example of a trajectory with an
MD simulation in n� C0=C space.

4.2 Experimental effective ranges of DLB

To discuss theoretical estimation for effective ranges of
DLB, experimental effective ranges are obtained by paral-
lel MD simulation with the proposed DLB. Suppose we use
a few actualm values andn � C0=C space. The theoret-
ical upper bounds functionf(m;n) = C0=C is a line in
n � C0=C space with an actualm value. An MD simula-
tion draws a trajectory inn � C0=C space by computing
n andC0=C values every time step. Figure 9 is an exam-
ple of the trajectory in an MD simulation. In Figure 9, the
trajectory begins from(0; 0) and goes up, because of low
temperature and low density, which are the physical condi-
tions in this paper. We can decide an experimental boundary
point in a trajectory of an MD simulation by finding a time
step at which the difference between the maximum and the
minimum of force computing time begins to increase.

Next, we decide experimental boundary points for effec-
tive ranges of DLB on T3E. Each experimental boundary
point is the average value of ten executions of parallel MD
simulation. The ten data contain of five initial data, and
an MD simulation with each initial data is executed twice.
Since parallel MD simulations do not guarantee that one
of the PEs has the maximum domain every time,n is es-
timated by using the averageC 0

0=C
0 of two PEs: one PE

has the maximum number of cells, and the other PE has the
maximum number of cells that containing no particle.

Figure 10 shows the theoretical upper bounds, experi-
mental boundary points and experimental boundaries as a
function of the concentration factorn. Each experimental
boundary point has an error range. The four experimen-
tal boundary points correspond to four values of reduced
density��. By applying the least-squares method to the ex-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 2.0 4.0 6.0 8.0 10.0

Concentration factor n

C
 /

C
0

ρ =0.128∗

ρ =0.256∗

ρ =0.512∗
ρ =0.64∗

Experimental
boundary

points

Theoretical upper bound

Experimental boundary

Error
range

(a)m = 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 2.0 4.0 6.0 8.0 10.0

Concentration factor n

C
 /

C
0

ρ =0.512∗

ρ =0.256∗

ρ =0.128∗ Experimental
boundary

points

Theoretical upper bound

Experimental boundary

ρ =0.64∗

Error
range

(b)m = 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 2.0 4.0 6.0 8.0 10.0

Concentration factor n

C
 /

C
0

Experimental
boundary

points

Theoretical upper bound

Experimental boundary

Error
range

ρ =0.384∗

ρ =0.256∗
ρ =0.128∗

ρ =0.512∗

(c)m = 4

Figure 10. Theoretical upper bounds of C0=C
and experimental boundary points in MD sim-
ulations on 36PEs of T3E as a function of n.

7

Table 1. The ratio of the experimental bound-
aries (E) to the theoretical upper bounds (T)
of DLB.

m
Ratio E=T

16PEs 36PEs 64PEs

2 0.45 0.44 0.52

3 0.60 0.62 0.62

4 0.70 0.69 0.72

perimental boundary points, we calculated the experimental
boundary. Figure 10(a), (b), (c) show them = 2 case, the
m = 3 case, and them = 4 case, respectively.

In all of the cases, the experimental boundary points are
always less than the theoretical upper boundsf(m;n). The
experimental boundary points fit the experimental bound-
aries very well in these figures. Comparing Figure 10(a)
with 10(c), it seems that experimental boundary is closer
to theoretical upper bound in them = 4 case than in the
m = 2 case. From the relationships of the inequality (12),
the theoretical upper bound of them = 4 case is larger than
that of them = 2 case. Therefore experimental load bal-
ancing capability in them = 4 case seems larger than the
capability in them = 2 case.

We next compare the theoretical upper bounds with the
experimental boundaries. Table 1 shows the ratio of the ex-
perimental boundaries (E) to the theoretical upper bounds
f(m;n) (T): E=T with m = 2, m = 3, andm = 4. The
ratios E=T are obtained from parallel MD simulations on 16
PEs, 36 PEs, and 64 PEs. In Table 1, three E=T values with
the samem are almost equal for different number of PEs,
thus E=T do not highly depend on the number of PEs. Since
the E=T is increasing asm becomes large, the experimen-
tal boundary is closer to the theoretical upper bounds with
largerm. It is seen that the experimental boundary of DLB
is larger than half of the theoretical upper bounds for most
cases.

5 Conclusion

The proposed DLB based on a concept of permanent
cells maintains regularity of communication pattern among
neighboring PEs. Parallel MD simulations with DLB evalu-
ated on the parallel computer T3E shows that DLB achieves
a sufficient computational load allocation to PEs and re-
duces the execution time of parallel simulations. The the-
oretical upper bounds of the proposed DLB have been an-
alyzed by introducing particle concentration ratio. Further-

more, the theoretical upper bounds have been compared
with the experimental boundary obtained by parallel MD
simulations on T3E. As the result, theoretical upper bounds
are able to predict actual effective range of DLB.

Acknowledgment

A part of this research was supported by a Grant-in-Aid
for scientific research of the Ministry of Education, Science
and Culture of Japan.

References

[1] D. W. Heermann. Computer Simulation Methods in
Theoretical Physics. Springer-Verlag Tokyo, 1990. 2nd
edition.

[2] P. Tamayo, J. P. Mesirov and B. M. Boghosian. Parallel
Approaches to Short Range Molecular Dynamics Sim-
ulations. InProceedings of Supercomputing ’91, pages
462–470, 1991.

[3] D. M. Beazley, P. S. Lomdahl, N. Grønbech-Jensen, R.
Giles, and P. Tamayo.Parallel Algorithms for Short-
range Molecular Dynamics, volume 3 ofAnnual Re-
views in Computational Physics, pages 119–175. World
Scientific, 1995.

[4] F. Brugé, S. L. Fornili. Concurrent molecular dynam-
ics simulation of spinodal phase transition on transputer
arrays.Computer Physics Communications, 60:31–38,
1990.

[5] G. A. Kohring. Dynamic load balancing for paral-
lelized particle simulations on MIMD computers.Par-
allel Computing, 21:683–693, 1995.

[6] R. Hayashi and S. Horiguchi. Parallelized Simula-
tion of Molecular Dynamics by Domain Decomposition
Strategy. InProc. of 1st World Congress on Systems
Simulation, pages 353–358, 1997.

[7] R. Hayashi and S. Horiguchi. A Parallel Molecular Dy-
namics Simulation by Dynamic Load Balancing Based
on Permanent Cells (in Japanese).Transactions of In-
formation Processing Society of Japan, 40(5):2152–
2162, 1999.

[8] R. Hayashi and S. Horiguchi. Domain Decomposition
Scheme for Parallel Molecular Dynamics Simulation.
In Proceedings of HPC Asia ’97, pages 595–600, 1997.

[9] Cray Research, Inc.CRAY T3E Fortran Optimization
Guide, 1996.

8

