
Problem Solving Environment Infrastructure for

High Performance Computer Systems

Daniel C. Stanzione, Jr. and Walter B. Ligon III

Parallel Architecture Research Lab
Clemson University

dstanzi@clemson.edu

http://www.parl.clemson.edu/

Abstract. This paper presents the status of an ongoing project in con-
structing a framework to create problem solving environments (PSEs).
The framework is independent of any particular architecture, program-
ming model, or problem domain. The framework makes use of compiler
technology, but identi�es and addresses several key di�erences between
compilers and PSE. The validity of this model is being tested through
the creation of several prototype PSEs, which apply to signi�cantly dif-
ferent domains, and target both parallel computers and recon�gurable
computers.

1 Introduction

A number of approaches have been taken to make it simpler to create applica-
tions for High Performance Computing (HPC) systems. Existing programming
languages have been extended with parallel constructs, notably PVM and im-
plementations of the Message Passing Interface(MPI). The resulting systems
remained more diÆcult to program than sequential computers, and have been
referred to as the \assembly language" of parallel computing. New languages
have been created in which parallelism is inherent, but to date none of these
languages have seen widespread adoption.

In recent years, more and more interest has been paid to the idea of creating
problem solving environments (PSEs) for high performance computers. While a
number of prototype PSEs have been created, the construction of these PSEs
remains largely an ad hoc procedure. The PSE community has repeatedly made
calls for infrastructure to be developed which supports the creation of PSEs.

This paper describes ongoing research in creating just such an infrastructure.
Presented here is an architecture for the creation of PSEs. The architecture uses
a layered model which provides abstractions for the hardware, programming
model, mathematical model, and whatever science models are used by a par-
ticular problem solving environment. The layered architecture employs a model
somewhat similar to an open compiler. The goal is to produce PSEs that pro-
vide abstraction bridges, i.e. the PSEs can be used by both computer scientists
and users in the domain of the PSE, but each sees the environment through a

di�erent level of abstraction. Another goal is to decouple the speci�cation of the
application from the target architecture in order to make applications at least
somewhat portable between widely varying types of high performance computing
systems.

The following sections describe the proposed PSE architecture in more de-
tail. An implementation of the infrastructure proposed by the model is described,
followed by a brief look at two PSEs under construction employing this infras-
tructure which are used to validate the model.

2 The Proposed Model for Problem Solving

Environments

This section proposes a model for PSE construction which draws heavily upon
compiler technology and concepts from software engineering and object-oriented
programming to create a framework from which e�ective PSEs can be con-
structed. The fundamental structure of this model is a number of independent
tools which interact through a shared open representation of the design in ques-
tion. A simple block diagram of this model is shown in �g. 1. The tools which
access and act on the design are known as agents. The design itself is stored
in the Algorithm Description Format (ADF). The role of the manager is to co-
ordinate the actions of the agents, and load and store ADF designs from the
library.

Application

DESIGN
Back End

Analysis
Agents

Agents

Library

Manager

Front End
Agents

(Specify Design)
(Generate

Application)

(Transform Design)

Fig. 1. Basic Structure of an Environment

The basic idea is similar to that of a traditional compiler. A compiler is in
essence a set of tools that make a series of transformations on a user's design
to transform it into a running application, typically using one or more internal
formats to store the design. Agents in this new environment perform many of
the same functions. They are involved with speci�cation, analysis, and trans-
formation of designs, and for generating application code from the design. A

shortcoming of the compiler model is that once constructed, compilers are diÆ-
cult to extend. A primary cause if this is that the compiler's internal formats are
almost always mysterious. This model attempts to remedy this problem by mak-
ing the internal format used by all the agents to store, analyze, and transform
the design a well-documented open format, ADF. In this sense this architecture
can be considered an open compiler for PSEs.

In addition to the open format making the PSE extensible, this model di�ers
from a compiler in three signi�cant ways. A traditional compiler represents an
individual program at one level of abstraction; the source language. While some
compilers support more than one language for the same back end, this model
di�ers substantially in that it can support multiple simultaneous abstractions
to represent the same problem. Each agent can present a di�erent abstraction
of the same design, and allow the user to interact with only the aspects of the
design important to that user or to the task being performed by that particular
agent. A second signi�cant di�erence between PSEs and traditional compilers
is that the internal format of compilers represents only information about the
computation itself. In the PSE model, the internal format can be used to store
many other types of additional information other than what is considered the
traditional source program. ADF can be used to represent the data ow within
the computation, information about the architecture the application can or has
been run on, performance information and results from past runs, monitoring
information, higher level functional descriptions of the problem, etc. This ex-
ibility allows the internal format to be used by many of the tools expected in
a PSE that are not traditionally part of a compiler, such as experimental and
runtime management, steering and monitoring tools.

The third signi�cant di�erence with the traditional compiler model is that
ADF is dynamic. In a traditional compiler, once compilation takes place, the
executable is independent of the source speci�cation. In PSEs constructed with
this model, the job of the environment is not necessarily complete once the
application is generated. Agents can monitor the running design, and use the
design description provided by the internal format to back annotate information
about the execution of the application. The dynamic nature of the design and the
way agents can interact and iterate with it give the PSE the ability to manage
the application throughout it's entire life cycle.

2.1 The Layered Architecture

If the model above is accepted as the way in which PSEs are to be constructed,
what remains is to provide the integration method through which the various
agents in the PSE can interact. This problem is addressed through the creation
of a layered architecture, outlined in �g. 2. Agents that exist within a layer share
a set of common attributes which exist on the designs on which they operate.
De�nition of a set of attributes for a particular layer de�nes that layer of the
environment. These agreed upon attributes allow the agents within a layer to
interact. The clear de�nition of attribute sets at each layer also provides the
facility for reuse, as agents written for a particular environment can be reused

in another as long as that agent's subset of the design attributes exist in each
environment.

There are 5 di�erent layers which provide 5 levels of abstraction. In multi-
physics environments, or environments targeted at multiple architectures, there
may be multiple implementations of particular layers existing concurrently within
a single environment. The abstraction hierarchy provides a two-way abstraction,
with details about the computation and the computer hidden as you move up
the hierarchy, and details about the problem domain and mathematics hidden
as you move down.

Level 2: Algorithm Specification

Mathematical formulation

Level 4: Problem in Domain Terms

Level 3:

Find Current On Strip

Solve Matrix

Forall x in

Send(float x, node n+1)

Hardware PrimitivesLevel 1:

InfrastructureLevel 0:

PSE Architecture

A
bs

tr
ac

tio
n

D
etail

Fig. 2. PSE Architecture

2.2 Level 0 - Infrastructure

Level 0 is the common or kernel layer, and provides the infrastructure necessary
for the creation of any PSE targeted at any domain. Level 0 should provide the
following:

{ An open, shared, attributed graph format
{ A database system for managing and maintaining libraries of designs
{ A model for agents (both interactive and autonomous) to interact with the
designs and with each other

{ A mechanism for creating attribute sets and components

The internal format represents a directed attributed graph. Each graph is
composed of an attribute list, and a set of nodes connected by links. Each node
consists of an attribute list, and lists of input and output ports. Each of the ports
has its own attribute list as well. There are no restrictions placed on attributes
in any of the lists; there can be any number of attributes, and they can contain
any kind of information. This provides tremendous exibility in what ADF can

be used for. Support for hierarchy need not be explicitly provided, as it can be
done by speci�c environments via the attribute mechanism.

In addition to the design format, an agent API is provided. The API provides
mechanisms to create and modify all portions of the graph, and to locate, store
and sort the graphs in an environment. The API provides a method for searching
designs via any attribute or attribute/value pair within the design. Furthermore,
the API allows agents to share an open design, and provide a method for agents
synchronize their changes to designs.

A core set of attributes are assigned in level 0 that make it possible to create
named attribute sets for use in higher levels, and to check designs and pieces
of designs for conformance with particular sets. The attributes on the ports
function as an interface description for the design. If two designs comply to the
same attribute set, and the port speci�cations match, then those two designs may
be connected. The attribute set mechanism in conjunction with ports and the
layered architecture form an extremely versatile component system. When two
components are connected using this layered approach, the semantic correctness,
mathematical correctness, and if the connection makes sense in terms of the
problem domain are all checked by examining the attribute set at each layer.

The attribute set and layered architecture also serve to provide a bridge
between abstractions. Users working on the design at any level can work inde-
pendently of those on other layers. Level 0 provides services similar to many of
the distributed object frameworks such as CORBA [2], the Common Component
Architecture [3], or DCOM [4]. Level 0 attempts to provide the same support
for PSEs equivalent to that which SUIF [1] provides for compilers

2.3 Level 1 - Hardware Abstractions

Level 1 is the \back-end" layer. At this level, abstractions are provided to de-
scribe the hardware in a particular HPC target system, and the basic constructs
for implementing designs on that system. Level 1 seeks to provide abstractions
at the level of an \assembly language" for the architecture in question. Level 1
provides the following services and abstractions:

{ A representation of any distinctive characteristics of the compute platform
{ Attributes suitable to describe applications on the target system
{ A component model for composing code fragments
{ Basic data types
{ Low-level optimization, analysis, debugging, and code generation agents
{ Resource management services
{ A library of design constructs

A level 1 implementation for a cluster computer would provide the ability
to describe and generate message-passing programs (or, at the very least, col-
lections of processes capable of communication through the cluster's network),
the ability to schedule the nodes on the cluster and dispatch jobs, program de-
bugging services, and performance visualization (Data visualization would not

be included here, as that would entail knowledge of the context of the problem;
however, visualization of processor or memory utilization would be appropriate).
A level 1 implementation for a con�gurable computing target might include a
set of hardware macros for basic operations, a set of attributes which described
the interconnection of these modules, and agents to perform code generation
,optimization, placement, and routing.

Many existing pieces of software provide services at an abstraction layer suit-
able for level 1, including message passing or shared memory services such as
those provided by PVM [5], or implementations of MPI or OpenMP. The com-
ponents at this level operate with a level of abstraction similar to that presented
in the Interface Description Language [6]. Level 1 would also be the appropriate
place to employ metacomputing software.

2.4 Level 2 - Programming Model

Level 2 is the programming model layer. At this level, abstractions are pro-
vided which operate at approximately the level of most parallel programming
languages. This is accomplished by enforcing some programming style in a some-
what machine-neutral way, for example data parallelism, task parallelism, or
object parallelism. An attribute set is required to represent more sophisticated
data structures and concepts such as parallel tasks, communication patterns,
Forall loops, and data distributions.

Agents should be created at this level which provide an interface suitable
for use by a good parallel programmer. This level is also the appropriate place
for source level optimizations performed by many source-to-source compilers to
take place.

The abstraction presented at this level is roughly equivalent to that presented
by many parallel languages and programming environments, such as HPF [13],
Mentat [7], Data Parallel C [13], Enterprise [10],or Hence [11].

2.5 Level 3 - Mathematics

Level 3 is the layer at which mathematical abstractions are provided. It moves
an abstraction level above that of dealing with programs to the level of dealing
with a particular class of problems. Typical level 3 abstractions would include
geometry, discretization, data range information, and linear algebra constructs
such as vectors and matrices.

At level 3, the environments begin to become more customized to a particular
problem domain, so not every environment will necessarily include all the ab-
stractions listed above. Services provided at level 3 via agents might include an
equation-based interface to the user, or an agent which presents a choice of lin-
ear system solvers to apply to the problem. The separation of the mathematical
speci�cation of the problem from the science speci�cation also makes it simpler
to apply techniques like adaptive mesh re�nement to the problem without hav-
ing to deal with the speci�cs of the science and unfamiliar terminology. It also

allows for some simple sanity checking (i.e. matrix conformity) to be done in a
straightforward way.

Level 3 provides a level of abstraction roughly equivalent to that provided
by some of the ultra high level languages or general purpose PSEs currently in
existence, such as Matlab, SciVis, or Scienti�c IDL [3]. At this level, existing
libraries that are appropriate for the domain can also be integrated with the
environment.

2.6 Level 4 - Domain Speci�c Interface

Level 4 turns the PSE into a domain speci�c solver. Level 4 provides domain
speci�c abstractions, and a user interface that operates in domain terms. The
user interface (simply a collection of agents) translates the user's requirements
into a speci�cation usable by the underlying layers. It is at this level that many
of the artifacts of creating programs are hidden in favor of solving problems. For
instance, an unknown could be represented as an electric current in level 3, a
column vector in level 2, and an array in levels 1 and 0. The concept of data ow
can be hidden beneath graph templates that present only the steps necessary to
solve the problem, in the order that the user would normally solve the problem.

3 Implementation

In this section a quick look is provided at an implementation of the level 0 toolkit,
and at two PSEs currently being constructed to use this toolkit, one which
supports electromagnetics application on clusters of workstations, and a second
which supports image processing applications on recon�gurable computers. Due
to space constraints, details of the attribute sets used at each level in each
environment have been omitted. However, more detailed information about the
toolkit and each of the environments, including examples and other environments
not mentioned here, can be found at [15] and [16].

3.1 CECAAD

The Clemson Environment for Computer Aided Application Design (CECAAD)
is a prototype implementation of level 0 as described in the previous section.
CECAAD is an environment toolkit, and is the basis for the construction of the
PSEs described at the end of this paper.

CECAAD consists of the ADF, the manager, the launcher, and a set of core
agents. At the core of CECAAD is the ADF. ADF is the internal format for
representing a directed attributed graph, as described in the previous chapter.
The ADF manager provides synchronization of the actions of the agents on ADF
designs and all I/O functions related to the library of designs. A small set of
attributes are included in level 0 that implement the attribute set mechanism
previously described.

Level 0 also contains several agents which are either useful for all environ-
ments or serve as a basis for the creation of more complicated domain speci�c
agents. The ADF editor is a level 0 agent which provides a graphical view of
ADF designs and allows the creation or changing of any ADF construct. The
ADF text translator is another level 0 agent that translates ADF designs to and
from a simple text-based language. The translator provides a basis for the cre-
ation of agents which could integrate existing languages for expressing parallel or
scienti�c computation into CECAAD based environments. The Partition Agent
attaches a \task" attribute to each node, and provides a graphical interface to
group nodes into particular tasks.

3.2 An Electromagnetics Environment for Cluster Computers

A CECAAD-based PSE is currently being created to allow for parallel solu-
tion of integral equation method of moment problems in electromagnetics using
Beowulf-class cluster computers. Problems of this type typically have roughly
the same parallel structure, though numerically they can be very di�erent.

Level 1 abstracts the cluster computer itself, and provides an abstraction
for message passing between the nodes in the cluster. The hardware abstrac-
tion includes attributes for representing a heterogeneous cluster with various
network topologies. A code generation agent uses the level 1 speci�cation of
the application along with the speci�cation of the hardware to generate a PVM
or MPI-based application. Another agent gathers information from the running
program and adds performance information to the speci�cation of both the hard-
ware and the application, which is used by static and dynamic load balancing
agents. The level 2 abstraction is of a data parallel programming model. Since
the target problems have a fairly static data ow structure, an editor agent using
the level 2 abstraction is employed by a user with computer science expertise to
create ADF templates of the target problems.

Level 3 provides mathematical abstractions. At this level, a discretization
agent allows the user to select basis functions to represent the geometry of the
problem to be solved, and a linear system solver agent allows the user to select
an appropriate solution method and convergence criteria. Level 4 provides the
domain speci�c interface. At this level, the user employs a geometry editor to
graphically de�ne the problem's geometry in terms of insulators, conductors and
dielectric materials. The user uses another agent to choose the quantity to solve
for, and either select the equation to be used from a library, or to provide custom
code (usually Fortran) that is to be used in conjunction with the geometry to
�ll the matrix (The user supplied code is wrapped in an ADF node that is then
bound to the template supplied by the computer scientist).

This environment allows the parallelism and the details of the cluster to be
hidden from the electromagnetics user, and allows the computer science user to
collaborate without ever examining any of the electromagnetics involved. Ap-
plications could be ported to new architectures, or underlying models (such as
shared memory) without any changes to the electromagnetics users speci�cation
of the problem.

3.3 An Image Processing Environment for Recon�gurable

Computers

Recon�gurable Computers based on Field Programmable Gate Array (FPGA)
technology are an emerging class of HPC system with the potential for providing
enormous performance. Unfortunately, the problems associated with generating
applications for this type of platform are even more daunting than those in par-
allel computing, as \programming" a recon�gurable system using conventional
methods is akin to ASIC design in complexity. RCADE [14](the Recon�gurable
Computing Application Development Environment) is a CECAAD based envi-
ronment for FPGA based computing systems, which allows the user to work at
roughly the level of a visual high level language to generate image processing
applications. The user connects components which represent arithmetic and im-
age �ltering functions and basic loop constructs together in a data ow graph.
Each component represents a pre-placed logic macro for the target platform.

At level 1, RCADE abstracts the computing platform, and uses attributes
to represent the performance and interconnections between the FPGAs, as well
as the routing resources between the logic blocks within the devices. At level 2,
a data ow programming model is imposed which introduces the components
and basic data types. Level 3 views the components from an equation based
perspective, showing the mathematical transformations on the data, and level
4 adds an image processing layer by representing components in terms of the
�ltering operation they perform on the data.

A small library of RCADE components has been implemented on Xilinx 4000
series FPGAs. Currently, existing agents include a VHDL code generator and a
partitioning tool based on level 1 speci�cations, a throughput analysis agent and
pipeline balancing agent based on level 2 with latency information drawn from
level 1, a simple component selection agent to match level 1 macros with level 2
speci�cations, and a data range analysis tool which examines level 3 information
in order to allow the user to adjust the precision throughout the application in
order to generate chip area savings.

Among the agents currently being developed for RCADE include automatic
spatial and temporal partitioning, a macro generator which will use level 1 in-
formation to resize the hardware macros for components to speci�c geometries
and bit precisions, and a graphical user interface to the level 4 speci�cation.
Eventually, the RCADE back end will be fused with a web-based interface for
doing remote-sensing/image processing applications on parallel computers which
currently exists at Clemson.

4 Conclusion

As PSEs become more prevalent to perform steadily larger and more com-
plex scienti�c computation on steadily more advanced computing platforms,
the need to better understand the construction of these PSEs will also increase.
This paper has presented a proposal for a PSE architecture and infrastructure,

which leverages compiler technology and current approaches to creating high-
performance applications. This infrastructure provides multiple abstractions to
multiple groups of users, and allows these users to collaborate via these ab-
stractions. Several di�erent environments using di�erent types of computers and
di�erent problem domains are being created to show the utility and versatility
of this infrastructure.

Future work includes the completion of the prototype environments to more
thoroughly test the infrastructure, and a public release of the CECAAD imple-
mentation with a more robust agent collaboration model.

References

1. Robert P. Wilson, Monica S. Lam, and John L. Hennessy et al. Suif: An infras-
tructure for research on parallelizing and optimizing compilers. Technical report,
Computer Systems Laboratory, Stanford University, 1996.

2. OMG et al. Corba components: Joint revised submission. Techni-
cal report, Dept. of Computer Science,Rice University, December 21 1998.
ftp://ftp.omg.org/pub/docs/orbos.98-12-02.pdf.

3. Rob Armstrong, Dennis Gannon, Al Geist, and et al. Toward a common component
architecture for high-performance scienti�c computing. In Proceedings of the 8th
IEEE Int'l Symposium on HPDC, pages pp.115{132. IEEE Computer Society, IEEE
Computer Society Press, Nov. 1999.

4. R. Sessions. COM and DCOM: Microsoft's Vision for Distributed Objects. John
Wiley & Sons, 1997.

5. A. Beguelin, JJ Dongarra, G.A. Geist, R.Manchek, and V.S. Sundaram. A users'
guide to the pvm parallel virtual machine. Technical Report ORNL/TM-11826, Oak
Ridge National Laboratory, July 1991.

6. Richard Snodgrass. The Interface Description Language:De�nition and Use. Com-
puter Science Press, 1989.

7. A. S. Grimshaw. Easy to use object-oriented parallel programming with mentat.
IEEE Computer, pages 39{51, May 1993.

8. HyperParallel Technologies. Hyper c parallel programming language.
http://www.meridian-marketing.com/HYPER C/index.html, June 1999.

9. Jagannathan Dodd Agi. Glu: A high level system for granular data-parallel pro-
gramming. Concurrency: Practice and Experience, 1995.

10. Schae�er, Szafron, and Duane Lobe an Ian Parsons. The enterprise model for
developing distributed applications. Parallel and Distributed Technology, 1995.

11. A. Beguelin, J.J. Dongarra, G.A. Geist, R. Manchek, and V. S. Sunderam. Vi-
sualization and debugging in a heterogeneous environment. Computer, 26(6):88{95,
June 1993.

12. P. Bellows and B. Hutchings, \JHDL - An HDL for Recon�gurable Systems",
Proceedings of FCCM '98, April, 1998.

13. Francois Bodin, Thierry Priol, Piyush Mehotra, and Dennis Gannon, \Directions
in Parallel Programming: HPF, Shared Virtual Memory, and Object Parallelism in
pC++", Journal of Scienti�c Computing, Vol. 2, no. 3, pp 7-22, June, 1993.

14. Ligon, Stanzione, et al, \Developing Applications in RCADE", Proc of the IEEE
Aerospace Conf, March 1999.

15. The Clemson PSE web site,URL: http://www.parl.clemson.edu/pse/, 2000.
16. The RCADE web site, URL: http://www.parl.clemson.edu/pse/rcade, 2000.

