
 Fault Tolerant Wide-Area Parallel Computing

Jon B. Weissman
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

(jon@cs.umn.edu)

Abstract. Executing parallel applications across distributed networks introduces
the problem of fault tolerance. A viable solution for fault tolerance must keep
overhead manageable and not compromise the high performance objective of par-
allel processing. In this paper, we explore two options for achieving fault tolerance
for a common class of parallel applications, single-program-multiple-data
(SPMD). We quantitatively compare checkpoint-recovery and wide-area replica-
tion as a means of achieving fault tolerance. The experimental results obtained for
a canonical SPMD application suggest that checkpoint-recovery may be prefera-
ble for small problems if local parallel disks are available, but wide-area replica-
tion outperforms checkpoint-recovery for larger-grain problems, precisely the
problems most suited for the wide-area network environment. The results also
show that it possible to accurately model and predict the overheads of the two
methods1

1.0 Introduction

High-performance distributed computing across wide-area networks has become
an active topic of research [1][3][4][11]. Metasystem and grid software infrastructure
projects, most notably, Legion [4] and Globus [3], have emerged to support this new
computational paradigm. Achieving large-scale distributed computing in a seamless
manner introduces a number of difficult problems. This paper examines one of the
most critical problems, fault tolerance. A large wide-area system that contains hun-
dreds to thousands of machines and multiple networks has a small mean time to fail-
ure. The most common failure modes include machine faults in which hosts go down
and get rebooted, and network faults where links go down. A single monolithic solu-
tion for fault tolerance that is acceptable to all user applications is unlikely. For exam-
ple, some applications may require continuous availability, or may require protection
from byzantine failures, or require light-weight, low overhead fault tolerance. The
most appropriate method for fault tolerance clearly may be application-specific. This
follows the current trend in distributed systems and operating systems in which generic
functions once performed within the “system” are now being moved to user-space for
increased flexibility and performance. Because general purpose systems often impose
a high cost on applications that do not fit their assumptions, the maxim “pay for what
you need” has been proposed as a guiding principle for application-centric policy deci-
sions in metacomputing systems such as Legion.

1. This work was partially funded by grants NSF ACIR-9996418 and CDA-9633299, AFOSR-
F49620-96-1-0472.

We believe that the relative performance of fault tolerance methods is a key piece
of information needed to enable users to select the most appropriate method for their
application. This is particularly true for high-performance applications. To this end, we
have examined two fault tolerance two options, checkpoint-recovery and wide-area
replication, for a common class of high-performance parallel applications, single-pro-
gram-multiple-data (SPMD). To compare these approaches, performance models that
characterize the overheads have been developed. These models enable quantitative
comparisons of the two methods as applied to SPMD applications. We have not imple-
mented complete fault tolerance solutions, but a sufficient subset to capture the associ-
ated overheads. In particular, we do not consider fault detection or fault recovery.

We compare wide-area replication across the Internet to application-level check-
pointing for a canonical SPMD application. The wide-area replication is provided by
the Gallop system, a wide-area scheduler, and has the advantage that no source code
changes are required. The checkpointing version of the application required the inser-
tion of checkpointing code. It is possible to perform application checkpoints with oper-
ating system support or binary code rewriting avoiding source changes, but we
speculate that the checkpoint overheads would not differ dramatically. Two modes of
checkpointing were compared with wide-area replication: a single NFS-mounted
checkpoint disk and a parallel array of locally attached disks. The results indicate that
the performance models are accurate and predictive, and that both methods appear to
be appropriate under different conditions: checkpoint-recovery performs best for small
problems providing fast local disks are available, while wide-area replication is gener-
ally more efficient for bigger problems.

2.0 Related Work

Numerous research groups are examining the problem of fault tolerance for par-
allel applications in distributed networks. Globus provides a heartbeat service to moni-
tor running processes to detect faults [4]. The application is notified of the failure and
expected to take appropriate recovery action. Legion provides mechanisms to support
fault tolerance such as checkpointing, but the policy must be provided by the applica-
tion. A component-based reflexive architecture allows fault tolerance methods to be
encapsulated in reusable components that user applications may choose from [7]. Con-
dor [6][13] provides system-level checkpoints of distributed applications but it not
geared to high-performance parallel programs. A number of PVM-based checkpoint-
ing systems have also appeared over the past few years [2]. Our work is different from
these and related projects as we are focused on the problem of deciding which fault tol-
erance method can be expected to perform best, not in a specific implementation of
fault tolerance methods.

3.0 Fault Tolerance Options for SPMD Applications

In a canonical data parallel SPMD application, a set of identical tasks are created
one per processor with each assigned a portion of a data domain such as a grid or a
matrix. The tasks alternate between computing on their portion of the data domain and
communications, typically in an iterative style. The state of each task is the updated

data domain that changes with each iteration. A transient network or single processor
fault are the most common events that will cause such an application to fail. Executing
SPMD applications in a fault tolerant manner can be achieved by checkpointing or rep-
lication (Figure 1). For the purposes of a direct quantitative comparison, a simple
checkpoint model is adopted in which each SPMD task saves its portion of the data
domain on disk at a set of pre-determined iterations. Recomputing lost iterations start-
ing from the last checkpoint would be straightforward given the last iteration index.
We studied two configurations for checkpointing: a single NFS-mounted disk from a
file server (Figure 1a) and a parallel array of locally attached disks (Figure 1b). The
dominant overhead for checkpoint-recovery is the cost of stopping the application and
writing the checkpoints to disk. The local checkpoint model is useful only if the failed
processor is expected to recover and pick up where it left off since it is the only proces-
sor that can access the checkpoint. The network checkpoint model would allow
another processor to pick up the checkpoint since it is stored on a common server.

In option (c), each application replica runs in a different site to avoid overloading
the available computation and communication resources of a particular site. The use of
wide-area computing offers a solution to the resource demand of replication because
some sites in a wide-area system will likely be underutilized. We have developed a
wide-area scheduling system called Gallop [11] that remotely executes SPMD applica-
tions for improved performance. Gallop picks the best site to run an application based

Fig. 1: Fault tolerance options for SPMD applications. Four tasks (circles) on four proces-
sors (squares) operate on rectangular piece of data. In (a-b), the pieces are written to disk
periodically. In (c), the local site is where the application request originates and is responsi-
ble for coordinating the remote replicas.

(a) Checkpoint-recovery (single-disk)

(c) Replication

Wide-area Network

local site remote site remote site

(b) Checkpoint-recovery (local disks)

on an estimate of how well the site can run the job. Gallop performs this task by utiliz-
ing a local data parallel scheduling system called Prophet [12]. Prophet generates a
performance prediction based on application and site resource information for each
site in which it is running (refer to [12] for additional details).

We have modified Gallop to support the scheduling of application replicas in
multiple sites to compare with checkpointing. Gallop will create a fixed number of
application replicas determined by a user-specified runtime parameter. A complete
independent copy of each application will run in the chosen number of sites. Important
issues relating to replica consistency, dynamic replica creation, etc., are not germane to
the performance study, but are discussed elsewhere [10]. The dominant overhead for
wide-area replication is the scheduling protocol used by Gallop which includes
Prophet overhead, multiple messages exchanged between the local and remote sites,
and (potentially) application file transmission to enable execution in remote sites.

4.0 Performance Models

We have developed performance models for checkpoint-recovery (CR) and wide-
area replication (WR) to enable quantitative comparisons. We consider only check-
point costs for CR as recovery costs are more difficult to model accurately due to the
large variety of potential failure modes each with different characteristics. For exam-
ple, the recovery time for a network failure vs. a machine failure may in fact be very
different. However, some preliminary work with single machine failures and immedi-
ate restart indicated that the inclusion of recovery overhead did not change the relative
performance of the two methods for the vast majority of problem instances.

In our CR model, checkpoints occur at a single place in the applications execu-
tion and checkpoints from all SPMD tasks are written atomically to disk. For SPMD
applications each task performs a checkpoint of its data domain and the current itera-
tion after it has computed on its data, and before any messages are sent during that iter-
ation. The checkpoints occur every k iterations. The WR model assumes that the set of
replicas are static and unchanging. When a replica fails, it is not restarted nor is a new
replica scheduled elsewhere. A model that includes dynamic replica creation is the
subject of future work. The performance of CR and WR may be defined in terms of the
following parameters:

N: problem size

P: number of processors

I: number of iterations

k: checkpoint frequency

m: number of wide-area replicas (or sites)

λ: average rate of site failure (failures/minute)

β: desired reliability (desired probability of application success)

We make the assumption that the failure rate is exponentially distributed as is
commonly done and that it is identical for all sites. Different failure rates for different
sites could easily be accommodated, but are omitted for simplicity (disk-config is NFS
or local).

The following cost functions can be defined (disk-config is NFS or local):

TCT (N, P): completion time for NxN problem using P processors

TCP (N, P, disk-config): checkpoint time for single checkpoint on disk-config

TCR (N, P, disk-config): total time to perform the optimal number of checkpoints

TWR(N, m): time to schedule m replicas remotely

Pf (N, P, λ): probability of application failure (single site failure)

The cost functions can be expressed in terms of these parameters and several system-
dependent constants:

TCT (N, P) = I * Tc(N, P)

- Tc is the average time per iteration and includes computation and communication

TCP (N, P, NFS) = TNFS_latency + TNFS_bw

- The latency and bandwidth terms include disk and network overhead; is the
per processor data size

TCP (N, P, local) = Tdisk_latency + Tdisk_bw

- Local checkpointing only involves disk overhead; is the per processor data
size

TCR (N, P, disk-config) = kopt * TCP (N, P, disk-config)

- kopt is the optimal number of checkpoints

TWR(N, m) = TWR_scheduling (N, m) + TWR_upload (m, bsize)

- WR consists of scheduling costs and file upload costs (which depends on binary
and input file sizes)

TWR_scheduling (N, m) = TWR_sched_latency + m (TWR_sched_overhead)

- Scheduling overhead consists of a base cost and a per site cost

TWR_upload (m, bsize) = TWR_upload_latency + m (TWR_upload_overhead)

- Upload consists of a base cost and a per site file transfer cost

Pf (N, P, λ) =

- Exponential failure distribution - this gives the probability the application will
NOT fail (in a site)

We have experimentally derived the constants for these cost functions in a local-
and wide-area network testbed environment. In the next section, we show that these
functions accurately predict the real overhead costs. We model two modes each for CR
and WR. For CR, we experimented with local and NFS-mounted file systems. For
WR, we experimented with remote sites in which application files (binaries and input
files) were either pre-staged or required uploading at runtime2. For pre-staged files,

2. Another option is to transfer the much smaller source files and compile them on the remote
site. This option may be examined in the future.

N
2

P

N
2

P

N
2

P

N
2

P

1 e
λTCT N P,()–

–

TWR_upload is 0. WR overhead consists of scheduling overhead and file transmission
overhead. Scheduling overhead includes Prophet and protocol overhead, the latter is
dominated by wide-area message passing cost. Both components of WR,
TWR_scheduling and TWR_upload have a constant latency term and a per site term.
Although the scheduling protocol and file transmission are largely parallel activities,
we have empirically observed a dependence on the number of sites that is accurately
modelled by a small linear constant. For TWR_scheduling: as the number of sites
increases, the number of protocol messages handled by the local site daemon increases
in a linear fashion, and the probability that a message is delayed from a remote site
back to the local site, also increases. For TWR_upload: as the number of sites increases,
the local ftp server will have to serve a proportionally larger number of sites. Note that
WR depends only on the number of sites and not directly on the problem size N
because the application creates the initial data domain internally, while CR depends
strongly on N.

The function Pf gives the probability that a site (or application running in the site)
will not remain “up” through a time t. A site is up if all constituent machines and con-
necting networks applied to the application are up. This function has the property that a
longer running application (hence a larger TCT) incurs a larger probability of failure.
This probability failure model is needed to enable a meaningful and fair performance
comparison between the two methods. Without a model for failure, it is unclear how
many checkpoints or replicas are needed to obtain a desired level of reliability. We use
the parameter Pf to construct the cost functions for both CR and WR.

First, we derive the cost equation for CR. For a given Pf, we determine the opti-
mal number of checkpoints to perform. The optimal number of checkpoints balances
the cost of checkpointing with the cost of re-executing old iterations in the event that
the application fails and needs to be restarted from the last stored checkpoint. Finding
this value requires minimization of the following expression for total overhead experi-
enced using CR (we omit some of the function parameters for brevity):

The first term in brackets is the average cost to re-execute iterations from the past
checkpoint and the second term is the checkpoint cost. The factor of reflects a fail-
ure which occurs midway between checkpoints on average. Differentiating with
respect to k, and solving for the minimum k yields:

This agrees with similar results in the literature [5][9] and provides a mechanism to
determine the minimum overhead, TCR, for a given Pf.

For WR, Pf plays a different role. Given Pf, we can determine the number of rep-
licas m that achieve a desired level of reliability β, where β is the probability that at
least one replica finishes. The probability that at least one replica finishes is 1-Pf

m

1 P– f()
kTCT

2I
-------------- TCP

I
k
--⋅+ (1)

k
2

kopt

2I
2

TCP⋅

TCT 1 P– f()⋅
-----------------------------------=

(2)

assuming independent site failures each with probability Pf. If sites have different fail-
ure probabilities then the equation becomes only slightly more complex. Solving for m
yields the following:

Given a desired value of β, we can easily compute m and TWR, and compare it
with TCR for a given problem instance. The dependent parameter β can be used to
select between different fault tolerance methods (CR or WR) and provides a way to
adjust the level of fault tolerance for WR. For example, if the number of available sites
is less than the number of sites required to achieve the desired β, then CR becomes a
more desirable option. Similarly, if β = 1, then CR is the logical choice since it is not
possible to guarantee any replicas will finish if Pf > 0 (for static WR). However, if the
user is willing to accept β < 1, then WR may offer some performance advantages as we
will show. These models give us a way to predict the performance of CR and WR, and
ultimately to enable the user to select the most suitable method given their preferences
and constraints in the network environment.

5.0 Results

We performed an evaluation of CR and WR by simulating a wide range of failure
rates (λ) to answer the following questions. Given a problem instance (N, P, I), net-
work characteristics (local/NFS, m, Pf), and a desired degree of reliability (β) will CR
or WR perform best? Which method might be expected to perform best as the problem
size grows? What is the impact of uploading on the suitability of WR? We answer
these questions for two specific experimental environments using a canonical SPMD
application (STEN) that solves Poisson’s equation on a NxN grid using an iterative
method (Figure 1). STEN creates the initial data domain internally and does not use
any input files, hence only application binary files need to be transferred under WR.
We have two versions of STEN: (1) a CR version with user-level checkpoint code
inserted and (2) a WR version that uses the Gallop wide-area scheduler as described
earlier. Gallop was run using an experimental testbed containing Internet sites at the
University of Texas at San Antonio (UTSA), Southwest Research Institute in San
Antonio, University of Virginia, University of Kentucky, Argonne National Laborato-
ries, and the University of California, San Diego. The local site is UTSA and contains
15 ethernet-connected Sparc 5s both configured with local disks (local), and with a
NFS-mounted file system (NFS). The other sites contain Sparcs of similar capability.
The local site is where the CR data was gathered. The experimental testbeds were used
to gather data to construct the cost functions of Section 4.0. We first show that the
experimentally derived cost functions are accurate. We then compare the performance
of CR and WR using these cost functions for a wide range of parameter values.

5.1 Validating the Models

We performed a set of experiments with STEN using our local- and wide-area
testbed to determine the cost functions for CR and WR. We ran STEN using a large

m 1 β–()log
Pflog

-------------------------= (3)

number of values for N and P and used linear regression to derive the constants from
this experimental data:

TCP (N, P, NFS) = 30 + (N2/P)0.005 msec

TCP (N, P, local) = 0.2 + (N2/P)0.0005 msec

TWR_upload (m, bsize) = 4821 + m (0.023) msec

TWR_scheduling (N, m) = 135 + m (28.4) msec

We then performed another separate set of runs for CR and WR using specific values
of N (128, 256, 512, 1024) and P (1, 2, 4), and plotted these observed values (ten scat-
ter points are shown for each x value plotted) against the derived cost functions
(straight line). The results for WR (Figure 2) and for CR (Figure 3) are shown. For CR
we show results for NFS (top row) and local file systems (bottom row), for P=1, 2, and
4 respectively.

In the majority of cases, the error between the overhead predicted by the cost
function and the experimental overhead falls within 10% for CR with the exception of
N=1024, P=1,2, local file system configuration. We speculate that disk buffer cache
effects were exposed by the large write requests. The CR data indicates that the check-
point cost functions for both local and NFS file systems provide a good fit as N and P
vary. We observed that the cost of performing a single checkpoint depends on the total
checkpoint data size and appears to be invariant to the number of processors. This was
surprising for NFS as we expected more processors would create additional server
load. It is more difficult to accurately model WR costs due to the high variance in
wide-area communications. However, the cost functions give a reasonably good fit
(within 10-30%) that is sufficient for quantitative comparisons. For a different network
environment, the cost equations will have different constants which can be easily
obtained by our test programs. The results indicate that it is possible to predict the
overhead costs for a given network environment with sufficient fidelity to enable
quantitative comparison of the two methods.

Fig. 2: Results for WR: scheduling and uploading. Upload results correspond to a 300 KB bina
for STEN with ftp used to transfer the file. 0 sites corresponds to the use of the local site only.

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5

T
w

r_
sc

h
e

d
u

lin
g

 (
m

s)

Number of Sites

0

2000

4000

6000

8000

10000

0 1 2 3 4 5

T
u

p
lo

a
d

 (
m

s
)

Number of Sites

5.2 Head-to-head Comparison

We now compare the cost functions TCR and TWR head-to-head to see how well
the methods can be expected to perform under different failure and reliability parame-
ters. For Pf, we vary λ to be 1 site failure per the following time intervals: 6 months, 1
month, 1 week, 1 day, half day, and 1 hour (corresponding to failure rates = l1, l2, ...,
l6 respectively on the graphs). We vary β to be .999, .999999, .99999999 (correspond-
ing to B = 1, 2, 3, respectively on the graphs). We also vary the problem size as before
and since CR performance is invariant to P (for a fixed failure rate), we pick P=4 for
the data plots (the other values of P yield similar graphs). We obtained the TCT values
for each (N, P) pair from the Prophet scheduler. Unless otherwise stated, we set
I=1000 iterations. We show the total overhead under either method (TWR vs. TCR) on
the y-axis as a function of varying failure rate for all graphs. The first set of results
compares CR with WR without uploading (Figure 4). CR with a local disk configura-
tion exhibits slightly better performance for small problems (N=128, 256, and 512;
128 is not shown), while WR is a clear winner for large problems (N=1024). WR per-
formance does not vary much as β increases which suggests that a very high rate of
reliability appears to be affordable. The results also indicate that for small problems,
WR and CR offer similar performance. When a NFS-mounted disk configuration is
used, WR is clearly superior for virtually all problem sizes (N=256, 512, and 1024;

0

1000

2000

3000

4000

5000

6000

128 256 512 1024

T
c
p

 [
N

,1
,n

fs
]

(m
s
)

Problem size

0

1000

2000

3000

4000

5000

6000

128 256 512 1024

T
c
p

 [
N

,2
,n

fs
]

(m
s
)

Problem size

0

1000

2000

3000

4000

5000

6000

128 256 512 1024

T
c
p

 [
N

,4
,n

fs
]

(m
s
)

Problem size

Fig. 3: Results for CR shown for NFS (top row) and local file system (bottom row), as a
function of problem size. Each graph corresponds to a different P selected (1, 2, and 4). The
scatter plots show 10 points per (N, P) pair: in some cases nearly identical points are plotted
on the same space and appear darker.

0

200

400

600

800

1000

128 256 512 1024

T
c
p
 [
N

,1
,l
o
c
a
l]
 (

m
s
)

Problem size

0

100

200

300

400

500

600

128 256 512 1024

T
c
p
 [
N

,2
,l
o
c
a
l]
 (

m
s
)

Problem size

0

100

200

300

400

500

600

128 256 512 1024

T
c
p
 [
N

,4
,l
o
c
a
l]
 (

m
s
)

Problem size

1024 is off the graph). The flat-line indicates that the checkpoints are so expensive,
that only a single checkpoint is affordable. When WR incorporates uploading, the
results change fairly significantly (Figure 5). For both configurations, CR is clearly
superior to WR due to high cost of uploading the STEN binaries. However as com-
pared to the NFS configuration, WR is competitive for the largest problem (N=1024)
for β = .999. Since our largest problem (N=1024 with I=1000) is small by some stand-
ards (Tc = 350 ms, which gives a total time of 350 sec), we wanted to know what
would happen if the problem was scaled to the sizes one might expect in a metacom-
puting environment (and uploading was required). In particular, would WR become
more attractive for larger problems that ran longer? To model a larger longer-running
problem, we fixed Tc at 350 ms and simply increased I, keeping all other values such
as Tc and TCP constant. In reality, a larger problem also means that N and P both
increase. If we assume that P grows in proportion to the increased computation then Tc
could reasonably remain unchanged. Similarly, TCP for the local configuration
depends on the amount of data each processor writes to disk. If this is unchanged, then
TCP could also reasonably remain unchanged. However for the NFS configuration an
increase in N will surely increase TCP independent of P. Consequently, the TCR results
for NFS should be viewed as a lower-bound. When I is increased, WR begins to

Fig. 4: Comparing WR w/o uploading to CR for local and NFS respectively.

0

500

1000

1500

2000

l1 l2 l3 l4 l5 l6

F
T

 o
ve

rh
ea

d
(m

s)

Failure Rate

Tcr[1024,4,local]
Tcr[512,4,local]
Tcr[256,4,local]

Twr, B=1
Twr, B=2
Twr, B=3

0

500

1000

1500

2000

l1 l2 l3 l4 l5 l6

F
T

 o
ve

rh
ea

d
(m

s)

Failure Rate

Tcr[512,4,nfs]
Tcr[256,4,nfs]
Tcr[128,4,nfs]

Twr, B=1
Twr, B=2
Twr, B=3

Fig. 5: Comparing WR with uploading to CR for local and NFS respectively.

0

5000

10000

15000

20000

l1 l2 l3 l4 l5 l6

F
T

 o
ve

rh
e
a
d
 (

m
s)

Failure Rate

Tcr[1024,4,nfs]
Tcr[512,4,nfs]
Tcr[256,4,nfs]
Tcr[128,4,nfs]

Twr, B=1
Twr, B=2
Twr, B=3

0

5000

10000

15000

20000

l1 l2 l3 l4 l5 l6

F
T

 o
ve

rh
e
a
d
 (

m
s)

Failure Rate

Tcr[1024,4,local]
Tcr[512,4,local]
Tcr[256,4,local]
Tcr[128,4,local]

Twr, B=1
Twr, B=2
Twr, B=3

exhibit better behavior than CR under the NFS and local configurations (Figure 6). For
the local configuration (Figure 6b), the problem must be scaled significantly for WR to
outperform CR (I=50000 or ~ 12 hours!).

We have shown that a meaningful quantitative comparison between WR and CR
is possible for a typical SPMD application. For this application, our results suggest that
CR is generally a less expensive method for small problems provided local disks are
available, WR is cheaper for larger problems provided binaries are pre-staged, but
when the problems become very long-running, CR may again be better. To apply our
approach to a different application and network environment, some benchmarking to
determine the cost function constants is a necessary precondition. This approach can
be used to give the user some guidance in the selection of fault tolerance methods and
determine whether affordable fault tolerance is possible given their application and
network environment (provided estimates of Pf are known or can be approximated).
But the precise benefit depends on the application and network environment at hand.
Another interesting possibility is to provide both fault tolerance implementations for
an application and allow the system to pick the best one automatically at run-time.
Similarly, the cost models could be used by a metacomputing scheduler in deciding
where to run an application. For example, if CR is the desired method for an applica-
tion, then the scheduler should consider the predicted cost of CR in choosing the appli-
cation’s location.

6.0 Summary

We have presented a technique that enabled quantitative comparisons between
two fault tolerance methods: checkpoint-recovery (CR) and wide-area replication
(WR) for SPMD applications. For high-performance applications in particular, the
expected cost of fault tolerance may be an important factor in the method a user may
choose to adopt. The results obtained for the stencil application indicate that both
methods appear to be appropriate under different conditions: CR is generally cheaper
for small problems providing fast local disks are available, while WR is generally
cheaper for bigger problems provided binaries are pre-staged. We believe our tech-
nique can be used to support the “pay for what you need” policy currently advocated in

Fig. 6: Comparing WR with uploading to CR for NFS and local respectively as I increases

0

10000

20000

30000

40000

50000

60000

70000

80000

l1 l2 l3 l4 l5 l6

F
T

 o
ve

rh
ea

d
(m

s)

Failure Rate

Tcr[nfs], I=5000
Tcr[nfs], I=10000
Twr, B=3, I=5000

Twr, B=3, I=10000

0

20000

40000

60000

80000

100000

l1 l2 l3 l4 l5

FT
 o

ve
rh

ea
d

(m
s)

Failure Rate

Tcr[local], I=5000
Tcr[local], I=10000
Tcr[local], I=20000
Tcr[local], I=50000

Tcr[local], I=100000
Twr, B=3, I=5000

Twr, B=3, I=10000
Twr, B=3, I=20000
Twr, B=3, I=50000

Twr, B=3, I=100000

metacomputing systems. However, experimentation with additional SPMD applica-
tions is needed to confirm our assertion. Future work also includes an investigation
into site reliability (the parameter Pf) and the development of tools to gather this infor-
mation. Finally, we plan on incorporating the cost of recovery and dynamic replicas
into our performance models.

7.0 References

[1] Bal, H. et al, “Optimizing Parallel Applications for Wide-Area Clusters,”
Twelfth International Parallel Processing Symposium,” March 1998.

[2] Casas, J. et al, “Adaptive Load Migration systems for PVM,” Supercomput-
ing 1994.

[3] Foster, I. and Kesselman, C., “Globus: A Metacomputing Infrastructure
Toolkit,” International Journal of Supercomputing Applications, 11(2), 1997.

[4] Grimshaw, A.S. and Wulf, W. A., “The Legion Vision of a Worldwide Vir-
tual Computer,” Communications of the ACM, Vol. 40(1), 1997.

[5] Jalote., P. , “Fault Tolerance in Distributed Systems,” Prentice-Hall Publish-
ers, Englewood Cliffs, New Jersey, 1994.

[6] Litzkow, M.J. et al., “Condor - a hunter of idle workstations,” In Proceedings
of the 8th International Conference on Distributed Computing Systems, June
1988.

[7] Nguyen-Tuong, A. and Grimshaw, A.S., “Using Reflection to Incorporate
Fault-Tolerance Techniques in Distributed Applications,” Computer Science
Technical Report, University of Virginia, CS 98-34, 1998.

[8] Stelling, P. et al., “A Fault Detection Service for Wide Area Distributed Com-
putations,” Proceedings of the Seventh IEEE International Symposium on
High Performance Distributed Computing, August 1998.

[9] Vaidya, N.H., “Impact of Checkpoint Latency on Overhead Ratio of a Check-
pointing Scheme,” IEEE Transactions on Computers, Vol. 46(8), August
1997.s

[10] Weissman, J.B. and Womack, D. “Fault Tolerant Scheduling in Distributed
Networks,” UTSA Technical Report, CS-96-10, October 1996.

[11] Weissman, J.B., “Gallop: The Benefits of Wide-Area Computing for Parallel
Processing,” Journal of Parallel and Distributed Computing, Vol. 54(2),
November 1998.

[12] Weissman, J.B., “Prophet: Automated Scheduling of SPMD Programs in
Workstation Networks,” Concurrency: Practice and Experience, Vol. 11(6),
May 1999.

[13] Zandy, V., Miller, B. and Livny, M., “Process Hijacking,” Proceedings of the
Eighth IEEE International Symposium on High Performance Distributed
Computing, August 1999.

