
Implementation Issues in the Design of I/O
Intensive Data Mining Applications on Clusters

of Workstations

R. Baraglia1, D. Laforenza1, Salvatore Orlando2,
P. Palmerini1 and Ra�aele Perego1

1 Istituto CNUCE, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
2 Dipartimento di Informatica, Universit�a Ca' Foscari di Venezia, Italy

Abstract This paper investigates scalable implementations of out-of-
core I/O-intensive Data Mining algorithms on a�ordable parallel archi-
tectures, such as clusters of workstations. In order to validate our ap-
proach, the K-means algorithm, a well known DM Clustering algorithm,
was used as a test case.

1 Introduction

Data Mining (DM) applications exploit huge amounts of data, stored in �les or
databases. Such data need to be accessed to discover patterns and correlations
useful for various purposes, above all for guiding strategic decision making in
the business domain. Many DM applications are strongly I/O intensive since
they need to read and process the input dataset several times [1,6,7]. Several
techniques have been proposed in order to improve the performance of DM
applications. Many of them are based on parallel processing [5]. In general, their
main goals are to reduce the computation time and/or reduce the time spent on
accessing out-of-memory data.

Since the early 1990s there has been an increasing trend to move away from
expensive and specialized proprietary parallel supercomputers towards clusters
of workstations (COWs) [3]. Historically, COWs have been used primarily for
science and engineering applications, but their low cost, scalability, and gener-
ality provide a wide array of opportunities for new domains of application [13].
DM is certainly one of these domains, since DM algorithms generally exhibit
large amounts of data parallelism. However, to eÆciently exploit COWs, par-
allel implementations should be adaptive with respect to the speci�c features
of the machine (e.g. they must take into account the memory hierarchies and
caching policies adopted by modern hardware/software architectures).

Speci�cOut-of-Core (OoC) techniques (also known as External Memory tech-
niques) [3,14] can be exploited to approach DM problems that require huge
amounts of memory. OoC techniques are useful for all applications that do not
completely �t into the physical memory. Their main goal is to reduce memory
hierarchy overheads by bypassing the OS virtual memory system and explicitly



managing I/O. Direct control over data movements between main memory and
secondary storage is achieved by splitting the dataset into several small blocks.
These blocks are then loaded into data structures which will certainly �t into
physical memory. They are processed and, if necessary, written back to disks.
The knowledge of the patterns used by the algorithm to access the data can
be exploited in an e�ective way to reduce I/O overheads by overlapping them
with useful computations. The access pattern exploited by the DM algorithm
discussed in this paper is simple, since read-only datasets are accessed sequen-
tially and iteratively. Note that the general purpose external memory mechanism
provided by the operating system { in our case, the Unix read() system call {
is speci�cally optimized for this kind of data access.

This paper investigates scalable implementations of I/O-intensive DM algo-
rithms on a�ordable parallel architectures, such as clusters of PCs equipped with
main memories of a limited size, which are not suÆciently big to store the whole
dataset (or even a partition of it). The test case DM application used to vali-
date our approach is based on the on-line K-means algorithm, a well known DM

Clustering algorithm [8,10]. The testbed COW was composed of three SMPs, in-
terconnected by a 100BaseT switched Ethernet, where each SMP was equipped
with two Pentium II - 233 MHz processors, 128 MB of main memory, and a 4GB
UW-SCSI disk. Their OS was Linux, kernel version 2.2.5-15. The paper is orga-
nized as follows. Section 2 discusses implementation issues related to the design
of I/O-intensive DM applications. Section 3 deals with the K-means algorithm
and its parallel implementation. Finally, Section 4 discusses the results of our
experiments and draws some conclusions.

2 Implementation of I/O Intensive DM Applications

As mentioned above, we are interested in DM algorithms that access sequentially
the same dataset several times. The repeated scanning of the whole dataset en-
tails good spatial locality but scarce temporal locality. The latter can only be
exploited if the whole dataset entirely �ts into the physical memory. In general,
however, this condition cannot be taken for granted because \real life" datasets
are generally very large. Moreover, the physical memory is of limited size, and
other running processes contend for its usage. The adoption of an OoC algo-
rithm, which takes advantage of possible prefetching policies implemented by
both software drivers and disk controllers [11], and which allows to exploit mul-

titasking ormultithreading strategies in order to overlap I/O latencies with useful
computations, is thus mandatory.

The best policy might thus appear to be to adopt OoC algorithms only if a
dataset does not �t into the physical memory. When the memory is large enough,
an in-core approach might seem more eÆcient, since all the dataset is read once
from disk, and is repeatedly accessed without further I/O operations. Clearly
such an in-core strategy might fail when other processes use the main memory,
thus causing swapping on the disk. We believe that \smart" OoC approaches
are always preferable to their in-core counterparts, even when datasets are small



with respect to memory size. This assertion is due to the existence of a bu�er

cache for block devices in modern OSs, such as Linux [2]. The available physical
memory left unused by the kernel and processes is dynamically enrolled in the
bu�er cache on demand. When the requirement for primary memory increases,
for example because new processes enter the system, the memory allocated to
bu�ers is reduced. We conducted experiments to compare in-core and out-of-core
versions of a simple test program that repeatedly scans a dataset which �ts into
physical memory. We observed that the two versions of the program have similar
performances. In fact, if we consider the OoC version of this simple program, at
the end of the �rst scan the bu�er cache contains the blocks of the whole dataset.
The following scans of the dataset will not actually access the disk at all, since
they �nd all the blocks to be read in the main memory, i.e. in the bu�er cache.
In other words, due to the mechanisms provided by the OS, the actual behavior
of the OoC program becomes in-core.
We also observed another advantage of the OoC program over the in-core solu-
tion. During the �rst scan of the dataset, the OoC program takes advantage of
OS prefetching. In fact, during the processing of a block the OS prefetches the
next one, thus hiding some I/O time. On the contrary, I/O time of in-core pro-
grams cannot be overlapped with useful computations because the whole dataset
has to be read before starting the computation.

In summary, the OoC approach not only works well for small datasets, but
it also scales-up when the problem size exceeds the physical memory size, i.e.,
in those cases when in-core algorithms fail due to memory swapping. More-
over, to improve scalability for large datasets, we can also exploit multitasking
techniques in conjunction with OoC techniques to hide I/O time. To exploit
multitasking, non-overlapping partitions of the whole dataset must be assigned
to distinct tasks. The same technique can also be used to parallelize the applica-
tion, by mapping these tasks onto distinct machines. This kind of data-parallel
paradigm is usually very e�ective for implementing DM algorithms, since compu-
tation is generally uniform, data exchange between tasks is limited, and generally
involves a global synchronization at the end of each scan of the whole dataset.
This synchronization is used to check termination conditions and to restore a
consistent global state. Consistency restoration is needed since the tasks start
each iteration on the basis of a consistent state, generating new local states that
only reect their partial view of the whole dataset.
Finally, parallel DM algorithms implemented on COWs also have to deal with
load imbalance. In fact, workload imbalance may derive either from di�erent
capacities of the machines involved or from unexpected arrivals of external jobs.
Since the programming paradigm adopted is data parallel, a possible solution to
this problem is to dynamically change partition sizes.

3 A Test Case DM Algorithm and its Implementation

There is a variety of applications, ranging from marketing to biology, astro-
physics, and so on [8], that need to identify subsets of records (clusters) present-



ing characteristics of homogeneity. In this paper we used a well known clustering
algorithm, the K-means algorithm [10] as a case study representative of a class
of I/O intensive DM algorithms. We deal with the on-line formulation of K-
means, which can be considered as a competitive learning formulation of the
classical K-means algorithm. K-means considers records in a dataset to be rep-
resented as data-points in a high dimensional space. Clusters are identi�ed by
using the concept of proximity among data-points in this space. The K-means
algorithm is known to have some limitations regarding the dependence on the
initial conditions and the shape and size of the clusters found [9,10]. Moreover,
it is necessary to de�ne a priori the number K of clusters that we expect to
�nd, even though it is also possible to start with a small number of clusters
(and associated centers), and increase this number when speci�c conditions are
observed. The three main steps of the on-line K-means sequential algorithm are:
(1) start with a given number of centers randomly chosen; (2) scan all the data-
points of the dataset, and for each point p �nd the center closest to p, assign
p to the cluster associated with this center, and move the center toward p; (3)
repeat step 2 until the assignment of data-points to the various clusters remains
unchanged. Note that the repetition of step 2 ensures that centers gradually get
attracted into the middle of the clusters. In our tests we used synthetic datasets
and we �xed a priori K.

Parallel Implementation. We implemented the OoC version of the algorithm
mentioned above, where data-points are repeatedly scanned by sequentially read-
ing small blocks of 4 KBytes from the disk. The program was implemented using
MPI according to an SPMD paradigm. A non overlapping partition of the in-
put �le, univocally identi�ed by a pair of boundaries, is processed by each task
of the SPMD program. The number of tasks involved in the execution may be
greater than the number of physical processors, thus exploiting multitasking.
This parallel formulation of our test case is similar to those described in [12,4],
and requires a new consistent global state to be established once each scan of
the whole dataset is completed. Our global state corresponds with the new po-
sitions reached by the K centers. These positions are determined by summing
the vectors corresponding with the centers' movements which were separately
computed by the various tasks involved. In our implementation, the new center
positions are computed by a single task, the root one, and are broadcast to the
others. The root task also checks the termination condition.

The load balancing strategy adopted is simple but e�ective. It is based on
past knowledge of the bandwidths of all concurrent tasks (i.e. number of points
computed in a unit of time). If a load imbalance is detected, the size of the
partitions is increased for \faster" tasks and decreased for \slower" ones. This
requires input datasets to be replicated on all the disks of our testbed. If com-
plete replication is too expensive or not possible, �le partitions with overlap-
ping boundaries can be exploited as well. Let NP be the total number of data-
points, and fp1; : : : ; png the n tasks of the SPMD program. At the �rst iteration
np1i = NP=n data-points are assigned to each pi. During iteration j each pi
measures the elapsed time T j

i spent on elaborating its own block of npji points,



so that tji = T j
i =np

j
i is the time taken by each pi to elaborate a single point,

and bji = 1=tji = npji=T
j
i is its bandwidth. In order to balance the workload,

the numbers npj+1i of data-points which each pi has to process in the next it-

eration are then computed on the basis of the various bji (npj+1i = �ji � NP ,

where �ji = bji=
Pn

i=1 b
j
i ). Finally, values np

j+1
i are easily translated into parti-

tion boundaries, i.e. a pair of o�sets within the replicated or partially replicated
input �le.

4 Experimental Results and Conclusions

Several experiments were conducted on the testbed with our parallel implementa-
tion of K-means based on MPI. Data-parallelism, OoC techniques, multitasking,
and load balancing strategies were exploited. Note that the successful adoption
of multitasking mainly depends on (1) the number of disks with respect to the
number of processors available on each machine, and (2) the computation gran-
ularity (i.e., the time spent on processing each data block) with respect to the
I/O bandwidth. In our experiments on synthetic datasets, we tuned this compu-
tational granularity by changing the number K of clusters to look for. Another
important characteristics of our approach is the size of the partitions assigned
to the tasks mapped on a single SMP machine. If the sum of these sizes is less
than the size of the physical main memory, we guess that the behavior of the
OoC application will be similar to its in-core counterpart, due to a large enough
bu�er cache. Otherwise, sequential accesses carried out by a task to its dataset
partition will entail disk accesses, so that the only possibility of hiding these I/O
times is to exploit, besides OS prefetching, some form of moderated multitasking.

Figure 1 shows the e�ects of the presence of the bu�er cache. On a single
SMP we ran our test case algorithm with a small dataset (64 MB) and small
computational granularity (K=3). Bars show the time spent by the tasks in
computing (t comp), in doing I/O and being idle in some OS queue (t io +

t idle), and in communication and synchronization (t comm). The two bars on
the left hand side represent the �rst and the second iterations of a sequential
implementation of the test case. The four bars on the right hand side regard
the parallel implementation (2 tasks mapped on the same SMP). Note that in
both cases the t io and t idle are high during the �rst iteration, since the
bu�er cache is not able to ful�ll the read requests (cache misses). On the other
hand, these times almost disappear from the the second iteration bars, since the
accessed blocks are found in the bu�er cache (cache hits).

Figure 2 shows the e�ects of multitasking on a single SMP when the disk has
to be accessed. Although a small dataset was used for these experiments, the
bars only refer to the �rst iteration, during which we certainly need to access
the disk. Now recall that our testbed machines are equipped with a single disk
each. This represents a strong constraint on the I/O bandwidth of our platform.
This is particularly evident when several I/O-bound tasks, running in parallel
on an SMP, try to access this single disk. In this regard, we found that our
test case has di�erent behaviors depending on the computational granularity.



For a �ne granularity (K=8), the computation is completely I/O-bound. In this
condition it is better to allocate a single task to each SMP (see Figure 2.(a)).
When we allocated more then one task, the performance worsened because of
the limited I/O bandwidth and I/O conicts. For a coarser granularity (K= 32),
the performance improved when two tasks were used (see Figure 2.(b)). In the
case of higher degrees of parallelism the performance decreases. This is due to
the overloading of the single disk, and to noises introduced by multitasking into
the OS prefetching policy.

Figure 3 shows some speedup curves. The plots refer to 20 iterations with
K=16. We used at most two tasks per SMP. Note the super-linear speedup
achieved when 2 or 3 processors were used. These processors belong to distinct
SMPs, so that this super-linear speedup is due to the exploitation of multiple
disks and to the e�ects of the bu�er cache. In fact, when moderately large
datasets were used (64 MB or 128 MB) the data partitions associated with
the tasks mapped on each SMP �t into the bu�er caches. Overheads due to
communications, occurring at the end of each iteration, are very small and do
not a�ect speedup.
In the case of a larger dataset (384 MB), whose size is greater than the whole
main memory available, when the number of tasks remains under three, linear
speedups were obtained. For larger degrees of parallelism, the speedup decreases.
This is still due to the limited I/O bandwidth on each SMP.

K=3 - 64 MB 

0

2

4

6

8

10

12

14

0 1 0 0 1 1
Iteration number

se
c

t_io + t_idle
t_comm     
t_comp     

Figure1. Execution times of two iterations of the test case on a single SMP.

Figure 4 shows the e�ectiveness of the load balancing strategy adopted. Both
plots refer to experiments conducted using all the six processors of our testbed
with the 64MB dataset and K = 32. The plot in the left hand side of the �g-
ure shows the number of blocks dynamically assigned to each task by our load
balancing algorithm as a function of the iteration index. During time interval
[t1; t3] ([t2; t4]) we executed a CPU-intensive process on the SMP A (M) running
tasks A0 and A1 (M1 and M1). As it can be seen, the load balancing algorithm
quickly detects the variation in the capacities of the machines, and correspond-
ingly adjusts the size of the partitions by narrowing partitions assigned to slower



K=8 64 M

0

5

10

15

20

25

N. of tasks per SMP

se
c

t_io + t_idle
t_comm     
t_comp     

21 43

K=32 64 M

0

5

10

15

20

25

30

35

H2 H2 H2 H2 H2 H2 H2 H2 H2 H2N. of tasks per SMP

se
c

t_io + t_idle
t_comm     
t_comp     

41 2 3

Figure2. Execution times of the �rst iteration on a single SMP by varying the number
of tasks exploited and the computational granularities: (a) K=8 and (b) K=32.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p
e
e
d
-
u
p

Number of Processors

K=16  -  20 iterations

064 M
128 M
384 M

Figure3. Speedup curves for di�erent dataset sizes (20 iterations, K = 16).

machines and enlarging the others. The plot in the right hand side compares the
execution times obtained exploiting or not our load balancing strategy as a func-
tion of the external load present in one of the machines. We can see that in the
absence of external load the overhead introduced by the load balancing strategy
is negligible. As the external load increases, the bene�ts of exploiting the load
balancing strategy increase as well.

In conclusion, this work has investigated the issues related to the implemen-
tation of a test case application, chosen as a representative of a large class of
DM I/O-intensive applications, on an inexpensive COW. E�ective strategies for
managing I/O requests and for overlapping their latencies with useful compu-
tations have been devised and implemented. Issues related to data parallelism
exploitation, OoC techniques, multitasking, and load balancing strategies have
been discussed. To validate our approach we conducted several experiments and
discussed the encouraging results achieved. Future work regards the evaluation
of the possible advantages of exploiting lightweight threads for intra-SMP paral-
lelism and multitasking. Moreover, other I/O intensive DM algorithms have to
be considered in order to de�ne a framework of techniques/functionalities useful
for eÆciently solving general DM applications on COWs, which, unlike homo-



0

1

2

3

4

5

10 t1 20 t2 30 t3 t4 50

N
u
m
.
 
o
f
 
b
l
o
c
k
s
 
(
x
 
1
0
0
0
)

Iterations

K=32, 64 MB

M-0
M-1
A-0
A-1
D-0
D-1

80

100

120

140

160

180

200

220

240

260

280

0 1 2 3 4

s
e
c

External Load

K=32, 64 MB, 20 iterations

with load balancing

without load balancing

Figure4. E�ectiveness of the load balancing strategy.

geneous MPPs, impose additional issues that must be addressed using adaptive
strategies.

References

1. Jain A.K. and Dubes R.C. Algorithms for Clustering Data. Prentice Hall, 1988.
2. M. Beck et al. Linux Kernel Internals, 2nd ed. Addison-Wesley, 1998.
3. Rajkumar Buyya, editor. High Performance Cluster Computing. Prentice Hall

PTR, 1999.
4. I. S. Dhillon and D. S. Modha. A data clustering algorithm on distributed memory

machines. In ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
1999.

5. A. A. Freitas and S. H. Lavington. Mining Very Large Databases with Parallel
Processing. Kluwer Academin Publishers, 1998.

6. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining Very Large Databases. IEEE
Computer, 32(8):38{45, 1999.

7. E. Han, G. Karypis, and V. Kumar. Scalable Parallel Data Mining for Association
Rules. IEEE Transactions on Knowledge and Data Engineering. To appear.

8. J.A. Hartigan. Clustering Algorithms. Wiley & Sons, 1975.
9. G. Karypis, E. Han, and V. Kumar. Chameleon: Hierarchical Clustering Using

Dynamic Modeling. IEEE Computer, 32:68{75, 1999.
10. Mac Queen, J.B. Some Methods for Classi�cation and Analysis of Multivariate

Observation. 5th Berkeley Symp. on Mathematical Statistics and Probability, pages
281{297. Univ. of California Press, 1967.

11. Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling. IEEE
Computer, 27(3):17{28, March 1994.

12. K. Sto�el and A. Belkoniene. Parallel k-means clustering for large datasets.
EuroPar'99 Parallel Processing, Lecture Notes in Computer Science, No. 1685.
Springer-Verlag, 1999.

13. Sterling T.L., Salmon J., Becker D.J., and Savarese D.F. How to Build a Beowulf.
A guide to the Implementation and Application of PC Clusters. The MIT Press,
1999.

14. J. S. Vitter. External Memory Algorithms and Data Structures. In External
Memory Algorithms (DIMACS Series on Discrete Mathematics and Theoretical
Computer Science). American Mathematical Society, 1999.


