
Multithreaded Parallel Computer Model with

Performance Evaluation ?

J. Cui1, J. L. Bordim1, K. Nakano1, T. Hayashi1, N. Ishii2

1 Department of Electrical and Computer Engineering
Nagoya Institute of Technology

2 Department of Intelligence and Computer Engineering
Nagoya Institute of Technology

Showa-ku, Nagoya 466-8555, Japan

Abstract. The main contribution of this work is to introduce a mul-
tithreaded parallel computer model (MPCM), which has a number of
multithreaded processors connected with an interconnection network.
We have implemented some fundamental PRAM algorithms, such as pre-
�x sums and list ranking algorithms, and evaluated their performance.
These algorithms achieved optimal speedup up to at least 16 processors.

1 Introduction

The Parallel Random Access Machine (PRAM) is a standard parallel computer
model with a shared memory [2, 5]. The PRAM has a number of processors (PE
for short) working synchronously and communicating through the shared mem-
ory. Each processor is a uniform-cost Random Access Machine (RAM) with stan-
dard instruction set. This model essentially neglects any hardware constraints
which a highly speci�ed architecture would impose. In this respect, the model
gives free rein in the presentation of algorithms by not admitting limitations on
parallelism which might be imposed by speci�c hardware. However, the PRAM
is an unrealistic parallel computer model, because it has a shared memory uni-
formly accessed by processors.

Parallel computers based on the principle of multithreaded have been devel-
oped, such as HEP [12], Monsoon [9, 10], Horizon [7], and MASA [3]. In this pa-
per, we introduce the multithreaded parallel computer model (MPCM for short),
which has a number of multithreaded processors (MP for short) connected with
an interconnection network. This model is based on the multithreaded com-
puter architecture [1, 8, 6, 11, 12, 13] which allows fast context-switching, and
communicates through message passing. Each multithreaded processor is highly
pipelined, and runs several threads in time-sharing manner. Furthermore, pro-
cessors switch threads in every clock cycle.

? This work is in part supported by the Grant-in-Aid for Scienti�c Research (B)(2)
10205209 (1999) from the Ministry of Education, Science, Sports and Culture of
Japan.



The main contribution of this work is to develop an MPCM simulator, imple-
ment fundamental PRAM algorithms on it, and evaluate their performance. The
PRAM algorithms we have implemented include pre�x sums algorithm and list
ranking algorithm. We coded these algorithms using MPCM machine instruc-
tions, and evaluated the number of execution cycles performed. The algorithms
we have implemented achieved linear speedup up to at least 16 processors.

2 Multithreaded parallel computer model

An MP has several register sets, each of which has a program counter (PC) and
several (say, 32) registers. Each register can store several (say, 32) bits. Although
the multithreaded processor has several register sets, it has a single control unit
that fetches, decodes, executes an instruction, and writes the result. Thus, an
instruction speci�ed by the PC of each register set is processed by the control
unit in turn. The instruction may read/write the registers and the local memory
of the MPs. However, it cannot directly access the registers in the other register
sets. Each execution ow performed by a register set is regarded as a thread.
All register sets (threads) share the same program and each register set executes
these machine instructions sequentially.

Let R1; R2; : : : ; Rm denote m register sets of the MPs. Suppose that each
register set executes T instructions of a program. Let Iti (1 � i � m, 1 �
t � T ) denote the instruction that Ri executes at time t. Note that a sequence
I1i ; I

2
i ; : : : ; I

T
i is not a program code for PEi; this is a resulting sequence of the

instructions executed by PEi. The behavior of MP is described as follows:

for t = 1 to T do

for i = 1 to m do

Ri executes I
t
i

A phase is a single iteration of the internal loop, that is, in a single phase the
MP executes m instructions It1; I

t
2; : : : ; I

t
m.

In most commercial microprocessors, the pipeline mechanism is employed
to decrease the average instruction execution time. An instruction process is
partitioned into several stages. The pipeline may stall due to the dependency
of executed instructions. On the other hand, in the multithreaded processor,
instructions executed in a phase have no dependency. This fact allows us to have
a large number of pipeline stages.

3 Multithreaded parallel computer model simulator

Our MPCM simulator uses the DLX RISC architecture instruction set [4]. We
added several instructions for communication and synchronization between pro-
cessors to the instruction set. These instructions include network write, network
read and barrier synchronization. We have implemented MPs having 40 pipeline
stages, which is reasonable for highly pipelined arithmetic computation unit [4].



MP

MEMORY

S

MP

MEMORY

MP

MEMORY

MP

MEMORY

1 2 3 p

1

1 2

2 3

3

p

p

S S S

Fig. 1. The multithreaded parallel computer model.

We use one-dimensional linear array interconnection network model as shown
in Figure 1. We chose this network topology because it has the weakest commu-
nication ability, and also because it is widely used. This weak ability will focus
on the power of the MPCM. Each processor is connected to a switch and each
neighboring switch is connected by a bidirectional link. A packet can transfer
only 32 bit(1 word) to the left or to the right direction. We assume that it takes
4 cycles to transfer a packet to the neighboring switch. This is reasonable be-
cause the frequency of the clock of VLSI chips is 3-5 times faster than that of
the mother board. From this assumption, a packet transfer from MPi to MPj
needs at least 4ji� jj cycles. Furthermore, we need to consider the case that one
processor and its right neighbor will transfer to its left processor simultaneously.
Since each communication link transfers one packet at the same time, one of
these two packets can not be transferred, in this case, the packet with further
destination is transferred �rst. Here, we assume that each switch has only an
unbounded bu�er and each switch only process the packet at the �rst position
of bu�er at any time.

When we implement PRAM algorithms in our MPCM simulator, n PRAM
processors PE0; PE1; PE2; � � � ; PEn�1 are equally assigned to p multithreaded
processors MP0;MP1;MP2; � � � ;MPp�1. Thus, each processor MPi(0 � i �
p � 1) has n=p register sets Ri;0; Ri;1; � � � ; Ri;n=p�1, and these register sets per-
form tasks that the PRAM processors PE(i�1)�n=p; PE(i�1)�n=p+1; � � � ; PEi�n=p�1

would execute.

Furthermore, memory assignment is important in multithreaded architec-
ture model. In our research, it is known which memory location each processor
should process. For example, for an array a[0; n � 1] of input data, processor
PEi processes a[i], so shared memory module on the PRAM can be simply di-
vided into p local memory modules. We assume that the input data is allocated
to corresponding local memory in advance and ignore the time for input and
output.

4 PRAM algorithms implemented in the MPCM

In this section, we briey describe PRAM algorithms that we have implemented
in our simulator.



4.1 Pre�x sums algorithm

For n values a0; a1; � � � ; an�1, the pre�x sums problem asks to compute the values
of pi = a0+a1+� � �+ai for every i (0 � i � n�1). For example, given a sequence
of integer numbers A = f3; 1; 0; 4; 2g, the pre�x sums are f3; 4; 4; 8; 10g.

The PRAM pre�x sums algorithm that we have implemented is as follows:
Each PEi(0 � i � n� 1) is used to update a[i].

for j = 0 to dlogne � 1 do
for i = 1 to n� 1 do in parallel

if i� 2j � 0 then a[i] = a[i] + a[i� 2j ]

The above pre�x sums algorithm runs in O(logn) time using n processors [5].
However, this algorithm is not work optimal because the product of the comput-
ing time and the number of processors is O(n logn). By assigning two or more
data to each processor, cost optimization can be achieved. The input data of
size n is equally partitioned into s groups such that the ith (1 � i � s) group is
Ai = fa((i� 1) � ns + 1); a(i � ns + 2); : : : ; a(i � ns )g. Then, the (local) pre�x sums
within each group are computed in O(ns ) time using a single processor. After
that, the pre�x sums of the sums of A0; A1; : : : As�1 are computed in O(log s)
time using the pre�x sums algorithm described above. Finally, the pre�x sums
are added to the local pre�x sums in obvious way. Clearly, this algorithm runs
in O(n=s+ log s) time using s processors.

4.2 List ranking algorithm

Consider a linked list of n nodes whose order is speci�ed by an array p such
that p[i] contains a pointer to the next node i in the list, for 1 � i � n. We
assume that p[i] = i when i is the tail of the list. The list ranking problem is to
determine the distance of each node from the tail of the list.

The PRAM algorithm to determine the position of each node on a linked list
is as follows.

for i = 0 to n� 1 do in parallel
if p[i] = i then r[i] = 0 else r[i] = 1

for j = 1 to dlogne do
for i = 1 to n� 1 do in parallel

begin
r[i] = r[i] + r[p[i]]
p[i] = p[p[i]]

end

This algorithm runs in O(logn) time using n processors [5].



5 Performance evaluation

This section shows the performance evaluation of the above PRAM algorithms
using our simulator.

Table 1 shows the number of cycles for n input data, p processors and n=p
register sets/processor. We can verify that with n = 512, the speedup is almost
linear up to 16 processors. This is because the number of threads in each pro-
cessor is larger than the pipeline stages, and hence, enough instructions can be
provided to the MP control unit. On the other hand, when p � 32, the number of
threads range from 1 to 16, and the algorithm runs in 8000 to 9000 cycles regard-
less of the number of processors. When p = 512, the speedup turns down due to
a large amount of communication among processors. In the case of n = 8k(8192),
linear speedup is nearly achieved up to 256 processors. If we increase input data,
and use the same number of processors, the number of register sets n=p increase,
and the number of threads put into the pipeline also increase.

Table 1. The number of cycles of the pre�x sums algorithm

@
@@n

p
1 2 4 8 16 32 64 128 256 512

512 95250 51712 26175 13471 9424 8996 8698 8510 8318 8910

1k 211986 114176 57727 29631 15711 11196 10760 10470 10350 10244

2k 466962 249856 126207 64639 34111 18975 14040 13564 13330 13338

4k 1042411 542720 273919 140031 73599 40639 24287 18932 18488 18366

8k 2252780 1193936 590847 301567 157951 94847 59455 33759 27968 27636

16k 4841452 2555857 1292235 646143 337407 184063 116095 78271 51423 45340

Table 2 shows the number of cycles of the optimal pre�x sums algorithm for
64k input data, p processors and m register sets/processor. To each register set,
64k=mp input data is assigned. The smallest number of cycles is achieved with
m = 64 and p ranging from 1 to 16. That is because not only 64 is larger than
the pipeline stages of 40, but also the input data assigned to each register set for
m = 64 is larger than with m > 64. If the number of processors is larger than 16,
the smallest number of cycles varies according to the amount of threads, input
data assigned to each register set and communication overhead.

Table 2. The number of cycles of the optimal pre�x sums algorithm: 64k input

HHHm

p
1 2 4 8 16 32 64 128 256 512 1024 2048

1 16256573 16259137 8135003 4073865 2044111 1029941 523467 270796 145053 82942 53103 40432

2 16259380 8135462 4074372 2044666 1030548 524094 271392 1455588 83346 53248 40062 37132

4 8135700 4074540 2044852 1030744 524300 271608 145804 83536 53352 39948 36544 41480

8 4078820 2045028 1030912 524500 271768 145956 83656 53404 39872 36212 40632 55569

16 2045352 1031152 524708 272052 146241 83956 53681 40116 36337 40516 54960 86856

32 1031532 525092 272432 146640 84380 54144 40612 36808 40892 55064 94656 159416

64 806591 421440 226655 130015 82655 60511 52319 54047 66655 96927 160286 {

128 840063 452992 259263 163519 117183 96703 100031 111964 136255 196956 { {

256 904959 517888 325503 230783 209772 188580 177023 204974 254828 { { {

512 1036031 649728 458495 364287 320255 318828 325375 369919 { { { {

Table 3 shows the number of cycles of the list ranking algorithm for n�node
linked list and p processors. Linear speedup is nearly achieved up to 16 proces-



Table 3. The number of cycles of the list ranking algorithm

@
@@n

p
1 2 4 8 16 32 64 128 256 512

512 129024 64205 38509 24726 19324 18635 18527 18860 19480 25834

1k 283648 141515 84865 53660 37403 31412 30812 31076 32679 33890

2k 618496 309805 185579 117971 82408 64463 57732 57181 58340 62123

4k 1361887 665855 402404 258380 181745 143661 124289 117539 117564 120900

8k 2924511 1450445 868441 551296 386144 303014 261414 240420 233131 235939

16k 6250463 3108902 1865968 1201185 845634 668873 578670 533555 512162 505642

sors. However, for p � 32, the speedup raises very slowly, because communication
among processors is so random that it spends most execution time. In order to
decrease the communication overhead we need to employ higher performance
networks, such as mesh and hypercube.

References

1. M. Amamiya, H. Tomiyasu, S. Kusakabe, Datarol: a parallel machine architecture
for �ne-grain multithreading, Proc. 3rd Working Conference on Massively Parallel

Programming Models, 151{162, 1998.
2. A. Gibbons and W. Rytter, EÆcient Parallel Algorithm, Cambridge University

Press, 1998.
3. R. H. Halstead and T. Fujita, MASA: A multithreaded processor architecture for

parallel symbolic computing, Proc. 15th International Symposium on Computer

Architecture, 443{451, 1988.
4. John L. Hennessy, and David A. Patterson, Computer Architecture{A Quantitative

Approach, Morgan Kaufmann, 1990.
5. J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
6. Robert A. Iannucci ed., Multithreaded Computer Architecture: A Summary of the

state of the Art, Kluwer Academic, 1990.
7. J. T. Kuehn and B. J. Smith, The Horizon supercomputing system: architecture

and software, Proc. Supercomputing 88, 28{34, 1988.
8. M. Loikkanen and N. Bagherzadeh, A �ne-grain multithreading superscalar archi-

tecture, Proc. of Conference on Parallel Architectures and Compilation Techniques,
1996.

9. G. M. Papadopoulos and D. E. Culler, Monsoon: an explicit token-store architec-
ture, Proc 17th International Symposium on Computer Architecture, 82{91, 1990.

10. G. M. Papadopoulos and K. R. Traub Multithreading: A revisionist view of
dataow architecture, Proc 18th International Symposium on Computer Archi-

tecture, 342{351, 1991.
11. R. G. Prasadh and C.-L Wu, A Benchmark Evaluation of a Multi-Threaded RISC

Processor Architecture, Proc. of International Conference on Parallel Processing,
pp. 84{91, 1991.

12. B. J. Smith, Architecture and applications of the HEP multiprocessor system, Proc.
of SPIE {Real-Time Signal Processing IV, Vol. 298, Aug, 1981

13. J.-Y. Tsai and P. C. Yew, The Superthreaded Architecture: Thread Pipelining with
Run-time Data Dependence Checking and Control Speculation Proc. of Conference
on Parallel Architectures and Compilation Techniques, 1996.


