
Bit Summation on the Recon�gurable Mesh

Martin Middendorf ?

Institut f�ur Angewandte Informatik
und Formale Beschreibungsverfahren, Universit�at Karlsruhe,

D-76128 Karlsruhe, Germany
mmi@aifb.uni-karlsruhe.de

Abstract. The bit summation problem on recon�gurable meshes is stud-
ied for the case where the number of bits is as large as the number of
processsors. It is shown that kn binary values can be computed on a
recon�gurable mesh of size k � n in time O(log� k+ (log n=

p
k log k)).

1 Introduction

Processor arrays with a dynamically recon�gurable bussytem promise interest-
ing applications because they allow to solve several problems much faster than
on most other parallel architectures. The recon�gurability of the bussytem al-
lows to transfer computations from time to space, because the formation of a
new bus structure may depend on local data and can therefore be used as part
of the computation. Clearly, there is a tradeo� between the size of the mesh
and the time that can be achieved to solve a problem. Therefore, many of the
fast algorithms for recon�gurable meshes work only for instances that are small
compared to the size of the mesh (e.g. constant time summation of n numbers
on a mesh of size n � log3 n [10]) or for sparse instances (e.g. matrix multiplication
where time depends on the degree of sparseness of the matrices [5]).

One of the basic problems on recon�gurable meshes studied by several au-
thors is the summation of binary values where each processor stores at most
one bit. Algorithms for this problem are used as building blocks to solve several
other problems (e.g. summation of integers [1], matrix multiplication [10]).

There are two models of recon�gurable meshes that di�er by the buswidth
and the maximal length of the operands for the arithmetic and logic operations
that can be performed by the processors. In the bit-model the width of the
buses is only one bit and processors can perform only bit operations. Whereas
in the word-model the width of buses is at least the logarithm of the number
of processors and the processors can perform operations on operands of that
length. The bit summation problem has been studied for both models.

For the bit-model Miller et al. [6] and Wang et al. [11] have shown that n
binary values can be added in time O(1) on an n � n bit-model recon�gurable
mesh. This was improved by Jang et al. [4] who gave aO(1) algorithm to compute

1em? This work was done during the authors stay at the Faculty of Computer Science,
University of Dortmund, Germany



the sum of n2 bits (one per PE) on a bit-model n logn � n logn recon�gurable
mesh. Note, that in both cases the bits of the result value has to be stored in
di�erent processors.

For the word-model recon�gurable mesh the following results are known.
Jang and Prasanna [2] showed that n bits can be summed in time O(t) on an
2n1=t � n RG for 1 � t � logn. Olariu et al. [9] showed that pre�x sums of n
binary values can be computed in time O((logn= logm)+ 1) on an m�n recon-
�gurable mesh. Miyashita et al. (cited in [8]) showed how to solve the pre�x-sum
problem for n binary values in O(log logn) time on an (log2 n=(log logn)2) � n
recon�gurable mesh. Nakano [8] has shown that the pre�x-sums of n binary
values can be computed in time O(logn=

p
k log k) + log logn) on an k � n re-

con�gurable mesh. This result implies that the problem can be solved in time
O(log logn) on an (log2 n=(log logn)3) � n mesh which improves the result of
Miyashita et al.. Nakano [7] also showed that n bits can be summed up in time
O(logn=

p
k log k + 1) on an k � n recon�gurable mesh. The addition of binary

values on recon�gurable meshes where the number of processors equals the size
of the problem instance was studied by Jang et al. [3]. They showed that an
array of n � n bits can be summed in time O(log� n) on an n � n word-model
recon�gurable mesh. If the size of the mesh is allowed to be log2 n � n2 then
n2 bits can be added in constant time on the word-model recon�gurable mesh
(Jang et al. [3], Park et al. [10]).

In this paper we study the bit summation problem on word-model recon�g-
urable meshes for case that the number of bits is as large the number of pro-
cessors. We generalise the result of Jang et al. [3] by considering k � n meshes.
Moreover, our result partially improves the result of Nakano [7].We show that kn
binary values can be computed in time O(log� k+(logn=

p
k logk)) on a recon�g-

urable mesh of size k�n if n � log3 k. Compared to the result of Nakano we can
handle larger problem instances while using the same number of processors and
the same time if (logn=

p
k log k) � log� k. The basic idea of our algorithm is to

use the method of Nakano �rst in small submeshes to obtain pre�x-remainders
and a small number of remaining bits in every submesh. Then, several submeshes
are combined to a larger submesh. Again the method of Nakano is applied to
obtain pre�x-remainders now with respect to a larger modulus and even fewer
remaining one bits in every submesh. This process is repeated until we end up
with at most n remaining bits in the whole mesh. Then the algorithm of Nakano
is applied directly on the whole mesh.

2 Model of Computation

The model of computation is an SIMD k�n-array of processing elements (PE's)
with dynamically recon�gurable buses as depicted in Figure 1. We assume that
only linear buses can be formed, i.e. every processore can connect only pairs of
its ports. Every PE can read from every bus it is connected to, but only one
PE at a time can write the value of one of its registers on a bus, i.e. we have
CREW-buses. If no PE writes on a bus then its value is 0.



Fig. 1. Recon�gurable mesh (left) and possible connections of ports within a PE (right)

Every PE has a constant number of registers of length logn + log k. Every
PE knows its row and column indices. Within one time step every PE can locally
con�gure the bus, write to and/or read from one of the buses it is connected to,
and perform some local computation. Signal propagation on buses is assumed to
take constant time regardless of the number of switches on the bus | a standard
assumption for this model of computation (e.g. [6]).

3 Nakano's Method

We �rst describe the algorithm of Nakano for computing the sum x of n binary
values a1; a2; : : : ; an on a recon�gurable mesh of size k� n (k � 16). For k � 16
his result holds trivially. The algorithm makes use of the result that pre�x-
remainders modulo m of n binary values can be computed in time O(1) on an
(m+ 1)� n recon�gurable mesh (e.g. Nakano et al. cited in [8]). The idea is to
recursively apply the pre�x-remainders algorithm using the fact that

a1 + a2 + : : :+ an = (a1 + a2 + : : :+ an) mod z + z � (b1 + b2 + : : :+ bn)

where bj = 1 i� aj = 1^ (a1+a2+ : : :+aj) mod z = 0. Instead of computing
pre�x-remainders with respect to some number z directly it is more space e�cient
to compute the pre�x-remainders with respect to the prime factors of z. This
is done in parallel for all prime factors of z using a submesh of size at least
(p + 1) � n for each prime factor p. Number z is chosen as the product of the
�rst q prime numbers p1; p2; : : : ; pq for an integer q de�ned as follows: q is the

maximal value such that q � b
p
k= log kc and pq � bpk log kc�1. By the prime

number theorem it can be shown that this de�nition of q allows to use for every
prime factor pi, 1 � i � q a submesh of size bpk log kc � n and all this can be
done on a mesh of size k � n. By the Chinese Remainder theorem there exists



exactly one y 2 [1 : z] with (a1+a2+: : :+an) mod pi = (a1+a2+: : :+an) mod y
for all i 2 [1 : q]. For this y it holds that (a1 + a2 + : : :+ an) mod z = y.

To determine the �rst q prime numbers each PE Pij, i < j, i � (k log k)1=4,
j � p

k log k tests whether i divides j and sets a ag to 1 if it does. If for all
i < j i does not divide j then j is a prime number. It is easy to determine this
in time O(1) for all j � n in parallel by ORing over the ags in every column.
For identifying which prime number is the ith one, 1 � i � q a simple counting
technique that works in time O(1) can be applied in a q � pq submesh.

To determine the number y for which (a1 + a2 + : : :+ an) mod pi = (a1 +
a2 + : : :+ an) mod y holds for all i 2 [1 : q] the pre�x-remainders are computed
for all pi with respect to the sequence consisting of n one bits. Then it is easy
to determine in time O(1) in every column j, j 2 [1 : z] whether j mod pi =
(a1 + a2 + : : :+ an) mod pi for every i 2 [1 : q].

The computation of z as the product of the �rst q prime numbers is done by
computing in every column j, j � n of the mesh whether j mod pi = 0 holds for
every i 2 [1 : q]. The smallest such j equals z. Clearly this can be done in time
O(1). The whole algorithm of Nakano works as follows.

Algorithm Sum-1 (Nakano [7]):

1. Determine the �rst q(n) prime numbers p1; p2; : : : ; pq
2. Compute z = p1 � p2 � : : : � pq
3. Initialise variables i := 0 and x := 0.
WHILE OR(a1; a2; : : : ; an) DO

4. Set i := i + 1 and compute xi := (a1 + a2 + : : :+ an) mod z.
5. For j 2 [1 : n] set bj := 1 if aj = 1, and a1 + : : : + aj mod z = 0.

Otherwise, set bj := 0.
6. Set aj := bj for j 2 [1 : n].
7. x := x+ zi�1 � xi

To analyse the running time of algorithm Sum-1 Nakano has shown the fol-
lowing lemma by using the prime number theorem.

Lemma 1. [Nakano [7]] There exists a constant c > 0 and an integer k0 such

that for all k � k0 q=2 � c �pk= logk and pq=2 � c � pk logk.

Since every of the steps (1) to (7) works in time O(1) it remains to determine
how often steps (4) to (7) are executed. Using Lemma 1 it can be shown that
there exists a constant c > 1 such steps (4) to (7) are executed at most t times

where t is the minimal integer with (c
p

k logk)t � n. Hence the running time is
O((logn=

p
k log k) + 1).

4 The Algorithm

In this section we describe our algorithm to compute the sum of kn bits a1; a2; : : : ;
akn on a k�n recon�gurable mesh.We assume that every PE stores exactly one of



the given bits. We need the following de�nition: For an integerm � 16 let q(m) be
the maximal value such that q(m) � b

p
m= logmc and pq(m) � bpm logmc� 1.

To describe the general idea of the algorithm let us assume �rst that we
have to sum only kn=k0 bits which are stored in the PEs of every k0th row for
some integer k0 � 16. The algorithm starts by partitioning the mesh into small
horizontal slices each of size k0�n. The bits are stored in the PEs of the �rst rows
of the slices. Let am1; am2; : : : ; amn be the bits in the mth slice, m 2 [1 : k=k0].
In every slice m the pre�x remainders modulo z1 := p1 � : : : � pq(k0) of the bits in
the �rst row of the slice are computed using the method of Nakano. After setting
all those one bits amj to zero for which (am1 + am2 + : : : + amj) mod z1 6= 0
holds there are at most n=z1 remaining one bits in the �rst row of each slice.
These bits will be added in the next steps. Now the mesh is partitioned into
larger slices each containing k1 := z1 � k0 rows. All the at most n one bits in
each new slice are sent to disjoint PEs of the �rst row of the slice. Again, pre�x-
remainders of the bits in the �rst row are computed in each slice, but this time
modulo z2 := p1 � : : : � pq(k1). The algorithm proceeds recursively in the same
manner each time using broader slices until there is only one slice left containing
at most n one bits in the �rst row. In this situation the algorithm of Nakano can
be applied directly.

One problem remains, namely, how to compute the (weighted) sum of all
remainders which are obtained during each iteration for every slice. It is not
clear how to do this using a larger mesh or more time (with respect to Big�O).
The idea is to circumvent the problem by glueing together all slices used in one
step of the algorithm so that they form one long band. In every iteration only
one remainder is computed for the whole band.

Now we give a more detailed description of the algorithm called Sum-2. We
�rst assume that we have a k � 3n mesh and kn bits that have to be summed.
The bits are stored in the PEs of the n middle columns, i.e. in PEs Pij with
1 � i � k, n + 1 � j � 2n. We call the submesh containing the bits the centre

and the submesh consisting of the �rst (last) n columns the left (right) side.

In the following we use the operation \the centre is con�gured into a band
of size m � (kn=m)". This operation is realized by partitioning the centre into
slices of size m�n and connecting the last (�rst) PE of row i of slice s, for s odd
(even), to the last (�rst) PE of row i of slice s + 1, i 2 [1 : m], s 2 [1 : k=m � 1]
(for ease of description we assume that m divides k). The sides are used to realize
the connections. How this can be done is depicted in Figure 2.

The algorithm starts by con�guring the centre into a band of size (k0+ 1)�
(kn=(k0 + 1)) for some constant k0 � 16 (for ease of description we assume
k0 + 1 divides kn). For every row of the band the pre�x-remainders of the bits
in the row modulo k0 are computed using the method of Nakano. Afterwards
all bits are set to zero with the exception of those bits for which the pre�x-sum
modulo k0 in the row up to the bit itself is zero. Then we compute the sum of the
remainders modulo k0 of the bits in a row that were obtained one for each row
using an ordinary O(log k0) time tree structured algorithm. The result is sent
to PE P11 and stored there in variable x which will later hold the �nal result.



centreleft side right side

Fig. 2. Forming a band by connecting slices. Right: detail showing connections between
PEs (dark boxes) of two slices using the right side PEs (light boxes)

Observe, that there are at most n=k0 remaining one bits in every row. The centre
is partitioned into slices of size k0� n and the at most k0� (n=k0) = n one bits
in a slice are sent to disjoint PEs of the �rst row of that slice.

Now the algorithm determines all prime numbers p1; p2 : : : ; pq(k) as in the
algorithm of Nakano. The centre is con�gured into a band of size k1 � (kn=k1)
with k1 := k0. Then pre�x-remainders modulo z1 := p1 � : : : �pq(k1) are computed
in the band. Afterwards all one bits are set to zero with the exception of those
one bits for which the pre�x-sum in the band up to the bit itself equals 0 mod z1.
At most kn=(z1 � k0) one bits are remaining in the �rst row of the band. The
computed remainder of the bits in the band modulo z1 is sent to PE P11 where
it is multiplied by k0 and added to x.

Now, the centre is partitioned into broader slices containing k2 := z1 �k0 rows.
All one bits in a slice are sent to disjoint PEs in the �rst row of the slice. The
algorithm proceeds similar as above, i.e. the centre is con�gured into a band
of size k2 � (kn=k2) with, the pre�x remainders modulo z2 := p1 � : : : � pq(k2)
are computed and so forth. This procedure is applied recursively on bands of
increasing width and decreasing length. The recursion stops when the band has
width n. Then the mesh contains at most n remaining one bits which are stored in
di�erent PEs of the �rst row and the algorithm of Nakano can be applied directly
to compute the sum of the remaining bits. The obtained result is multiplied by
zr�1 � zr�2 � : : : � z1 � k0 and added to variable x in PE P11 which stores now the
�nal result.

It remains to describe how the algorithm Sum-2 works on a mesh of size
k � n. The idea is to fold the sides that were used to realize the connections
into the centre. To make this possible we perform the procedure | called Sum-



Submesh | described above four times. The �rst time we sum only bits stored
in PEs of the odd rows and odd columns reserving the other PEs for realizing the
connections (see Figure 3). The other three times only bits in PEs of odd rows
and even columns (respectively even rows and odd columns, even rows and even
columns) are summed. As can be seen fromFigure 3 we also need a \free" column
before and behind the PEs and a \free" row below the PEs containing the bits
that are summed in the procedure described above. Therefore algorithm Sum-2
starts by applying the algorithm of Nakano to sum the bits in the �rst and last
columns and the last row so that they become free (Procedure Sum-Submesh is
given later).

Fig. 3. Connections between two slices

Algorithm: Sum-2:

1. Compute the �rst prime numbers p1; p2; : : : ; pq(k) using a submesh of size

(k log k)1=4 �p
k log k.

2. Compute the sum of the bits in the �rst and last columns, and the last row
using algorithm Sum-1 three times.

3. If n and k are both even apply procedure Sum-Submesh four times to the
following submeshes (the cases that n or k are odd are similar and omitted
here): the submesh consisting of columns 1 to n � 1 and rows 1 to k, the
submesh consisting of columns 1 to n and rows 1 to k, the submesh consisting
of columns 1 to n�1 and rows 2 to k�1, the submesh consisting of columns
1 to n � 1 and rows 2 to k � 1.

In the following procedure Sum-Submesh we assume that we have a mesh
called centre of size k�n which contains the bits to be added and also \hidden"
columns and rows of PEs that allow to con�gure the centre as a band. Recall
that the prime numbers p1; : : : ; pq(k) have already been computed by Sum-2 be-
fore procedure Sum-Submesh is invoked.



Procedure: Sum-Submesh:

1. Con�gure the centre as a band of size (k0 + 1)� kn=(k0 + 1).
2. FOR i = 1 TO k0 + 1 DO

Compute the pre�x-remainders modulo k0 of the bits in row i of the
band. Let xi be the remainder modulo k0 of the bits in row i. Let
ai;1 : : : ; ai;kn=(k0+1) be the bits in row i of the band. Set bij := 1,
j 2 [1 : kn=(k0 + 1)] if aij = 1 and ai1 + : : : + aij mod k0 = 0 and,
otherwise, set bij := 0.

3. Determine the sum y of all xi that were computed in Step (2) by a simple
O(log k0) tree structured algorithm.Send the result to PE P11 and set x := y.

4. Partition the centre into slices of size k0�n and send all bij's with value one
into disjoint PEs of the �rst row of the slice as follows: In row m, m 2 [1 : k0]
there is at most one 1-bit bij in columns 1 + (l � 1) � k0 to l � k0 for each
l 2 [1 : n=k0]. If there is such a 1-bit send it �rst in its row to the PE in
column m+(l� 1) � k0 and then along the column to the PE in the �rst row
of the slice.

5. Set r = 1 and k1 = k0.

WHILE kr < k DO

6. Determine zr := p1 � p2 � : : : � pq(kr) and send it to PE P11.
7. Con�gure a kr � kn=kr band. Compute the pre�x remainders modulo

zr of the bits in the �rst row. Let a1; a2; : : : ; akn=kr be the bits in the
�rst row of the band. For i 2 [1 : kn=kr] set bi := 1 if ai = 1 and
a1 + : : :+ ai mod zr = 0 and otherwise, set bi := 0. Send the obtained
remainder modulo zr o� all bits in the �rst row to PE P11, multiply it
by zr�1 � : : : � z1 � k1 and add it to variable x.

8. Partition the centre into slices of size kr+1 � n where kr+1 := kr � zr .
Similar as in Step (4) send all bi's which are one into disjoint PEs of the
�rst row of it's slice.

9. Set r := r + 1

10. Compute the sum of the remaining n one bits using algorithm Sum-1. Send
the result to PE P11, multiply it by zr � : : : � z1k1 and add it to variable x.

The correctness of algorithm Sum-2 is easy to show. Let us analyse the run-
ning time. Step (1) of Sum-2 takes time O(1). Step (2) applies the algorithm
Sum-1 and therefore takes time O(logn=

p
k log k + 1). The �nal Step (3) in-

vokes procedure Sum-Submesh four times. It remains to analyse the running
time of Sum-Submesh. Step (1) of Sum-Submesh takes constant time. Step (2)
takes time O(k0 + 1) which is O(1) since k0 is constant. Step (3) is done in
time O(logk0) which is constant. Each of the steps (4) - (9) can be done in
time O(1). Step (10) applies the algorithm Sum-1 and therefore needs time
O(logn=

p
k log k + 1). It remains to analyse how often the steps (6) - (9) are

repeated. By Lemma 1 there exists a constant c > 0 and an integer k̂ such that
for all k � k̂ we have q=2 � c �pk= logk and pq=2 � c � pk log k. Thus, for

k0 = k1 � k̂ we have that log(p1 � p2 � : : : � pq(k1)) � c � (q(k1)=2) � logpq(k1)=2 �



c � pk1= logk1 � log(c �
p
k1 log k1) � 1

2c �
p
k1 log k1. This implies that z1 =

p1 � : : : � pk1 � ĉ
p

k1 log k1 for some constant ĉ. Hence k2 � k1 � ĉ
p

k1 log k1 . It-

eratively one can show that kj � kj�1 � ĉ
p

kj�1 log kj�1 , j 2 [2 : r]. Thus for

k1 large enough, but still constant, we have kj � kj�1ĉ
p

kj�1 logkj�1 � 2
p

kj�1 .

Thus kj � 2

p
2
p
kj�2

. For kj�2 large enough we obtain kj � 2kj�2 . Thus for k0
large enough we have r=2 � log� k = O(log� k). Altogether we obtain that the
running time of algorithm Sum-2 is O(log� k+ logn=

p
k log k) and the following

theorem is shown.

Theorem 1. The sum of kn bits can be computed in O(log� k+ logn=
p
k logk)

time on a recon�gurable mesh of size k � n using only linear buses.

5 Conclusion

We have shown that kn binary values can be computed on a recon�gurable mesh
of size k� n in time O(log� n+ (logn=

p
k logk)). This result partially improves

a result of Nakano who has shown for a recon�gurable mesh of the same size as
ours that the sum of n can be computed in time O(logn=

p
k log k) + 1). That

is we can add more bits on a recon�gurable mesh of the same size in the same
time if (logn=

p
k logk) � log� k.

References

1. P. Fragopoulou, On the e�cient summation of n numbers on an n-processor recon-
�gurable mesh. Par. Proc. Lett. 3: 71-78, 1993.

2. J. Jang, V.K. Prasanna. An optimal sorting algorithm on recon�gurable mesh. In:
Proc. Int. Parallel processing Symp., 130-137, 1992.

3. J.-W. Jang, H. Park, V.K. Prasanna. A fast algorithm for computing histogram on
recon�gurable mesh. In: Proc. of Frontiers of Massively parallel Computation '92,
244-251, 1992.

4. J.-W. Jang, H. Park, V.K. Prasanna. A bit model of recon�gurable mesh. In :Proc.
Workshop on Recon�gurable Architectures, Cancun, Mexico, 1994.

5. M. Middendorf, H. Schmeck, H. Schr�oder, G. Turner. Multiplication of matrices
with di�erent sparseness properties. to appear in: VLSI Design.

6. R. Miller, V.K. Prasanna-Kumar, D.I. Reisis, Q.F. Stout. Parallel Computations on
Recon�gurable Meshes. IEEE Trans. Comput. 42: 678-692, 1993.

7. K. Nakano. E�cient summing algorithms for a recon�gurable mesh. In: Proc. Work-
shop on Recon�gurable Architectures, Cancun, Mexico, 1994.

8. K. Nakano. Pre�x-sum algorithms on recon�gurable meshes. Par. Process. Lett., 5:
23-35, 1995.

9. S. Olariu, J. L. Schwing, J. Zhang. Fundamental algorithms on recon�gurable
meshes. Proc. 29th Allerton Conference on Communications, Control, and Com-
puting, 811-820, 1991.

10. H. Park, H.J. Kim, V.K. Prasanna. An O(1) time optimal algorithm for multiplying
matrices on recon�gurable mesh. Inf. Process. Lett., 47: 109-113, 1993.

11. B.F. Wang, G.H. Chen, H. Li. Con�gurational computation: A new computation
method on processor arrays with recon�gurable bus systems. In: Proc. 1st Workshop
on Parallel Processing, Tsing-Hua University, Taiwan, 1990.


