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Abstract. The recon�gurable mesh (R-Mesh) has drawn much inter-
est in recent years, due in part to its ability to admit extremely fast
algorithms for a large number of problems. For these algorithms to be
useful in practice, the R-Mesh must be scalable; that is, any algorithm
designed for a large R-Mesh should be able to run on a smaller R-Mesh
without signi�cant loss of e�ciency. This amounts to designing a \scal-
ing simulation" that simulates an arbitrary step of an N � N R-Mesh

on a smaller P � P R-Mesh in O

�
N
2

P2 f(N;P )
�
steps; f(N; P ) is a non-

decreasing function representing the simulation overhead. The aim is to
minimize this overhead, ideally to a constant.

In this paper, we present a scaling simulation for the general (uncon-
strained) R-Mesh. This simulation has an overhead of logN (smaller
than the log P log N

P
overhead of the previous fastest scaling simulation),

using a CREW LRN-Mesh (a weaker version of the General R-Mesh) as
the simulating model; prior simulations needed concurrent write.

1 Introduction

Recon�gurable bus-based models use dynamically alterable connections between
processors to create various, changing, bus con�gurations. This allows e�cient
communication, and further, allows faster computation than on conventional
\non-recon�gurable" models. This paper deals with the ability of a recon�g-
urable mesh (R-Mesh) [3, 6, 7, 10] to adapt an algorithm instance of an arbitrary
size to run on a given smaller model size without signi�cant loss of e�ciency.
This ability holds particular signi�cance for exibility in algorithm design and
for running algorithms with various input sizes (designed for an arbitrary sized
model) on an available model of given size. More formally, for any P < N , let

a P � P R-Mesh simulate a step of an N �N R-Mesh, in O
�
N

2

P 2 f(N;P )
�
time,

where f(N;P ) is a non-decreasing function that represents the simulation over-

head. If the simulation overhead, f(N;P ), is a constant, then the model is said
to have an optimal scaling simulation. On the other hand, if f(N;P ) depends
only on P and is independent of N , then the model is said to have a strong

scaling simulation [5]. The goal of designing a scaling simulation is to reduce



f(N;P ), ideally to a constant. Throughout this paper we assume the simulated
(resp., simulating) R-Mesh to be of size N �N (resp., P � P ).

Recon�gurable models possess a large body of fast algorithms, yet only a
handful of results exist for scaling these models. Previously, Maresca [8] es-
tablished that the Polymorphic Processor Array (PPA) has an optimal scaling
simulation. The PPA restricts the pattern of buses that can be created, severely
curtailing the power of the model [14]. Ben-Asher et al. [1] proved that the
LRN-Mesh (a restriction of the R-Mesh) also has an optimal scaling simulation.
The LRN-Mesh admits only certain patterns of buses, making it unsuitable for
fundamental problems such as graph connectivity [2]. Trahan and Vaidyanathan
[13] have shown that, for certain restrictions of local connections, the RMBM (a
recon�gurable bus-based model) has a strong scaling simulation. Recently, the
authors [4, 5] have proved that the FR-Mesh (another restriction of the R-Mesh)
has a strong scaling simulation with a simulation overhead of logP . These results
impose restrictions on the model scaled (though, allowing increase in number of
processors, the FR-Mesh is as \powerful" as the R-Mesh [12]).

The best results, so far, on scaling the general (unrestricted) R-Mesh are due
to the authors [5] and Matias and Schuster [9]. We developed a scaling simu-
lation for the unrestricted R-Mesh with a simulation overhead of logP log N

P
.

Matias and Schuster [9] designed a randomized scaling algorithm for the unre-
stricted R-Mesh simulated on the LRN-Mesh. This method has a constant (with
high probability) simulation overhead, when P � N

logN log logN
; the simulating

LRN-Mesh, however, uses the Arbitrary rule to resolve concurrent writes, a
rule not easily implementable on a bus.

In this paper, we construct a deterministic scaling simulation for the unre-
stricted R-Mesh, which improves on the best previous simulation overhead of
logP log N

P
. The key component of this scaling simulation is a novel method to

convert a general R-Mesh algorithm to run on an LRN-Mesh of the same size.
The conversion identi�es structures that comprise a spanning forest of reduced
bus con�gurations, then emulates these with linear buses following Euler tours of
the trees. This approach has a logN simulation overhead. Further, the simulating
LRN-Mesh uses only exclusive writes, whereas prior scaling simulations needed
concurrent writes. We next extend the algorithm to a lower-overhead simulation
of an FR-Mesh and to a simulation by a model using pipelined optical buses
(PR-Mesh). Table 1 summarizes the results of this paper.

Table 1. Summary of results for the general R-Mesh and FR-Mesh scaling simulations

Simulation overhead

CREW LRN-Mesh or

PR-Mesh
CRCW R-Mesh

CRCW FR-Mesh
CREW LRN-Mesh or

PR-Mesh

N �N Simulated Model P � P Simulating Model

logN

logP



Section 2 describes the R-Mesh and some of its versions. Sections 3.1 and
3.2 describe the scaling simulations of an R-Mesh and FR-Mesh using a CREW
LRN-Mesh. Section 3.3 presents scaling simulations of an R-Mesh and FR-Mesh
using an optical model. Finally, Section 4 identi�es some open problems.

2 The Recon�gurable Mesh

An R�C Recon�gurable Mesh (R-Mesh) is a two-dimensional array of processors
connected in an R�C grid. Each processor in the R-Mesh has direct \external
connections" to adjacent processors through a set of four input/output ports.
A processor can internally partition its set of ports so that ports in the same
block of a partition are fused. These partitions, along with external connections
between processors, de�ne a global bus structure that connects the ports of
processors. All ports that are part of the same bus are said to be in the same
component of the R-Mesh. Figure 1 shows a component in bold. Also, Fig. 1 shows
a 3�5 R-Mesh, depicting the �fteen possible port partitions of a processor. The
R-Mesh is a synchronous model that may change its bus con�gurations at each
step. It also assumes negligible delay on buses [7, 8, 10].

Fig. 1. Port partitions of an R-Mesh. Processor (0,0) is placed on the upper left corner.

The LRN-Mesh is a restricted version of the R-Mesh that allows processors to
fuse only pairs of ports together or leave ports unfused. (That is, the LRN-Mesh
does not permit the connections in processors (0,2), (0,4), (1,0), (1,1), and (2,2)
of Fig. 1.) The FR-Mesh is another restriction of the R-Mesh that permits only
the \fusing" and \cross-over" connections shown in processors (2,2) and (2,3),
respectively, of Fig. 1. A component is linear i� it connects its ports only as
allowed by the LRN-Mesh; otherwise the component is non-linear.

In most of this paper, we assume the concurrent read concurrent write
(CRCW) model. Let the term reading (writing) port to refer to a port through
which a processor is reading (writing). The R-Mesh will resolve concurrent writes
by any of the following rules: Common (where all writing ports of a component
must write the same value), Collision (where concurrent writes result in a
distinguished collision symbol being written on the component), or Collision+

(that behaves like the Common rule when all processors attempt to write the
same value on a component, and like Collision otherwise). In this paper, we
will also discuss the Priority rule (in which the lowest indexed writing port



of a component succeeds in writing) and the Arbitrary rule (in which an ar-
bitrary port succeeds in writing). Priority and Arbitrary rules are di�cult
to implement and will be used only as algorithmic tools. Regardless of the write
rule used, the �nal value on the bus is called the bus data.

3 Scaling Simulation via LRN-Mesh

We now design a scaling simulation of the R-Mesh by an LRN-Mesh, where the
sizes of both machines have the same order, and then (optimally) scale down
the simulating LRN-Mesh. We will later re�ne this result so that the simulating
LRN-Mesh uses only exclusive writes. The simulation allows the powerful and
exible algorithm design permitted by the CRCW model, while using the more
feasible bus implementation of the CREW model.

3.1 Simulation Description

We will describe the simulation through the following phases:
1. Simulation of an N �N CRCW R-Mesh on a 2N � 2N CRCW LRN-Mesh
2. Simulation of an N �N CRCW R-Mesh on a P � P CRCW LRN-Mesh
3. Simulation of an N �N CRCW R-Mesh on a P � P CREW LRN-Mesh

Phase 1. This phase establishes the following result.

� For any P < N , any step of an N � N Common, Collision,
Collision+, or Priority CRCW R-Mesh can be simulated on a
2N�2N Common, Collision, Collision+, or Priority CRCW
LRN-Mesh in O(logN) time.

We �rst describe the result for the Common write rule, then include the
other write rules. We now construct a simulation of an N �N Common CRCW
R-Mesh, Q, on a 2N � 2N Common CRCW LRN-Mesh, Z , in O(logN) time.

A group of four processors of Z simulates a processor ofQ, where Fig. 2 shows
selected con�gurations of a processor of Q and the corresponding con�gurations
assumed by a group of Z . Assign to each bus of Z a direction (in or out) as
shown in Fig. 2; this assignment is mainly for ease of explanation and does not
require the \more powerful" directional model [2]. Allow each processor in the
group to write only to outgoing buses and read only from incoming buses.

Since an LRN-Mesh can simulate linear components directly, we focus our
attention on non-linear components. Let the non-linear graph of Q be a graph
in which, for each nonlinear component, the processors are nodes and the links
between them are edges. The idea in this simulation is to iteratively grow a
spanning tree for each component in the non-linear graph of Q. During the
spanning tree construction, we simultaneously construct an Euler tour of each
tree. The Euler tour enables the LRN-Mesh to handle each tree as a linear bus.
For clarity, we describe the algorithm acting on only one component on the
non-linear graph.
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Fig. 2. Group con�gurations for processors with special types of connections:
a-d) linear; e,f) non-linear; g) end-point bus.

We now describe the simulation. For brevity, we omit details.

Step 1 - Bus contraction: This step partially contracts the non-linear graph.
It removes each chain that connects a leaf (degree 1 node) to an internal node
(degree 3 or 4 node) to construct a raked graph (Fig. 3). Before removing these
chains, Z simulates each corresponding bus segment independently and obtains
their resulting bus data; these values will be used later during Step 7.

(a) (b)

Fig. 3. a) Initial non-linear graph of the component (before the bus contraction of Step
1); b) raked graph (after Step 1).

Step 2 - Initiating spanning tree construction: This step further reduces the
raked graph to a distilled graph and starts constructing a spanning tree. Let each
internal node (degree 3 or 4) and leaf (degree 1) of the raked graph be a node
of the distilled graph. Let a chain of degree-2 nodes in the raked graph be an
edge in the distilled graph. Denote the corresponding groups of processors in
Z as node groups and edge groups, respectively. Each node group chooses its
neighboring node group with smallest index as its parent. Add the edge between
each parent and child into a forest (that eventually will be a spanning tree).
Denote as a root group a group with index smaller than any of its neighbors.

Step 3 - Initial Euler tour construction: This step constructs an Euler tour
in each tree of the forest obtained in Step 2 using the con�gurations shown in



Fig. 2a-d for edge groups and Fig. 2e-g for node groups. The root group of each
tree acts as a leader and broadcasts its index to all the node groups in its tree.

Repeat Steps 4 and 5 2 logN times to complete a spanning forest of the
distilled graph.

Step 4 - Grafting trees: This step combines trees in the forest by a graft

operation, in which each tree chooses a neighboring tree with a smaller label
and grafts onto it. This operation basically changes the internal connections of
a node group in each of the two trees to incorporate the edge between them into
the Euler tour.

Step 5 - Grafting rejected trees: It is possible that a tree has not been subject
to a graft operation in Step 4, despite having a neighbor in another tree via an
unselected edge. Force each such tree to graft onto some neighboring tree.

Step 6 - Adding unselected edges to the spanning tree: This step extends the
spanning tree of the distilled graph to a spanning tree of the raked graph (Fig. 4).

(c)

Edge groups

Node groups

(a) (b)

Fig. 4. a) Raked graph (after Step 1); b) Spanning tree of the distilled graph (before
Step 6); c) Spanning tree of the raked graph (after Step 6).

Step 7 - Simulating bus communication: This step simulates the communica-
tion through the Euler tours of the spanning tree obtained in Step 6. Since an
Euler tour connects all the ports of the same component to the same bus, the
writer processors of that component can simulate the write rule of Q. Finally,
broadcast the resulting bus data to the bus segments contracted in Step 1. This
step completes the simulation of the general R-Mesh by the LRN-Mesh.

Example: Figure 4a shows a raked graph after the contraction step (Step 1).
The bold bus in Fig. 4b represents the spanning tree of the distilled graph
generated after the iterative process of Steps 4 and 5. Notice that all the node
groups are part of the spanning tree, but not all of the edge groups. Figure 4c
shows the spanning tree of the raked graph after Step 6.



All of the above steps run in constant time. The running time of the algorithm
is due to the iterative process on Steps 4 and 5. After Step 3, it is possible to have
O
�
N2

�
trees in a component. By grafting these trees in Steps 4 and 5, the number

of trees reduces by at least half, so the algorithm runs in O(logN) iterations to
complete the construction of the spanning tree. This algorithm readily adapts to
the Collision and Collision+ rules. When Q uses the Priority rule, solve
concurrent writes in Steps 1 and 7 using priority resolution in O(logN) time.

Phase 2. This phase uses the scaling simulation of Ben-Asher et al. [1] to scale
the N�N Collision+ CRCW LRN-Mesh down to a P�P Collision+ CRCW
LRN-Mesh. By extending this result to other write rules, we obtain the following.

� For any P < N , any step of an N � N Common, Collision,
Collision+, or Priority CRCW R-Mesh can be simulated on a
P � P Common, Collision, Collision+, or Priority CRCW

LRN-Mesh in O
�
N

2

P 2 logN
�
time.

Phase 3. This phase simpli�es the simulating machine R to use only exclusive
writes. Trahan et al. [14] proved for the RMBM recon�gurable model that the
CREW version can simulate the CRCW version (for the write rules considered
here) in constant time, utilizing the ability to perform neighbor localization (a
procedure that �nds the nearest marked processor to a reference processor). We
extend this idea to the simulation via LRN-Mesh expressed in Phase 2. It is
easy to prove that a CREW linear bus that can be segmented can simulate a
Common, Collision, or Collision+ CRCW linear bus in constant time by
applying neighbor localization.

Since a P �P CREW LRN-Mesh simulates a P �P Common, Collision,
or Collision+ LRN-Mesh in constant time, then by using the result of Phase 2
we obtain the following theorem.

Theorem 1. For any P < N , any step of an N � N Common, Collision,

Collision+, or Priority CRCW R-Mesh can be simulated on a P�P CREW

LRN-Mesh in O
�
N

2

P 2 logN
�
time.

Although Matias and Schuster [9] also simulated the general R-Mesh via the
LRN-Mesh, their simulation is randomized and quite di�erent from the one pro-
posed in this paper. Their simulation computes connected components in two
stages. In the �rst stage, they obtained the connected components in each P �P
sized window of Q. In the second stage, they completed the process, calculating

the connected components on a graph with O
�
N

2

P

�
nodes and O

�
N

2

P

�
edges.

The connected components algorithm in the second stage is the LRN-Mesh sim-
ulation of a randomized PRAM algorithm. On the other hand, our connected
components algorithm (spanning forest construction) is deterministic and the
input is a graph with O

�
N2

�
nodes and O

�
N2

�
edges. Another important dif-

ference is that, to attain the stated overhead in the simulation of Matias and



Schuster, the write rule for the simulating machine must be Arbitrary, which
is di�cult to implement in a bus. Our simulation uses only exclusive writes.

3.2 Scaling Simulation of FR-Mesh using LRN-Mesh

The authors [5] previously developed a scaling simulation for the FR-Mesh. By
applying Theorem 1 in some portions of this FR-Mesh scaling simulation, an
LRN-Mesh can simulate an FR-Mesh with simulation overhead of O(logP ).

Corollary 2. For any P < N , any step of an N � N Common, Collision,

Collision+, or Priority CRCW FR-Mesh can be simulated on a P � P

CREW LRN-Mesh in O
�
N

2

P 2 logP
�
time.

3.3 Simulation of R-Mesh by PR-Mesh

The Pipelined Recon�gurable Mesh or PR-Mesh [12] is a special type of recon-
�gurable mesh that uses optical buses. It can con�gure its port connections to
form linear buses as the LRN-Mesh can. Each optical bus can perform several
one-to-one communications in constant time by using pipelining. An optical bus
consists of two bus segments (upper and lower) connected at one of the ends,
forming a directional U-shaped bus. Processors use the upper bus to write and
the lower bus to read.

A P � P PR-Mesh can simulate each step of a P � P CREW LRN-Mesh
with no cycles in constant time as follows. Scale the LRN-Mesh down to a
P

2
� P

2
LRN-Mesh. Then, replicate the connections of this new LRN-Mesh on

the PR-Mesh, creating a double bus structure to decide which of the two end-
processors connects the upper and lower segments. Finally, use only one of these
two buses to broadcast the written value. (This simulation corresponds to those
in earlier papers [11, 12], though they did not explicitly address the leader elec-
tion problem.) If the LRN-Mesh has cycles, the PR-Mesh can �nd a leader within
the cycle in an additional O(logP ) time, then break the cycle, and proceed as
if the LRN-Mesh was acyclic.

Corollary 3. For any P < N , any step of an N � N Common, Collision,

Collision+, or Priority CRCW R-Mesh can be simulated on a P�P PR-Mesh

in O
�
N

2

P 2 logN
�
time.

Corollary 4. For any P < N , any step of an N � N Common, Collision,

Collision+, or Priority CRCW FR-Mesh can be simulated on a P � P

PR-Mesh in O
�
N

2

P 2 logP
�
time.

Remark: The O(logP ) time to break cycles of the LRN-Mesh is an additive
overhead in the simulation overhead of Corollaries 3 and 4 because the PR-Mesh
performs this operation only once per each of the

�
N

2

P 2

�
windows.



4 Open Questions

Open problems include investigating whether or not the General R-Mesh has an
optimal scaling simulation or at least a strong scaling simulation. Another re-
search direction is to �nd con�gurations (other than LRN-Mesh and FR-Mesh)
that are useful computationally and have optimal or strong scaling simulations.
Finally, is priority resolution in o(logP ) time possible on a P�P FR-Mesh using
Common or Collision rules? The answer to this could immediately improve
simulation overheads for the R-Mesh and FR-Mesh.
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