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Abstract
The IBM RS/6000 SP system is one of the most cost-

effective commercially available high performance machines.
IBM RS/6000 SP systems support the Message Passing In-
terface standard (MPI) and LAPI. LAPI is a low level, reli-
able and efficient one sided communication API library, imple-
mented on IBM RS/6000 SP systems. This paper explains how
the high performance of the LAPI library has been exploited
in order to implement the MPI standard more efficiently than
the existing MPI. It describes how to avoid unnecessary data
copies at both the sending and receiving sides for such an im-
plementation. The resolution of problems arising from the mis-
matches between the requirements of the MPI standard and the
features of LAPI is discussed. As a result of this exercise, cer-
tain enhancements to LAPI are identified to enable an efficient
implementation of MPI on LAPI. The performance of the new
implementation of MPI is compared with that of the underly-
ing LAPI itself. The latency (in polling and interrupt modes)
and bandwidth of our new implementation is compared with
that of the native MPI implementation on RS/6000 SP systems.
The results indicate that the MPI implementation on LAPI per-
forms comparably or better than the original MPI implemen-
tation in most cases. Improvements of up to17:3% in polling
mode latency,35:75% in interrupt mode latency, and20:9%
in bandwidth are obtained for certain message sizes. The im-
plementation of MPI on top of LAPI also outperforms the na-
tive MPI implementation for the NAS Parallel Benchmarks. It
should be noted that the implementation of MPI on top of LAPI
is not a part of any IBM product and no assumptions should
be made regarding its availability as a product.

1 Introduction
The IBM RS/6000 SP1 system [1, 9] (referred to as SP in

the rest of this paper) is a general-purpose scalable parallel
system based on a distributed-memory, message-passing archi-
tecture. Configurations ranging from 2-node systems to 128-
node systems are available from IBM. The uniprocessor nodes
are available with the latest Power2-Super (P2SC) micropro-

1IBM, RS/6000, SP, AIX, Power-PC, and Power2-Super are trade-
marks or registered trademarks of the IBM Corporation in the United
States or other countries or both.

cessors and the TB3 adapter. The SMP nodes are available
with the 4 way, Power-PC 332MHz microprocessors and the
TBMX adapter. The nodes are interconnected via a switch
adapter to a high-performance, multistage, packet-switched
network for interprocessor communication capable of deliver-
ing bi-directional data-transfer rate of up to 160 MB/s between
each node pair. Each node contains its own copy of the stan-
dard AIX operating system and other standard RS/6000 system
software.

IBM SP systems support several communication libraries
like MPI [6], MPL and LAPI [4, 7]. MPL, an IBM designed
interface, was the first message passing interface developed by
IBM on SP systems. Subsequently, after MPI became a stan-
dard it was implemented by reusing some of the infrastruc-
ture of MPL. This reuse allowed for SP systems to provide an
implementation of MPI quite rapidly, but also imposed some
inherent constraints on the MPI implementation which are dis-
cussed in detail in Section 2. In 1997, the LAPI library inter-
face was designed and implemented on SP systems. The pri-
mary design goal for LAPI was to define an architecture with
semantics that would allow efficient implementation on the un-
derlying hardware and firmware infrastructure provided by SP
systems. LAPI is a user space library, which provides a one-
sided communication model thereby avoiding the complexities
associated with two-sided protocols (like message matching,
ordering, etc.).

In this paper we describe the implementation of the MPI
standard on top of LAPI (MPI-LAPI) to avoid some of the in-
herent performance constraints of the current implementation
of MPI (native MPI) and to exploit the high performance of
LAPI. There are some challenges involved in implementing a
2-sided protocol such as MPI on top of a 1-sided protocol such
as LAPI. The major issue is finding the address of the receiv-
ing buffer. In 2-sided protocols, the sender does not have any
information about the address of the receive buffer where the
message should be copied into. There are some existing solu-
tions to this problem. A temporary buffer can be used at the
receiving side to store the message before the address of its
destination is resolved. This solution incurs the cost of a data
copy which increases the data transfer time and the protocol
overhead especially for large messages. An alternative solu-
tion to this problem is using a rendezvous protocol, in which



in response to the request from the sender, the receiver pro-
vides the receive buffer address to the sender, and then the
sender can send the message. In this method the unnecessary
data copy (into a temporary buffer) is avoided, but the cost
of roundtrip control messages for providing the receive buffer
address to the sender impacts the performance (especially for
small messages) considerably. The impact is increased latency
and control traffic. It is therefore important that a more effi-
cient method be used for resolving the receive buffer address.
In this paper, we explain how the flexibility of the LAPI ar-
chitecture is used to solve this problem in an efficient manner.
Another challenge in implementing MPI on top of LAPI is to
keep the cost of enforcing the semantics of MPI small so that
the efficiency of LAPI is realized to the fullest. Another mo-
tivation behind our effort has been to provide better reuse by
making LAPI the common transport layer for other communi-
cation libraries. Once again, it should be noted that MPI-LAPI
is not a part of any IBM product and no assumptions should be
made regarding its availability as a product.

This paper is organized as follows: In Section 2, we detail
the different messaging layers in the current implementation
of MPI. In Section 3, we present an overview of LAPI and its
functionality. In Section 4, we discuss different MPI commu-
nication modes and show how these modes are supported by
using LAPI. In Section 5, we discuss different strategies that
are used to implement MPI on top of LAPI and the various
changes we made to improve the performance of MPI-LAPI.
Experimental results including latency, bandwidth, and bench-
mark performance are presented in Section 6. Related work is
discussed in Section 7. In Section 8, we outline some of our
conclusions.

2 The Native MPI Overview
The protocol stack for the current implementation of MPI

on SP systems is shown in Figure 1a. This protocol stack con-
sists of several layers. The functions of each of the layers is
described briefly below:

Pipes - reliable bytes stream

Switch Hardware

MPI - MPI semantics layer

Adapter Hardware

Adapter Microcode

HAL - Packet Layer

Switch Hardware

Adapter Hardware

Adapter Microcode

HAL - Packet Layer

LAPI - reliable transport layer

Switch Hardware

Adapter Hardware

Adapter Microcode

HAL - Packet Layer

LAPI - reliable transport layer

(a) MPI (Messaging Layers) (b) LAPI (Messaging Layers)

MPI - MPI semantics layer

New MPCI - pt-to-pt msg layer

(c) MPI on LAPI (Messaging Layers)

MPCI - pt-to-pt msg layer

Figure 1. Protocol Stack Layering.

� The MPI layer enforces all MPI semantics. It breaks
down all collective communication calls into a series of
point-to-point message passing calls in MPCI (Message
Passing Client Interface).

� The MPCI layer provides a point-to-point communica-
tion interface with message matching, buffering for early
arrivals, etc. It sends data by copying data from the user
buffer into the pipe buffers. The pipe layer then has re-
sponsibility for sending the data. Likewise data received

by the pipe layer is matched, and if the corresponding re-
ceive has been posted, copied from the pipe buffers into
the user buffer, otherwise the data is copied into an early
arrival buffer (if the receive is not posted).

� The Pipes layer provides a reliable byte stream inter-
face [8]. It ensures that data in the pipe buffers is re-
liably transmitted and received. This layer is also used
to enforce ordering of packets at the receiving end pipe
buffer if packets come out of order (the switch network
has four routes between each pair of nodes and packets
on some routes can take longer than other routes based
on the switch congestion on the route). A sliding win-
dow flow control protocol is used. Reliability is enforced
using an acknowledgement-retransmit mechanism.

� The HAL layer (packet layer, also referred to as the Hard-
ware Abstraction Layer) provides a packet interface to
the upper layers. Data from the pipe buffers are packe-
tized in the HAL network send buffers and then injected
into the switch network. Likewise packets arriving from
the network are assembled in the HAL network receive
buffers. The HAL network buffers are pinned down. The
HAL layer handshakes with the adapter microcode to
send/receive packets to/from the switch network.

� The Adapter DMAs the data from the HAL network
send buffers onto the switch adapter and then injects the
packet into the switch network. Likewise, packets arriv-
ing from the switch network into the switch adapter are
DMAed onto the HAL network receive buffers.

The current MPI implementation, for the first and last 16K
bytes of data, incurs a copy from the user buffer to the pipes
buffer and from the pipe buffers to the HAL buffers for sending
messages [8]. Similarly, received messages are first DMAed
into HAL buffers and then copied into the pipe buffer. The
extra copying of data is performed in order to simplify the
communication protocol. These two extra data copies affect
the performance of MPI. In the following sections we discuss
LAPI (Fig. 1b) and explain how LAPI can replace the Pipes
layer (Fig. 1c) in order to avoid the extra data copies and im-
prove the performance of the message passing library.

3 LAPI Communication Model Overview
LAPI is a low level API designed to support efficient one-

sided communication between tasks on SP systems [9]. The
protocol stack of LAPI is shown in Figure 1b. An overview of
the LAPI communication model (for LAPIAmsend) is given
in Figure 2 which has been captured from [7]. Different steps
involved in LAPI communication functions are as follows.
Each message is sent with a LAPI header, and possibly a user
header (step 1). On arrival of the first packet of the mes-
sage at the target machine, the header is parsed by a header
handler (step 2) which is responsible for accomplishing three
tasks (step 3). First, it must return the location of a data buffer
where the message is to be assembled. Second, it may return a
pointer to a completion handler function which is called when
all the packets have arrived in the buffer location previously
returned. Finally, if a completion handler function is provided,



it also returns a pointer to data which is passed to the com-
pletion handler. The completion handler is executed after the
last packet of the message has been received and copied into a
buffer (step 4). In general, three counters may be used so that
a programmer may determine when it is safe to reuse buffers
and to indicate completion of data transfer. The first counter
(org cntr) is the origin counter, located in the address space
of the sending task. This counter is incremented when it is
safe for the origin task to update the origin buffer. The sec-
ond counter, located in the target task’s address space, is the
target counter (tgtcntr). This counter is incremented after the
message has arrived at the target task. The third counter, the
completion counter (cmplcntr) is updated on completion of
the message transfer. This completion counter is similar to the
target counter except it is located in the origin task’s address
space.
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Figure 2. LAPI overview.

The use of LAPI functions may require that the origin task
specify pointers to either functions or addresses in the target
task address space. Once the address of the header handler
has been determined, the sending process does not necessarily
need to know the receive buffer address in the receiver address
space since the header handler is responsible for returning the
receive buffer address. The header handler may, for example,
interpret the header data as a set of tags which, when matched
with requests on the receiving side, may be used to determine
the address of the receive buffer. As we shall see, this greatly
simplifies the task of implementing a two sided communica-
tion protocol with a one sided infrastructure. To avoid dead-
locks, LAPI functions cannot be called from header handlers.
The completion handlers are executed on a separate thread and
can make LAPI calls.

LAPI functions may be broadly broken into two classes
of functions. The first of these are communication functions
using the infrastructure described above. In addition to these
communication functions, there are a number of utility func-
tion provided so that the communication functions may be ef-
fectively used. All the LAPI functions are shown in Table 1.
For more information about LAPI we refer the reader to [7].

LAPI Function Purpose

LAPI Init Initialize the LAPI subsystem
LAPI Term Terminate the LAPI subsystem
LAPI Put Data transfer function
LAPI Get Data transfer function
LAPI Amsend Active message send function
LAPI Rmw Synchronization read-modify-write
LAPI Setcntr Set the value of a counter
LAPI Getcntr Get the value of a counter
LAPI Waitcntr Wait for a counter to reach a value
LAPI Addressinit Exchange addresses of interest
LAPI Fence Enforce ordering of messages
LAPI Gfence Enforce ordering of messages
LAPI Qenv Query the environment state
LAPI Senv Set the environment state

Table 1. LAPI Functions.

4 Supporting MPI on top of LAPI
The protocol stack used for the new MPI implementation is

shown in Figure 1c. The PIPE layer is replaced by the LAPI
layer. The MPCI layer used in this implementation is thinner
than that of the native MPI implementation and does not in-
clude the interface with the PIPE layer. In this section, we first
discuss different communication modes defined by MPI and
then explain how the new MPCI layer has been designed and
implemented to support MPI on top of LAPI.

The MPI standard defines four communication modes:
Standard, Synchronous, Buffered, andReadymodes [6]. These
four modes are usually implemented by using two internal pro-
tocols calledEagerandRendezvousprotocols. The translation
of the MPI communication modes into these internal protocols
in our implementation is shown in Table 2. The Rendezvous
protocol is used for large messages to avoid the potential buffer
exhaustion caused by unexpected messages (whose receives
have not been posted by the time they reach the destination).
The value of Eager Limit can be set by the user and has a de-
fault value of 4096 bytes. This value can be set to smaller or
larger values based on the size of the buffer available for stor-
ing unexpected messages.

In Eager protocol, messages are sent regardless of the state
of the receiver. Arriving messages whose matching receives
have not yet been posted are stored in a buffer called theEarly
Arrival Buffer until the corresponding receives get posted. If
an arriving message finds its matching receive, the message is
copied directly to the user buffer. In the Rendezvous protocol,
a Requestto sendcontrol message is first sent to the receiver
which is acknowledged as soon as the matching receive gets
posted. The message is sent to the receiver only after the ar-
rival of this acknowledgment.

The blocking and nonblocking versions of the MPI com-
munication modes have been defined in the MPI standard. In
the blocking version, after a send operation, control returns to
the application only after the user data buffer can be reused by
the application. In the blocking version of the receive opera-
tion, control returns to the application only when the message
has been completely received into the application buffer. In



MPI Communication Mode Internal Protocol

Standard if (size< Eager Limit)
eager else rendezvous

Ready Eager
Synchronous Rendezvous
Buffered if (size< Eager Limit)

eager else rendezvous

Table 2. Translation of MPI communication modes to
internal protocols.

the nonblocking version of send operations, control immedi-
ately returns to the user once the message has been submit-
ted for transmission and it is the responsibility of the user to
ensure safe reuse of its send buffer (by using MPIWAIT or
MPI TEST operations). In the nonblocking version of receive,
the receive is posted and control is returned to the user. It is
the responsibility of the user to determine if the message has
arrived. In the following sections we explain how the internal
protocols and MPI communication modes are implemented by
using LAPI.

4.1 Implementing the Internal Protocols
As mentioned in Section 3, LAPI provides one-sided oper-

ations such as LAPIPut and LAPIGet. LAPI also provides
Active Message style operations through the LAPIAmsend
function. We decided to implement the MPI point-to-point op-
erations on top of this LAPI active message infrastructure. The
LAPI active message interface (LAPIAmsend) function pro-
vides some enhancements to the active message semantics de-
fined in GAM [10]. The LAPIAmsend function allows the
user to specify a header handler function to be executed at
the target side once the first packet of the message arrives at
the target. The header handler must return a buffer pointer
to LAPI which tells LAPI where the packets of the message
must be reassembled. The ability to not require the task mak-
ing the LAPI Amsend call specify the target address for the
messages being sent, makes it ideally suited to be used as the
basis for implementing MPI-LAPI. The header handler is used
to process the message matching and early arrival semantics,
thereby avoiding the need for an extra copy at the target side.
The header handler also allows the user to specify a completion
handler function to be executed after all the packets of the mes-
sage have been copied into the target buffer. The completion
handler therefore serves to allow the application to incorpo-
rate the arriving message into the ongoing computation. In our
MPI implementation the completion handler serves to update
local state of marking messages complete, and possibly send-
ing control message back to the sender. The LAPIAmsend
therefore provides the hooks to allow applications to get con-
trol when the first packet of a message arrives and when the
complete message has arrived at the target buffer, making it
ideal to be used as a basis for implementing MPI-LAPI. In
Sections 4.1.1 and 4.1.2, we explain how the Eager and Ren-
dezvous protocols have been implemented.

4.1.1 Implementing the Eager Protocol

In the MPI-LAPI implementation, LAPIAmsend is used
to send the message to the receiver (Fig. 3a). The message
descriptions (such as message TAG and Communicator) are

encoded in the user header which is passed to the header han-
dler (Fig. 3b). Using the message description, the posted “Re-
ceive Queue” (Receivequeue) is searched to see if a matching
receive has already been posted. If such a receive has been
posted, the address of the user buffer is returned to LAPI and
LAPI assembles the data into the user buffer. It should be noted
that LAPI will take care of out of order packets and copy the
data into the correct offset in the user buffer. If the header han-
dler doesn’t find a matching receive, it will return the address
of an “Early Arrival Buffer” (EA buffer) for LAPI to assem-
ble the message into. (The buffer space is allocated if needed.)
The header handler also posts the arrival of the message into
the “Early Arrival Queue” (EAqueue). If the message being
received is a Ready-mode message and its matching receive
has not yet been posted, a fatal error is raised and the job is
terminated. If the matching receive is found, the header han-
dler also sets the function Eagercmpl hdl to be executed as
the completion handler. The completion handler is executed,
when the whole message has been copied into the user buffer,
and the corresponding receive is marked as complete (Fig. 3c).
It should be noted that in order to make the description of the
implementation more readable, we have omitted some of the
required parameters of the LAPI functions from the outlines.

(a)
Function Eagersend

LAPI Amsend(eagerhdr hdl, msgdescription, msg)
end Eagersend

(b)
Function Eagerhdr hdl(msgdescription)

if (matchingreceiveposted(msgdescription))begin
completionhandler = Eagercmpl hdl
return (userbuffer)

end else begin
if (ReadyMode)

Error handler(Fatal, “Recv not posted”)
post msgdescription in EAqueue
completionhandler = NULL
return (EAbuffer)

endif
end Eagerhdr hdl

(c)
Function Eagercmpl hdl(msgdescription)

Mark the recv as COMPLETE
end Eagercmpl hdl

Figure 3. Outline of the Eager protocol: (a) Eager
send, (b) the header handler for the eager send and
(c) the completion handler for the eager send.

4.1.2 Implementing the Rendezvous Protocol

The Rendezvous protocol is implemented in two steps. In
the first step a requestto send control message is sent to the re-
ceiver by using LAPIAmsend (Fig. 4). The second step is ex-
ecuted when the acknowledgment of this message is received
(indicating that the corresponding receive has been posted).
The message is sent by using LAPIAmsend the same way the
message is transmitted in Eager protocol (Fig. 3a). In the next
section, we explain how these protocols are employed to im-
plement different communication modes as defined in the MPI
standard.



(a)
Function Requestto send

LAPI Amsend(Requestto sendhdr hdl,
msgdescription, NULL)

end Requestto send
(b)

Function Requestto sendhdr hdl(msgdescription)
if (matchingreceive posted(msgdescription))begin

completionhandler = Requestto sendcmpl hdl
return (NULL)

end else begin
post msgdescription in EA queue
completionhandler = NULL
return (NULL)

endif
end Requestto sendhdr hdl

(c)
Function Requestto sendcmpl hdl(msgdescription)

LAPI Amsend(Requestto sendackedhdr hdl,
msgdescription, NULL)

end Requestto sendcmpl hdl

Figure 4. Outline of the first phase of the Rendezvous
protocol: (a) Request to Send, (b) The Header handler
for the request to send and (c) the completion handler
for the request to send.

4.2 Implementing the MPI Communication
Modes

Standard-mode messages which are smaller than the Eager
Limit and Ready-mode messages are sent by using the Eager
protocol (Fig. 5). Depending on whether the send is block-
ing or not, a wait statement (LAPIWaitcntr) might be used to
ensure that the user buffer can be reused.

Standard-mode messages which are longer than the Eager
Limit and Synchronous-mode messages are transmitted by us-
ing the 2-phase Rendezvous protocol. Figure 6 illustrates how
these sends are implemented. In the non-blocking version, the
second phase of the send is executed in the completion handler
which is specified in the header handler corresponding to the
active message sent for acknowledging the Requestto send
message as shown in Figure 7.

Buffered mode messages are transmitted using the same
procedure as for sending nonblocking standard messages. The
only difference is that messages are first copied into a user
specified buffer (defined by MPIBuffer attach). The receiver
informs the sender when the whole message has been received
so that the sender can free the buffer used for transmitting the
message (Figure 8).

Figure 9 shows how blocking and non-blocking receive op-
erations are implemented. It should be noted that in response
to a Requestto send message, a LAPIAmsend is used to ac-
knowledge the request. When this acknowledgment is received
at the sender side of the original communication, the entire
message will be transmitted to the receiver. If the original
send operation is a blocking send, the sender is blocked un-
til the Requestto send message is marked as acknowledged
and the blocking send will send out the message. If the orig-
inal message is a nonblocking send, the message is sent out
in the completion handler specified in the header handler of
Requestto sendacked (Fig. 7).

Function StndShortreadysend
Eagersend
if (blocking)

Wait until Origin counter is set
end StndShortreadysend

Figure 5. Outline of the standard send for messages
shorter than the eager limit and the ready-mode send.

Function StndLongsync send
Requestto send
if (blocking)begin

Wait until requestto send is acknowledged
Eagersend
Wait until Origin counter is set

endif
end StndLongsyncsend

Figure 6. Outline of the standard send for messages
longer than the eager limit and the synchronous-
mode send.

5 Optimizing the MPI-LAPI Implementa-
tion

In this section we first discuss the performance of the base
implementation of MPI-LAPI which is based on the descrip-
tion outlined in Section 4. After discussing the shortcomings
of this implementation, we present two methods to improve
the performance of MPI-LAPI.

5.1 Performance of the Base MPI-LAPI
We compared the performance of our base implementation

with that of LAPI itself. We measured the time to send a num-
ber of messages (with a particular message size) from one node
to another node. Each time the receiving node would send
back a message of the same size, and the sender node will
send a new message only after receiving a message from the
receiver. The number of messages being sent back and forth
was long enough to make the timer error negligible. The gran-
ularity of the timer was less than a microsecond. LAPIPut
and LAPI Waitcntr were used to send the message and to wait
for the reply, respectively. The time for the MPI-LAPI imple-
mentation was measured in a similar fashion. MPISend and
MPI Recv were the communication functions used for this ex-
periment. It should be noted that in all cases, the Rendezvous
protocol was used for messages larger than the Eager Limit
(4K bytes). Figure 10 shows the measured time for messages
of different sizes. We observed that message transfer time of
the MPI-LAPI implementation was too high to be attributed
only to the cost of protocol processing like message matching
which are required for the MPI implementation but not for the
1-sided LAPI primitives.

5.2 MPI-LAPI with Counters
Careful study of the design and profiling of the base imple-

mentation showed that the cost of thread context switching re-
quired from the header handler to the completion handler was
the major source of increase in the data transfer time. It should
be noted that in LAPI, completion handlers are executed on
a separate thread (Section 3). To verify this hypothesis, we
modified the design such that we do not require the execution



Function Requestto sendackedhdr hdl
if (blocking(msgdescription))

mark the request as acknowledged
else

completionhandler =
Requestto sendackedcmpl hdl

end Requestto sendackedhdr hdl
Function Requestto sendackedcmpl hdl

Eagersend
end Requestto sendackedcmpl hdl

Figure 7. Outline of receive for messages sent using
the Rendezvous protocol.

Function Buffered send
Copy the msg to the attached buffer
if (msgsize� EagerLimit)

Eagersend
else

Requestto send
end Buffered send

Figure 8. Outline of the buffered-mode send.

of completion handlers. As described in Section 4, when the
eager protocol is used, the only action taken in the comple-
tion handler is marking the message as completed (Fig. 3) such
that the receive (or MPIWAIT or MPI TEST) can recognize
the completion of the receipt of the message. LAPI provides
a set of counters to signal the completion of LAPI operations.
The target counter specified in LAPIAmsend is updated (in-
cremented by one) after the message is completely received
(and the completion handler, if there exist any, has executed).
We used this counter to indicate that message has been com-
pletely received. However, the address of this counter which
resides at the receiving side of the operation should be speci-
fied at the sender side of the operation (where LAPIAmsend is
called). In order to take advantage of this feature, we modified
the base implementation to use a set of counters whose ad-
dresses are exchanged among the participating MPI processes
during initialization. By using these counters we avoided us-
ing the completion handler of messages sent through the eager
protocol. We could not employ the same strategy for the first
phase of the Rendezvous protocol. The reception of the Re-
questto send control messages at the receiving side does not
imply that the message can be sent. If the receive has not yet
been posted, the sender cannot start sending the message even

Function Receive
if (found matchingmsg(EAqueue, msgdescription))

if (requestto send)begin
LAPI Amsend(Requestto sendacked,

msgdescription, NULL)
endif

else
Post the receive in Receivequeue

if (blocking)
Wait until msg is marked as COMPLETE

end Receive

Figure 9. Outline of receive for messages sent by the
Eager protocol.

though the Requestto send message has been already received
at the target. The time for the message transfer of this modified
version is shown in Figure 10. As it can be observed, this im-
plementation provided better performance for short messages
(which are sent in Eager mode) compared to the base imple-
mentation. This experiment was solely performed to verify the
correctness of our hypothesis.

5.3 MPI-LAPI Enhanced
The results in Figure 10, confirmed our hypothesis that the

major source of overhead was the cost of context switching
required for the execution of the completion handlers. We
showed how we can avoid using completion handlers for mes-
sages which are sent in Eager mode. However, we still need
to use completion handlers for larger messages (sent in Ren-
dezvous mode). In order to avoid the high cost of context
switching for all messages, we enhanced LAPI to include pre-
defined completion handlers in the same context. In this modi-
fied version of LAPI, operations such as updating a local vari-
able or a remote variable (which requires a LAPI function call),
indicating the occurrence of certain events, were executed in
the same context. The results of this version is shown in Fig-
ure 10. The time of this version of MPI-LAPI comes very
close to that of the bare LAPI itself. The difference between
the curves can be attributed to the cost of posting and match-
ing receives required by MPI, and also the cost of locking and
unlocking of the data structures used for these functions at the
MPI level.
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In the following section, we compare the latency and band-
width of our MPI-LAPI Enhanced implementation with that of
the native MPI implementation. We also explain the difference
between the performance of these two implementations.

6 Performance Evaluation
In this section we first present a comparison between the

native MPI and MPI-LAPI (the Enhanced version) in latency
and bandwidth. Then, we compare the results obtained from
running the NAS benchmarks using MPI-LAPI with those ob-
tained from running NAS benchmarks using the native MPI.
In all of our experiments we use a SP system with Power-PC



332MHz nodes and the TBMX adapter. The Eager Limit is set
to 4K bytes for all experiments.

6.1 Latency and Bandwidth
We compared the performance of MPI-LAPI with that of

the native MPI available on SP systems. The time for message
transfer was measured by sending messages back and forth be-
tween two nodes as described in Section 5. The MPI primitives
used for these experiments were MPISend and MPIRecv.
The eager limit for both systems was set to4K bytes. To mea-
sure the bandwidth, we repeatedly sent messages out from one
node to another node for a number of times and then waited for
the last message to be acknowledged. We measure the time for
sending these back to back messages and stop the timer when
the acknowledgment of the last message is received. The num-
ber of messages being sent is large enough to make the time for
transmission of the acknowledgment of the last message neg-
ligible in comparison with the total time. For this experiment
we used MPIIsend and MPIIrecv primitives.

Figure 11 illustrates the time of MPI-LAPI and the native
MPI for different message sizes. It can be observed that, the
time of MPI-LAPI for very short messages is slightly higher
than that of the native MPI. This increase is in part due to the
extra parameter checking by LAPI, which unlike the internal
Pipes interface is an exposed interface. The difference between
the size of the packet headers in these two implementations is
another factor which contributes to the slightly increased la-
tency. The size of headers in the native MPI is16 bytes, and
the size of headers for MPI-LAPI is48 bytes. It can be also
observed that for messages larger than256 bytes, the latency
of MPI-LAPI becomes less than that of the native MPI. An
improvement of up to17:3% was measured. As mentioned
earlier, unlike the native implementation of MPI, in the MPI-
LAPI implementation messages are copied directly from the
user buffer into the NIC buffer and vice versa. Avoiding the
extra data copying helps improve the performance of the MPI-
LAPI implementation.
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Figure 11. Comparison between the performance of
the native MPI and MPI-LAPI.

The obtainable bandwidth of the native MPI and MPI-LAPI
is shown in Figure 12. It can be seen that, for a wide range
of message sizes, the bandwidth of MPI-LAPI is higher than
that of the native MPI. For64K byte messages, MPI-LAPI

achieves a bandwidth of83:35MB=sec which indicates a
20:9% improvement in comparison with the68:93MB=sec
bandwidth obtained by using the native MPI.

0.125

0.25

0.5

1

2

4

8

16

32

64

128

4 16 64 256 1024 4096 16384 65536

B
an

dw
ith

 (
M

B
/s

ec
)

Message Size (byte)

MPI-LAPI Enhanced
Native MPI

Figure 12. Comparison between the performance of
the native MPI and MPI-LAPI.
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Figure 13. Comparison between the performance of
the native MPI and MPI-LAPI in interrupt mode.

For measuring the time required for sending messages from
one node to another node in interrupt mode, we used a method
similar to the one used for measuring latency. The only dif-
ference was that the receiver would post the receive (using
MPI Irecv) and check the content of the receive buffer until the
message has arrived. Then it would send back a message with
the same size. The results of our measurements are shown in
Figure 13. It can be seen that MPI-LAPI performs consistently
and considerably better than the native MPI implementation.
For short messages of4 bytes an improvement of35:75% is
observed. The native MPI performs poorly in this experiment.
The major reason behind the poor performance of the native
MPI is the hysteresis scheme used in it. In the interrupt han-
dler of the native MPI, the interrupt handler waits for a certain
period of time to see if more packets are coming to avoid fur-
ther interrupts. If more are coming then they increase the time
the interrupt handler waits in the loop. The value of this wait-
ing period can be set by the user. LAPI does not use any such
hysteresis in its interrupt handler and thus, provides better per-
formance.



6.2 NAS Benchmarks
In this section we present the execution times of programs

from the NAS benchmark for the native MPI and MPI-LAPI.
NAS Parallel Benchmarks (version 2.3) consist of eight bench-
marks written in MPI. These benchmarks were used to eval-
uate the performance of our MPI implementation in a more
realistic environment. We used the native implementation of
MPI and MPI-LAPI to compare the execution times of these
benchmarks on a four-node SP system. The benchmarks were
executed several times. The best execution time for each ap-
plication was recorded.

The MPI-LAPI performs consistently better than the native
MPI. Improvements of1:9%, 4:1%, 4:6%, 5:1% and13:8%
were obtained for LU, IS, CG, BT and FT benchmarks, re-
spectively. The percentages of improvement for EP, MG, and
SP were less than1:0%.

7 Related Work
Previous work on implementing MPI on top of low-level

one-sided communication interfaces include (a) the effort at
Cornell in porting MPICH on top of their GAM (generic ac-
tive message) implementation on SP systems [2], and (b) the
effort at University of Illinois in porting MPICH on top of
the FM (fast messages) communication interface on a work-
station cluster connected with the Myrinet network [5]. In
both cases the public domain version of MPI (MPICH [3])
has been the starting point of these implementations. In the
MPI implementation on top of AM, short messages are copied
into a retransmission buffer after they are injected into the net-
work. Lost messages are retransmitted from the retransmis-
sion buffers. The retransmission buffers are freed when a cor-
responding acknowledged is received from the target. Short
messages therefore require a copy at the sender side. The other
problem is that for each pair of nodes in the system a buffer
should be allocated which limits scalability of the protocol.
MPI-LAPI implementation avoids these problems (which de-
grade the performance) by using the header handler feature
of LAPI. Unlike MPI-LAPI, the implementation of MPI on
AM described in [2] does not support packet arrival interrupts
which impacts performance of applications with communica-
tion behavior that is asynchronous. In the implementation of
MPI on top of FM [5], FM was modified to avoid extra copying
at the sender side (gather) as well as the receive side(upcall).
FM has been optimized for short messages. Therefore, for long
messages (larger than2K bytes) MPI-FM performs poorly in
comparison with the native implementation of MPI on SP sys-
tems (Fig. 10 of [5]).

8 Conclusion Remarks
In this paper, we have presented how the MPI standard

is implemented on top of LAPI for SP systems. The details
of this implementation and the mismatches between the MPI
standard requirements and LAPI functionality have been dis-
cussed. We have also shown how LAPI can be enhanced in
order to make the MPI implementation more efficient. The
flexibility provided by having header handlers and comple-
tion handlers makes it possible to avoid any unnecessary data
copies. The performance of MPI-LAPI is shown to be very

close to that of bare LAPI and the cost added because of the
MPI standard semantics enforcement is shown to be minimal.
MPI-LAPI performs comparably or better than the native MPI
in terms of latency and bandwidth. We plan to implement MPI
data types which have not been implemented yet.
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Disclaimer
MPI-LAPI is not a part of any IBM product and no assump-

tions should be made regarding its availability as a product.
The performance results quoted in this paper are from mea-
surements done in August of 1998 and the system is continu-
ously being tuned for improved performance.

References
[1] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler,

D. M. Dias, and M.Snir. SP2 System Architecture.IBM
Systems Journal, 34(2):152–184, 1995.

[2] C. Chang, G. Czajkowski, C. Hawblitzel, and T. V.
Eicken. Low Latency Communication on the IBM RISC
System/6000 SP.Supercomputing 96, 1996.

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI, Mes-
sage Passing Interface Standard. Technical report, Ar-
gonne National Laboratory and Mississippi State Univer-
sity.

[4] IBM. PSSP Command and Technical Reference - LAPI
Chapter. IBM, 1997.

[5] M. Lauria and A. Chien. MPI-FM: High Performance
MPI on Workstation Clusters.Journal of Parallel and
Distributed Computing, pages 4–18, Jan 1997.

[6] Message Passing Interface Forum.MPI: A Message-
Passing Interface Standard, Mar 1994.

[7] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison,
R. K. Govindaraju, K. Gildea, P. DiNicola, and C. Ben-
der. Performance and Experience with LAPI - a New
High-Performance Communication Library for the IBM
RS/6000 SP. InProceedings of the International Parallel
Processing Symposium, pages 260–267, March 1998.

[8] M. Snir, P. Hochschild, D. D. Frye, and K. J. Gildea. The
communication software and parallel environment of the
IBM SP2. IBM Systems Journal, 34(2):205–221, 1995.

[9] C. B. Stunkel, D. Shea, D. G. Grice, P. H. Hochschild,
and M. Tsao. The SP1 High Performance Switch.
In Scalable High Performance Computing Conference,
pages 150–157, 1994.

[10] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: A Mechanism for Integrated
Communication and Computation. InInternational Sym-
posium on Computer Architecture, pages 256–266, 1992.


