
A Consistent History Link Connectivity Protocol �

Paul LeMahieu Jehoshua Bruck

California Institute of Technology
Mail Code: 136-93

Pasadena, CA 91125

Email: flemahieu,bruck g@paradise.caltech.edu

Abstract

The RAIN (Reliable Array of Independent Nodes) project at Caltech is focusing on creating highly reliable dis-
tributed systems by leveraging commercially available personal computers, workstations and interconnect tech-
nologies. In particular, the issue of reliable communication is addressed by introducing redundancy in the form of
multiple network interfaces per compute node.

When using compute nodes with multiple network connections the question of how to determine connectivity
between nodes arises. We examine a connectivity protocol that guarantees that each side of a point-to-point
connection sees the same history of activity over the communication channel. In other words, we maintain a
consistent historyof the state of the communication channel. At any give moment in time the histories as seen by
each side are guaranteed to be identical to within some number of transitions. This bound on how much one side
may lead or lag the other is theslack.

Our main contributions are: (i) a simple,stableprotocol for monitoring connectivity that maintains aconsistent
historywith bounded slack, and (ii) proofs that this protocol exhibitscorrectness, bounded slack, andstability.

�Supported in part by the NSF Young Investigator Award CCR-9457811, by the Sloan Research Fellowship, and by DARPA through
an agreement with NASA/OSAT.

1

1 Introduction

Given the prevalence of powerful personal workstations connected over local area networks, it is only natural
that people are exploring distributed computing over such systems. Whenever systems become distributed the
issue of fault tolerance becomes an important consideration. In the context of theRAINproject (Redundant Arrays
of Independent Nodes) [4] at Caltech (see Figure 14 for a photo), we’ve been looking into fault tolerance in
several elements of the distributed system. One important aspect of this is the introduction of fault tolerance
into the communication system by introducing redundant network elements and redundant network interfaces
at each compute node. For example, a practical and inexpensive real-world system could be as simple as two
Ethernet interfaces per machine and two Ethernet hubs. The work we have done is not specific to any networking
technology, but we have been working primarily with Myrinet [3] networking elements as well as with Ethernet
networks. The protocol described in this paper has been implemented as part of the Caltech RAIN system.

An elementary piece of information about the system is whether there isconnectivitybetween an interface on
one machine and an interface on another. We describe here a modifiedping protocol that guarantees that each
side of the communication channel sees the same history. Each side is limited in how much it may lead or lag
the other side of the channel, giving the protocolbounded slack. This notion of identical history can be useful
in the development of applications using this connectivity information. For example, if an application takes error
recovery action in the event of lost connectivity, it knows that both sides of the channel will see the exact same
behavior on the channel over time and will thus take the same error recovery action. Such a guarantee may simplify
the writing of applications using this connectivity information.

The protocol can be run at a high level, potentially as high as the application layer. At the same time, it can
benefit greatly from low-level hardware hints about link conditions. A primary application for such a protocol is
within a communication layer where its information can be used to mask or report connectivity problems between
machines.

Although in some sense this is a consensus problem since the history of channel activity must be seen the same
at both sides, but it is not the general consensus problem people think of. We are only really interested ineventual
consensus when the link is functioning. When the link has failed, we only care that the nodes see the failure.
However, it is still useful to look at past work on consensus, such as Fischer, Lynch, and Paterson in [7], or in
Lynch’s book [10].

The connectivity problem has been addressed with different goals by Rodeheffer and Schroeder in the Autonet
system [11, 12]. They were concerned with adaptive rates and skepticism in judging the quality of a link, whereas
we are concerned with consistency in reporting the quality of a link. The connectivity problem has no doubt been
considered in routing algorithms in the past, but we have seen no reference to keeping the history consistent at
each side of a link.

Other than our own practical motivation for a consistent history of the channel state, Birman [1] gives general
motivation for consistency in failure reporting for the purpose of improving reliability of distributed systems.

Our main contributions are: (i) a simple,stableprotocol for monitoring connectivity that maintains aconsistent
historywith bounded slack, and (ii) proofs that this protocol exhibitscorrectness, bounded slack, andstability.

The structure of the paper follows closely the contributions listed above. In Section 2 we define the problem.
In Section 3 we explain the protocol. In Section 4 we prove the protocol satisfies all requirements. In Section 5
we discuss implementation issues in our existing system, and in 6 we finish with conclusions.

2 Problem Definition

We consider the following problem (Figure 1): given two nodes connected by some bidirectional communica-
tion channel, what is the state of the channel connecting them?

2

Node A Node B

?

Figure 1. Node A, node B, and the communication channel between them. Is the channel Upor Down?

We desire a stable protocol that guarantees both sides see the same history of the channel up to some given
bounded slack. Figure 2 shows what we desire in a consistent history between ends of a communication channel.
We desire that neither side be permitted to lag or lead the other by an arbitrary number of observed channel state
transitions.

A B
U

UU

U

U
D

D

D

DTime

D = link Down
U = link Up

Link History

A B
U

D
U

U U

U U

U

D

D D

D
D

Time

Link History

U = link Up
D = link Down

(a) (b)

Figure 2. (a) Node A sees many more transitions than node B (b) Node A and B see tightly coupled
views of the channel.

2.1 Defined Terminology

Below, we define some of the terminology used in this paper.

Nodes and Communication Channels.A distributed computing system is composed of a set of interconnected
nodes. We are unconcerned with the underlying interconnect, but are interested in the existence of logicalcommu-
nication channelsbetween a node and the other nodes in the system, on a point-to-point basis. The protocol runs
over a pair of nodes connected by a communication channel.

Connectivity and Channel State.We consider two compute nodesconnectedonly if bidirectional communi-
cation exists between them. Bidirectional communication is necessary for the implementation of reliable commu-
nication over unreliable channels. If a node finds itself connected to another node via a given channel, it considers
that channel in theUp state. If a node finds itself not connected to another node via a given channel, it considers
that channel in theDownstate.

History. The sum of decisions made up about the state of a channel makes up that channel’shistory. Each of
the endpoints of the channel adds to its view of the channel-state history each time it decides the channel isUp or
Down. A channel’s history will be a series of channel states:Up, Down, Up, Down,.... Since the channel state is
binary, a simple count of the number of state transitions suffices to fully describe the history.

3

Slack. As a node makes decision about the state of a channel, it may lead or lag the node on the opposite end of
the channel.Slackis the amount a node may lead or lag its peer node. Ifta andtb are the number of channel state
transitions seen by node A and node B, respectively, andN is the slack parameter, thanjta � tbj � N at all times.

Real Channel Event. A real channel eventwould be any spontaneously occurring information about the
channel. The simplest would be “the channel appears to be up” or “the channel appears to be down.” We’ll look
at thetimeoutevent that signifies that bi-directional communication has been lost. We’ll also permit thetimein
event, the complement to the timeout, that signifies that bi-directionally communication has been re-established.
These arereal events in the sense that they reflect information about channel activity beyond our control, not an
event due to the protocol itself.

Stability. A protocol determining the state of a communication channel should bestable. More precisely, for
each channel event some bounded number of transitions (preferably one) should be seen by each endpoint.

Reliable Message Passing.The protocol we will describe requiresreliable message passing. Since this is a
protocol intended to work over unreliable channels, we are referring to software implemented reliability, such as a
sliding window protocol. We require message passing that gives (eventual) guaranteed, in-order delivery.

2.2 Precise Problem Definition

We now present all the requirements of the protocol:

� Correctness: the protocol will eventually correctly reflect the true state of the channel. If the channel ceases
to perform bi-directional communication (at least one side sees timeouts), both sides should eventually mark
the channel asDown. If the channel resumes bi-directional communication, both sides should eventually
mark the channel asUp.

� Bounded Slack: the protocol will ensure a maximum slack ofN exists between the two sides. Neither side
will be allowed to lag or lead the other by more thanN transitions.

� Stability: each real channel event (i.e., timeout) will cause at most some bounded number of observable
state transitions, preferably one, at each endpoint.

The system model is one in which nodes do not fail, but links intermittently fail. The links must be such that a
sliding window protocol can function. See the discussion on data link protocols by Lynch in [10].

3 The Link Connectivity Protocol

This protocol usesreliable message passingto ensure that nodes on opposing ends of some faulty channel see
the same state history of link failure and recovery. The reliable message passing can be implemented using a
sliding window protocol, as mentioned above. At first it may seem odd to discuss monitoring the status of a link
using reliable messages. However, it makes the description and proof of the protocol easier, preventing us from
essentially re-proving sliding window protocols in a different form. For actual implementation, there is no reason
to actually build the protocol on an existing reliable communication layer. The protocol can be easily implemented
on top of ping messages (sent unreliably) with only a sequence number and acknowledge number as data (in other
words, we can easily map reliable messaging on top of the ping messages).

The protocol consists of two parts:

� First, we have the sending and receiving of tokens using reliable messaging. Tokens are conserved, neither
lost nor duplicated. Tokens are sent whenever a side sees an observable channel state transition. The
observable channel state is whether the link is seen asUp or Down. The token-passing part of the protocol
essentiallyis the protocol. Its job is to ensure that a consistent history is maintained.

4

� Second, we have the sending and receiving of ping messages using unreliable messaging. The sole purpose
of the pings is to detect when the link can be consideredUp or Down. This part of the protocol would not
necessarily have to be implemented with pings, but could be done using other hints from the underlying
system. For example, hardware could give instant feedback about its view of link status. For all the proofs
to be valid, we must have that atout is generated when bi-directional communication has (probably) been
lost, and atin is generated when bi-directional communication has (probably) been re-established.

The token-passing part of the protocol maintains the consistent history between the sides, and the pings give
information on the current channel state. The token-passing protocol can be seen as a filter that takes raw infor-
mation about the channel and produces channel information guaranteed to be (eventually) consistent at both ends
of the channel. The state machines in Figure 3 and Figure 4 describe how each side of the protocol functions in
the total system forN = 2.

In Section 3.1 we describe the protocol for a slack ofN = 2, and in 3.2 we do so for a general slack ofN . In
Sections 4.1, 4.2, and 4.3 we establish correctness, bounded slack, and stability for the protocol.

3.1 SlackN = 2

Here we describe the protocol for the base case where we have slack ofN = 2. This is a significant case since it
is the smallest value of slack for which any such protocol can work. Its description is hopefully somewhat simpler
than the general case. A state machine as described in Figure 3 runs at each end of the link, at each node.

Intuitively, the state machine of Figure 3 shows the reaction totout events andT (token-receipt) events by the
node at one end of the communication channel. The number of tokens currently held ist, and2 � t is then the
number of unacknowledged transitions the node has made. Note that2� t is at most2, corresponding to the slack
bound of two. The states can be described as follows:

1. Up(t=2): The node is in the stable state. No unacknowledged transitions have been made by this node.

2. Down(t=2): The node is catching-up with a transition seen by the other node that it itself did not see via a
timeout. No unacknowledged transitions have been made by this node.

3. Down(t=1): The node has seen a time-out and marked the channel as down. One unacknowledged transition
has been made by this node (Up! Down).

4. Up(t=1): The node has received acknowledgement (via a received token) for theUp ! Down transition.
One unacknowledged transition has been made by this node (Down! Up).

5. Down(t=0): The node has seen a time-out and marked the channel as down, and is now blocked from further
transitions by the bounded-slack constraint. Two unacknowledged transitions have been made by this node
(Down! Up! Down).

In Figure 3, each state is characterized by whether the node sees the channel asUp or Down, and how many
tokenst are held by the node. The state transitions are labeled by theaction triggering the transition, and the
action taken upon transition. A trigger event is either a timeouttout or receipt of a tokenT . The action taken is
always whether a token is sent (1) or not (0). Note that a tokenT is sent whenever a transition for aUp state to a
Downstate, or from aDownstate to aUp state is made.

3.2 General SlackN

Here we describe the protocol for the general case where we have some arbitrary slack value,N . A state
machine as described in Figure 4 runs at each end of the communication, at each node. This description of the

5

Up
t=2

Up
t=1

Down
t=1

Down
t=0

Down
t=2

T: token arrival event
tout: time-out event

t: token count

tout/1

tout/1

T/1

T/1

T/0 T/0T/1

Start

trigger event / token sent

Figure 3. State machine for the connectivity protocol, slack N = 2.

Down
t = 0

Down
0 < t < N

Up
t = N

Up
0 < t < N

Down
t = N

T: token arrival event
tout: time-out event

t: token count

tout/1
T/1

T/1

T/0 {T and t=N-1} / 0

Start

{trigger event} / token sent

{T or {tin and t>0}} / 1

{tout and t>1} / 1

{tout and t=1} / 1

{T and t<N-1} / 0

Figure 4. State machine for the connectivity protocol, general slack N .

state machine tries to preserve the same structure as theN = 2 machine described above for the purpose of the
proofs.

Each state in Figure 4 is characterized by whether the node sees the channel asUp or Down, and how many
tokenst are held by the node. There is an implicit action for each transition: if a token is received the token
countt is incremented; if a token is sent the token countt is decremented. The state transitions are labeled by the
pair faction triggering the transitiong / faction taken upon transitiong. A trigger event is either a timeouttout, a
time-in tin, or receipt of a tokenT . The action taken is a combinations of sending tokens and adjusting the token
countt.

Notice that here we’ve introduced thetin event, which was not present in theN = 2 case. This is the com-
plement to thetout event that becomes meaningful for higher slack. Atin corresponds to a hint from some lower
level that the communication link is up and running. For an implementation where tokens are mapped on top of
pings, we would never explicitly see atin event since the latest token information comes with each ping response.
However, if tokens were not mapped on top of pings, or if other sources of information about the communication
link were also possible,tin events make sense and as such are allowed.

6

4 Proofs of Protocol Properties

In the following three subsections we establish that the protocol exhibits bounded slack, stability, and correct-
ness.

4.1 Bounded Slack

This theorem and proof is not actually specific to the protocols given above. A limited subset of the protocols
(the token passing conditions) are sufficient to establish that slack is bounded.

Theorem 1 We take any protocol between two communicating nodes (A and B) with the following characteristics:

1. Each side starts withN tokens.

2. Tokens are never generated or destroyed

3. Tokens are sent exactly when a node decides the channel has made a change of state (Up ! Down or
Down! Up). In other words, tokens are sent forobservable state transitionsof the node.

Any protocol that meets these criteria will have abounded slackproperty. If we calldA anddB the number of
observable state transitions for node A and B, respectively, then

jdA � dB j � N

Proof:
Define the following values:

dA; dB = number of tokens sent by node A (node B)

tA; tB = number of tokens held at node A (node B)

tAB ; tBA = number of tokens in the channel from A to B (B to A)

NA = tA + tBA

NB = tB + tAB

tBA

tAB
tA tB

NB

NA

A B

Figure 5. Node-Channel system partitioned into two halves.

7

The proof will examine one of the two regions shown in Figure 5, in particular, the region made up of the
channel from A to B, and of node B itself. By simply counting the tokens originally present in the region and
those that enter and leave the region, we will establish that slack is bounded between the two sides.

By simple conservation of tokens, it is invariantly true that

NB = tokens initially present
| {z }

N

+ tokens that have entered
| {z }

dA

� tokens that have exited
| {z }

dB

So,

tB + tAB = N + dA � dB (1)

We do the proof by contradiction. Suppose the slack bound is violated,dA� dB > N . Then, substituting into (1),

tB + tAB > 2N (2)

This is our contradiction, since we have only2N tokens in the system. 2

4.2 Stability

By stability, we mean that the protocol will exhibit finite response to a physical (timeout) event. We wouldn’t
want a protocol that could repeatedly mark a channel asUp andDown in response to a single timeout. We require
that the number of channel-state transitions is bounded by the number of physical timeouts in the system. More
specifically, we will show that every timeout causes at most twoU ! D transitions: one at the side that sees the
timeout explicitly, and possibly one at the peer node. We’ll first present the proof for the slack 2 case, and then
present the general slack-N proof.

4.2.1 SlackN = 2

Theorem 2 For a system comprised of two nodes each running the slack-2 state machine of Figure 3 and con-
nected by a bi-directional communication channel, everyUp! Downtransition is directly caused by a timeout.

Proof:
First, we label the tokens in the state machine of Figure 3, transforming it to the state machine of Figure 6. We
have labeled the tokens as follows:

1. A token is labeled D if it was sent for aU ! D transition.

2. A token is labeled U if it was sent for aD ! U transition.

Since tokens are always sent D, U, D, U, ..., we can also easily determine what kind of token we will be receiving
in a given state. Starting in the initial state, the first token received must be a D token, the next a U token, and so
forth. There is a unique type of received token at each state since all cycles involve an even number of received
tokens.

Let’s look at a system made of Node A and Node B, each running such a state machine. As stated above, it is
sufficient to concern ourselves with theU ! D transitions made by a given side. Assume A is making such a
transition. We need to show that we have eachU ! D transition is either caused by a localtout, or is the direct
result of atout at Node B.

8

Up
t=2

Up
t=1

Down
t=1

Down
t=0

Down
t=2

tout/D

tout/D

U/U

D/D

U/0 U/0D/U

Start

trigger event / token sent

D: Down token
t: token count

tout: time-out event
U: Up token

Figure 6. Token-labeled state machine for the connectivity protocol, slack N = 2.

Node A:U ! D transitions tout accounted for?

tout) AU2!D1 yes
tout) AU1!D0 yes

D-tok) AU2!D2 no

(a)

Node B: transitions generating D-toktout accounted for?

tout) BU2!D1) D-tok yes
tout) BU1!D0) D-tok yes

D-tok) BU2!D2) D-tok no

(b)

Figure 7. (a) Node A: U ! D transitions (b) Node B: transitions generating D-tok (i.e., all U ! D

transitions)

At Node A, we have such transitions resulting from timeouts, and one such transition resulting from receipt of
aD-token (see Figure 7a). The first two cases are simplyU ! D transitions due to local timeouts, and need no
further examination. The third case needs to be explored in more detail by looking at where theD-token could
have come from. At Node B, aD-token could have been generated by aU ! D transition caused by a timeout,
or generated by aU ! D transition caused by receipt of aD-token (see Figure 7b). Again, the first two cases are
simplyU ! D transitions due to local timeouts, and need no further examination. The third case is where the
proof is needed. We have this problem: can the third cases of the two lists above occur in a chain? I.e., we wonder
whether the following sequence can occur:

D-tok) BU2!D2) D-tok) AU2!D2

9

This is the only case where we have a chain of events involving no timeouts that hasU ! D transitions in it. If
we prove this can never happen, we are done. We prove this by contradiction.

Much as in the previous proof, we’ll separate the system into two separate components and use a token-counting
argument to show this case is impossible. Even at a glance the problem is obvious since we have a state with two
tokens sending a token to another state with two tokens, yet we only have 4 total tokens in the system. The
asynchronous nature of these interactions is the only thing stopping us from already being done with the proof.

NBAN

A B

D

? D 2

Figure 8. Partitioning the system: Node B is in state D2 and has sent a D-tok to Node A; we make no
claim on Node A’s state.

First, we look at the system at the point where Node B has just sent theD-token to Node A (see Figure 8). Here
you see how we’ve partitioned the system: we include in one partition all those tokens at Node B, plus all those in
the FIFO up to and including theD-token just sent. We call this number of tokensNB , and we see thatNB � 3

initially since Node B is in stateD2 and there is theD-token in the channel. The rest of the system makes up the
second partition, and hasNA tokens. Initially no claim is made as to the size ofNA.

NBAN

U 2

A B
?

D

Figure 9. Partitioning the system: Node A is in state U2 and is about to receive the D-tok from Node
B; we make no claim on Node B’s state.

Second, we look at the system at the point where Node A is just about to receive theD-token sent by Node B
(see Figure 9). The partitioning is the same, but time has advanced. Now we see thatNA � 2 since Node A is in
stateU2. However,NB � 3 still holds since no tokens have left that component. This is our contradiction since
there are only 4 tokens in the system. 2

10

4.2.2 General SlackN

Theorem 3 For a system comprised of two nodes each running the general slack-N state machine of Figure 4
and connected by a bi-directional communication channel, everyUp ! Down transition is directly caused by a
timeout.

Proof:
First, we label the tokens in the state machine of Figure 4, transforming it to the state machine of Figure 10. We
have labeled the tokens as follows:

1. A token is labeled D if it was sent for aU ! D transition.

2. A token is labeled U if it was sent for aD ! U transition.

Since tokens are always sent D, U, D, U, ..., we can also easily determine what kind of token we will be receiving
in certain states. Starting in the initial state, the first token received must be a D token, the next a U token, and so
forth.

Down
t = 0

Down
0 < t < N

Up
t = N

Up
0 < t < N

Down
t = N

T: token arrival event
t: token count

U: Up token
tout: time-out event

D: Down token

tout/D
D/D

U/0 {U and t=N-1} / 0

Start

{trigger event} / token sent

{T or {tin and t>0}} / U

{tout and t>1} / D

{T and t<N-1} / 0
{tout and t=1} / D

U/U

Figure 10. Token-labeled state machine for the connectivity protocol, general slack N .

Let’s look at a system made of Node A and Node B, each running such a state machine. As stated above, it is
sufficient to concern ourselves with theU ! D transitions made by a given side. Assume A is making such a
transition. We need to show that we have eachU ! D transition is either caused by a localtout, or is the direct
result of atout at Node B.

At Node A, we have such transitions resulting from timeouts, and one such transition resulting from receipt of
aD-token (see Figure 11a). The first three cases are simplyU ! D transitions due to local timeouts, and need no
further examination. The fourth case needs to be explored in more detail by looking at where theD-token could
have come from. At Node B, aD-token could have been generated by aU ! D transition caused by a timeout,
or generated by aU ! D transition caused by receipt of aD-token (see Figure 11b). Again, the first three cases
are simplyU ! D transitions due to local timeouts, and need no further examination. The fourth case is where
the proof is needed. We have this problem: can the fourth cases of the two lists above occur in a chain? I.e., we
wonder whether the following sequence can occur:

D-tok) BUN!DN
) D-tok) AUN!DN

11

Node A:U ! D transitions tout accounted for?

tout) AUN!D(0<t<N)
yes

tout) AU(0<t<N)!D0 yes
tout) AU(0<t<N)!D(0<t<N)

yes
D-tok) AUN!DN

no

(a)

Node B: transitions generating D-tok tout accounted for?

tout) BUN!D(0<t<N)
) D-tok yes

tout) BU(0<t<N)!D0) D-tok yes
tout) BU(0<t<N)!D(0<t<N)

) D-tok yes
D-tok) BUN!DN

) D-tok no

(b)

Figure 11. (a) Node A: U ! D transitions (b) Node B: transitions generating D-tok (i.e., all U ! D

transitions)

This is the only case where we have a chain of events involving no timeouts that hasU ! D transitions in it. If
we prove this can never happen, we are done. We prove this by contradiction.

Much as in the previous proof, we’ll separate the system into two separate components and use a token-counting
argument to show this case is impossible. Even at a glance the problem is obvious since we have a state withN

tokens sending a token to another state withN tokens, yet we only have2N total tokens in the system. The
asynchronous nature of these interactions is the only thing stopping us from already being done with the proof.

NBAN

D N

A B

D

?

Figure 12. Partitioning the system: Node B is in state DN and has sent a D-tok to Node A; we make
no claim on Node A’s state.

First, we look at the system at the point where Node B has just sent theD-token to Node A (see Figure 12).
Here you see how we’ve partitioned the system: we include in one partition all those tokens at Node B, plus all
those in the FIFO up to and including theD-token just sent. We call this number of tokensNB, and we see that
NB � N + 1 initially since Node B is in stateDN and there is theD-token in the channel. The rest of the system

12

makes up the second partition, and hasNA tokens. Initially no claim is made as to the size ofNA.

NBAN

U N

A B
?

D

Figure 13. Partitioning the system: Node A is in state UN and is about to receive the D-tok from Node
B; we make no claim on Node B’s state.

Second, we look at the system at the point where Node A is just about to receive theD-token sent by Node B
(see Figure 13). The partitioning is the same, but time has advanced. Now we see thatNA � N since Node A is
in stateUN . However,NB � N +1 still holds since no tokens have left that component. This is our contradiction
since there are only2N tokens in the system. 2

4.3 Correctness

By “correctness” we mean the simplest aspect of correct behavior: if the channel is down, both sides mark it as
Down, and if the channel is up, both sides mark it asUp. The correctness requirement eliminates trivial protocols
that always mark the channel as eitherUp or Down, and protocols that would allow themselves to get in a state
where they must keep reporting the channel asUp simply to satisfy the bounded slack property, despite persistent
timeouts.

Theorem 4 For a system comprised of two nodes each running the general slack-N state machine of Figure 4 and
connected by a bi-directional communication channel:

1. Each node will eventually mark the channel asUp, given that neither side sees timeouts (i.e., bi-directional
communication exists).

2. Each node will eventually mark the channel asDown, given that both sides see timeouts (i.e., bi-directional
communication does not exist).

Proof:

1. Bi-directional communication exists: neither side sees timeouts. In a stable system where full communi-
cation exists, the channels must eventually be empty. Thus, to account for all tokens each side must have
exactlyN tokens (the most each side can hold). We must show that the only possible state of the system is
for both sides to be inUN .

� Consider the case where Node A is inUN and Node B is inDN . Looking at the labeled state machine
of Figure 10, this would mean that the last token sent by Node B was aD-token and the last token
received by Node A was aU -token, which is a contradiction.

13

� Consider the case where Node A is inDN and Node B is inDN . Both cannot come to rest inDN states
since the transition to this states requires the sending of a token. Say it is Node A which first comes to
rest in theDN state. TheD-token it sends out upon making that transition would have to be the one to
cause Node B to transition to theDN state. However, this chain of events is prohibited by the stability
argument made in the previous section. Note that not only can the two sides not both stabilize in the
DN state, but it is not even possible for both to be in such a state as a transient condition.

So, the only allowable stable state is both inUN .

2. Bi-directional communication does not exist: both sides see timeouts. This is a simple case, since both sides
will see timeouts and transition to aDownstate if they are not already in one. Note that for this to be true
there must always be a transition to aDownstate from everyUp state triggered solely by a timeout event.
This is true for our state machine. 2

One interesting thing to note here is that we cannot prove correctness as specified in Case 2 above if the
timeouts seen by the state machine are only generated by loss of one direction of communication. In other words,
if it is possible that only one of the nodes continually sees timeouts while the other node sees none, then we
cannot guarantee that both sides eventually transition to theDownstate. This is why we usepingsto monitor link
connectivity rather than each side simply generating aheartbeat: we require that timeout events are generated
wheneverbi-directionalcommunication is lost.

5 Implementation and System Notes

Our need for monitoring connectivity arose in theRAIN system here at Caltech.RAIN (Redundant Arrays of
Independent Nodes) is a local network of inexpensive, off-the-shelf computing nodes (see Figure 14). The system
was created to test ideas on introducing fault-tolerance into networks of computers. This includes fault-tolerance in
distributed storage across the machines as well as fault-tolerance in network connectivity, where the connectivity
protocol plays a role.

Initially, the simplest possible approach was used: simple heartbeats were used to get a current view of the
channels. In the implementation of the communication layer it became clear that a more sophisticated reporting of
connectivity could simplify the job. In particular, reacting toDownconnections was like taking action for an error
condition. If connectivity information could be provided that was identical within a slack ofN = 2 at both sides
of the channel, the communication layer could make the simplifying assumption that both sides would see all the
same errors, and that the periods where each side saw the channelDownwould overlap.

In the absence of a connectivity protocol that provided a bounded slack and consistent history, we saw ourselves
essentially implementing the functionality of the protocol we have described, but integrated into the rest of the
communication layer. In this way it was harder to analyze and more difficult to argue correctness. We felt the
isolation of this protocol from the rest of the implementation served our purposed in establishing correctness of
the system, and may help others since it now exists as a proven module with strict specifications. It serves as an
excellent exercise in full protocol specification and proof, and gives motivation for new protocols that may ease
the solution of different problems by trying to achieve “consistent history” solutions.

As a final implementation note, we would like to stress again that the development of this protocol using
reliable communication primitives is merely a tool for specifying and proving the protocol, saving ourselves from
essentially reproving sliding window protocols. The protocol can be implemented, and indeed is implemented
by ourselves, without using any underlying reliable communication primitives. The protocol can, of course, be
implemented using reliable communication primitives, however, there is really no need to do so. One can simply
implement basic heartbeats, and then map the token part of the protocol on top of the heartbeats by including a
sequence number and an acknowledge number. It is a trivial sliding window that needs to be implemented because

14

Figure 14. The RAIN System. This is a ten node system. There are ten computers down below, ten
screens up on the rack, and Myrinet network switches in the center. They are running a video demo
as well as the basic system monitoring software.

it is data-less in nature. The result is that this protocol can be implemented with no more effort than a na¨ıve
heartbeat or ping solution with essentially no additional strain on the system.

6 Conclusions

Our main contributions are the creation of a a simple, stable protocol for monitoring connectivity that maintains
a consistent history with bounded slack, and proofs that the protocol satisfies all these criteria. The protocol we’ve
explained provides a mechanism for keeping the reporting of the channel state between two nodes consistent
within a given slack. Consistency in the reporting of errors such as link connectivity problems can simplify the
writing of applications acting on such error conditions, improving the overall reliability of a distributed system.
A minimal slack ofN = 2 is necessary for any protocol trying to guarantee consistency and still reflect the true
state of the channel. A greater value for the slack permits the user of such a protocol tailor the degree to which the
connectivity reporting truly reflects the current state of the channel at the expense of how tightly coupled the two
nodes’ histories must be.

There exists more work to be done in monitoring network errors in a distributed system. One straightforward
extension is the reporting of connectivity of a clique of nodes. Such a protocol would tell whether a group of nodes
is fully connected or not, and make the same guarantees of consistent history as the link protocol. Another useful

15

(a) (b)

Figure 15. Here are two screen shots. Again we see the video demo and the system monitoring
software for a ten node system with two network interfaces per node. (a) Example screen shot
showing local view and full connectivity: two lines connect to each other machine in the network.
(b) Example screen shot showing local view and detection of failure of some links: loss of one link
to each other machine (caused by removing power from one of the switches) and loss of both links
to two other machines (caused by disconnecting those two machines from the remaining switch).

protocol would be one that reports whether a given node is isolated from the group. Then, if any single node ever
sees itself as isolated, all other group members also see it as isolated. A common trait to all these problems is that
the decision being made is abinary one, for only then can one part of a system make a decision about a change in
statewithout communicating with other components. This is a necessary condition so that decisions can be made
independently, and eventual consistent history can still be guaranteed.

References

[1] K. P. Birman and B. B. Glade. Reliability through consistency.IEEE Software, 12(3):29–41, May 1995.
[2] K. P. Birman and T. Joseph. Reliable communication in the presence of failures.ACM Transactions on Computer

Systems, 5(1):47–76, February 1987.
[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A gigabit

per second local area network.IEEE-Micro, 15(1):29–36, February 1995.
[4] V. Bohossian, C. Fan, P. LeMahieu, M. Riedel, L. Xu, and J. Bruck.Computing in the RAIN: A Reliable Array of

Independent Nodes. Electronic technical report, http://www.paradise.caltech.edu/papers/etr029.ps.
[5] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.Journal of the ACM,

43(4):685–722, July 1996.
[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.Journal of the ACM,

43(2):225–267, March 1996.
[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.Journal

of the ACM, 32(2):374–382, April 1985.
[8] G. J. Holzman.Design and Validation of Computer Protocols. Prentice Hall, New Jersey, 1991.
[9] P. S. LeMahieu and J. Bruck.A Consistent History Link Connectivity Protocol. Electronic technical report,

http://www.paradise.caltech.edu/papers/etr023.ps.
[10] N. Lynch. Distributed Algorithms. Morgan Kaufman, New Jersey, 1996.
[11] T. L. Rodeheffer and M. D. Schroeder. Automatic reconfiguration in autonet. InProceedings of the 13th ACM Sympo-

sium on Operating Systems Principles, volume 25, pages 183–197. ACM, October 1991.
[12] T. L. Rodeheffer and M. D. Schroeder. A case study: Automatic reconfiguration in autonet. In S. Mullender, editor,

Distributed Systems, chapter 11, pages 283–313. ACM Press, New York, second edition, 1993.

16

