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Abstract full PVM functionality on top of a reduced set of parallel

PM-PVM is a portable implementation of PVM designed Programming primitives supported by Mulplix, a Unix-
to work on SMP architectures supporting multithreading. like operating system designed to run parallel applications
PM-PVM  portability is achieved through the Wwithin Multiplus, aDSM multiprocessor [2]. Therefore,
implementation of the PVM functionality on top of a to port PM-PVM to different SMP latforms, it is only
reduced set of parallel programming primitives. Within necessary to implement this reduced set of primitives on
PM-PVM, PVM tasks are mapped onto threads and thesuch platforms. In fact, this has already been done for
message passing functions are implemented using share@olarisLWPs Solaris thread$3] and Rhreads[4].
memory. Three implementation appproaches of the PvM PLWP [5], TPVM [6] and LPVM [7] are previous
message passing functions have been adopted. In the fir&fforts to develop PVM-like environments based on
one, a Sing|e message copy in memory is shared by a“hreads. PLWP is a non-intrusive implementation of a
destination tasks. The secoade replicates the message PVM thread-based system designed to work with a
for every destination task but requires less SpeCiﬁC thread model. TPVM is also a non-intrusive
synchronization. Finally, the third approach uses a implementation. It does not support shared memory
combination of features from the two previous ones.among threads and its functions for sending or receiving
Experimental results comparing the performance of PM-messages are not re-entrant. LPVM impletagon
PVM and PVM applications running on a 4-processor modifies data structures used RVM shared memory
Sparcstation 20 under Solaris 2.5 show that PM-PVM canVersions and provides re-entrant message passing
produce execution times up to 54% smaller than PVM. functions. However, the PVM user-interface is modified
in order to generate a thread and signal safe environment.
PM-PVM, on the other hand, is not based on previous
1. Introduction PVM implemenations. Its new code tries to get as much
benefit as possible from the use of threads and shared
memory. Nevertheless, PM-PVM and PVM user

Symmetric multiprocessing SMP) is currentl o ) S . :
4 y g SUP) Y interfaces are very similar, which simplifies the migration

common in nowadays desktop computers. However, its o S
potential parallelism is still very little exploiteBvM [1],  ©f €Xisting PVM applications to SMP platforms.

which is widely used in the development of parallel S€ction 2 of this paper describes the PM-PVM
applications for heterogeneous computer networks, can p@rogramming model and discusses the additional facilities

an adequate environment to encourage and simplify the?ffered by its hybrid parallel programming model. Section
development and migration of parallel applications on 3 gives a brief description of the Mulplix primitives used

and to SMP fatforms. Unfortunately, however, most of 1N theé PM-PVM implemetations. In Section 4, three
the PVM implemetations are not easily portable and do

different PM-PVM implemetation approaches are
not fully use the facilities available in these systems toPrésented. Section 5 discusses the performance results
improve the performance of parallel applications.

achieved with the use of PM-PVM and PVM on a
PM-PVM (Portable Multithreaded PVM) is an SparcStatior0 with 4 processors. The first group of tests

efficient and portable PVM implemfation for Unix-like evaluates the performance of the implementations of some

SMP environments, which maps PVM tasks onto threads” VM opeations and Mulplix primitives usingsolaris

and implements PVM message passing functions usind’WPs and Solaris threads The second group of tests
shared memory. Therefore, PM-PVM also supports gcompares the performance of PVM and the different PM-

hybrid parallel programming model based on messageP_VM” implemenations  for fourhparall_el appllica_ltions. g
passing and global shared variables. Finally, Section 6 summarizes the main conclusions an

PM-PVM portalility is achieved by implementing the ~P'eSents proposals of future work.



2. The PM-PVM Model of threads. Its parameters are the number of threads to be
created, the name of the function to be executed by the
A PVM application consists of a set of tasks running in threads, an optional list of preferential processing
parallel on a virtual machine, typically a heterogeneous€lements for the execution of each thread and a common
computer network. A PVM task has unique argument. A synchronous creation of threads is performed
identification ¢id) and is mapped onto a process within With the“thr_spawns” primitive.
Unix-like Systems_ The tasks communicate among Three additional primitives for thread control are:
themselves through message passing. A message consistdir_id", which returns the unique identification number
of the destination task identification, the message tag and®f a thread;"thr_kill”, which allows any thread to Kkill
the list of data fragments. The communication is another thread within the same process; ‘@hd term”,
performed with the use of buffers. Each data fragment towhich forces the termination of the thread.
be sent is packed according to some kind of codification Dynamic shared memory allocation can be performed
and stored in a buffer. At the receiving end, it is firstly with the use of the“me_sallo¢ primitive. The
stored in a buffer and then unpacked. The PVM library “me_sfree” primitive is used to release previously
provides functions for: buffer handling; sending/receiving allocated regions of shared memory.
messages; defining the virtual machine configuration; etc. Mulplix supports synchronization mechanisms based
PM-PVM has been designed to be a portable PVM-like on mutual exclusion and partial ordering relations. For
environment optimized to run oBMP patforms with the manipulation of mutual exclusion semaphores,
support to multithreading. PMVM implements the  primitives are provided for the creatiotin{x_creaté¢),
PVM functions with the use of a reduced and simple set ofallocation ~ {mx_locK’),  non-blocking  allocation
primitives derived from the Mulplix operating system. (“mx_test”), destruction {mx_delet€) and release
Instead of being mapped onto processes, PM-PVM taskg‘mx_fre€) of a semaphore. For partial ordering
are mapped ontthreads Hence, a PM-PVM applation semaphores, primitives are provided for waiting on the
consists of a single process made up of threads which ruevent occurrence €Vv_wait) or for creating
in parallel, share the process resources and communicatgev_creat®), asynchronous signalling “é€v_signal),
among themselves using shared memory, but followingsynchronous signalling €v_swait) and destroying
the message passing model at the user level. (“ev_deletd an event.
PM-PVM is almost fully compatible with PVM.
Basically, only thepvm_spawrfunction has had its user 4. Implementations of the PM-PVM Model
interface changed in order to become compatible with the
Mulplix thread model. Due to the compatibility issue,  within PM-PVM, information on the tasks is stored in
PM-PVM keeps the idea of packing and unpacking the task control vectqrwhich is indexed by the task
message data through buffers, but with no data encoding.dentification (id). As thetid is a unique task identifier,
PM-PVM  supports global shared variables among itsno access collision can occur and this data structure can
tasks. Global variables can be used to store the initiabe implemented as a simple global vector. PM-PVM
values of an application data base, eliminating the need tgunctions call thehr_id function to obtain théid before
send this information to the tasks through messages. lhccessing information on a task within this vector.
each task has exclusive access to a given fraction of the Three different approaches have been used for the
data base, the results of the task processing can also hgplementation of PMRVM. In the first one, named PM-
stored directly into the global variable area. This kind of PVM1, a message is Shareddjydestination tasks. There
hybrid parallel programming model is specially useful in is no message replication. Each task is initially associated

applications which follow the master-slave approach. with a vector of 4 buffers. Additional buffers are created
_ o in groups of 4. A buffer holds the message source task
3. The Mulplix Primitives identification, the message tag and a pointer to the

message. The message holds a pointer to its list of data
Mulplix set of parallel programming primitives is used fragments. A new fragment is allocated in memory for
by PM-PVM to implement PVM functions based on every packing operation. The message also holds the
threads and shared memory. Therefore, to port PM-PVMreference countemwhich stores the number of references
to different SMP [atforms, it is only ecessary to to it. Access to the reference counter is protected by a
implement this simple and reduced set of primitives onlock. In addition, each task has a pointer to theeived
top of some available thread package for such platforms. message queue, where message information is stored until
The Muplix primitive, " thr_spawr!, creates a group a receive operation is performed.



The second approach, PM-PVM&ms at optimizing  another frequently used operation. However, considering
the message passing procedure by reducing PM-PVMlhe creation of threads, the implementation based on
synchronization overhead in handling the referenceSolaris threadss 7 times slower than that basedlLdiPs
counter and in allocating memory for the data fragments.and it is also slightly slower when performing semaphore
Within PM-PVM2, dhata fragments are stored in a single lock/unlock operations.
vector, which is dynamically allocated in 256-byte blocks.  Experimental tests have also been used to evaluate the
Therefore, additional packing operations will only require performance of the basic PVYM opébns. These tests
memory allocation if the previously allocated blocks have have shown that all implementations based Smiaris
no room left to store the new data fragments. In addition,threadshave a worse performance than those based on
PM-PVM2 diminates the message reference counter byLWPs when creating a large number of tasks, as already
copying the message to the destination tasks.PRMI2 expected. However, they are at least 80 times faster than
buffer structure includes the data fragment vector and allPVM. Implemenations based on LWPs can even be 250
information held by PMPVM1 message structure. When times faster thariPVM. The tests have also shown that
a message is sent, the full contents of the buffer is copie®PM-PVM1 performs worse than PVM, PM-PVM2 and
to the destination task. Theaeived message queue is PM-PVM3 when packing nitiple fragments. The time
implemented through a linked list of buffer structures. spent by PM-PVM1 on 1M packing opgions of a single

The third approach, PM-PVM3, is a comdiion of integer is at least 4 times longer.
the previous ones. The contents of a message is shared by Concerning message transmission, PVM has shown to
all destination tasks, as in PRWM1, but, on the other be at least 40 times slower in sending and 25 times slower
hand, the message data fragments are stored in a vector of receiving empty messages than any of the PM-PVM
bytes as in PM-PVM2. PM-PVM1 message structure isimplementations. Both PNVM1 and PM-PVM3 are
preserved, but with a pointer to the data fragment vectornearly twice slower than PM-PVM2 in receiving empty
This way, PM-PVM3 Bminates some synchronization messages. However, PM-PVM2aBnost 50 times slower
needed in PM-PVM1 by not using a fragment list and than both PM-PVM1 and PM-PVM3 in sending messages
avoids the PM-PVM2 message replication overhead. consisting of a single fragment with 10K integers due to

the time spent on memory allocation and message copy.
5. Performance Evaluation
5.1 Performance of parallel applications

PM-PVM implememations have been developed and
tested on &parcstation 2@ith 4 HyperSparc@100MHz The performances of PVM and the different PM-PVM
processors and 128 Mbytes of memory. All programsimplementations have also been analysed considering four
have been compiled using GNU C [8] compiler with all parallel applications: SOR, Bubble Sort, Gaussian
optimization options enabled®VM version 3.3.11 for Elimination and VLSl placement using Genetic
Solaris/Sunhas been used in these experiments. In thisAlgorithm. In all applications, the tasks have been evenly
version, the communication amon§VM tasks is  distributed among the four available processors. For the
performed usindJnix streams sockets PM-PVM implemermations based oBolaris threadsfour

The experimental tests have been performed for PM-LWPshave always been created, one on each processor,
PVM implemenations based orSolaris LWPsand on  with one or more tasks mapped onto ea@P. The PM-
Solaris threadsAll results refer to the smallest execution PVM versions usingsolaris threadsare identified in the
time in seconds achieved in at least 10 executions of thdéables showing test results by the termination st.
test programs. This minimizes the interference on the
measurements that might be caused by other programs 5.1.1 SOR. This application simulates the heat
that were eventually running on the same machine. propagation process on a surface described by a 192x192

Initially, the performances of the implementations of array and having its borders always at@ Initially the
the basic Mulplix primitives have been evaluated. The whole surface temperature is set t€0The center of the
experiments have shown that the implementation basedurface is then heated to 200 for a short time period
on Solaris threadsf thethr_id primitive, which is often  (one single iteration). At each iteration, the temperature
used by the PM-PVM functions, is overtiines faster = on each position is evaluated as the average temperature
than that based ohWPs In addition, implementations on its 8 neighbours. The algorithm runs for 238 iterations
based on Solaris threads perform thread context- until an equilibrium situation is reached. The parallel
switching faster and do not require explicit version of the SOR algorithm uses the master-slave
synchronization for handling dynamic memory allocation, approach and each task processes a set of rows.



# of tasks 2 4 3 12 16 number of parallel tasks.. '

PVM 2046 | 2831 2844 4256 4731 Table 3 shows that with 2 and 4 tasks, the algorithm
PM-PVML | 23.06| 20.48] 1863 1980 2041 execution time is reduced with the square of the number
PM-PVM2 | 23.61| 2057| 18.84 19.7p 2042 OOf(r"[I?)SkVS\/,' since ineupble sortaigoritm complexty 1s -

= . With more tasks, the performance improvement is

;,CIA I:I)D\\//I\I;/lfst 23_'17 1290 8593 1178 266] 116? .9963 1270 1479 not so big, since the tasks start competing by processors.
PM-PVYM2 5 : 19'77 17'27 16.5' 16.2; With 16 tasks PVM performs worse than with 12 tasks

- < . . = . and much worse than any PM-PVM implertation. In
PM'PVM‘?’ - 19.74] 17.26] 16.84 16.90  aqdition, the message length increase, as the algorithm
Sequential 40.00 : progresses, also makes PVM performance worse.

Table 1: Performance of the SOR algorithm # of tasks > 2 8 B 16

Table 1 shows that PVM has the worst performance PVM 104.76| 26.92] 14.58 10.7B 15.56
because it processes message passing operations muclPM-PVM1 |[104.17| 26.23| 13.2§ 8.99 6.81
slower than PM-PVM. With more than 8 tasks, PVM | PM-PVM2 | 104.15| 26.34| 13.36 9.1( 6.9
performance gets much worse since the task idle time i$ pm-PvM3 | 104.17] 26.25] 13.28 8.96 6.84

= O ==

too small to make process context switching worth while.[ pp-pym1 St - 26.27| 13.27| 8.93| 6.81
However, with PM-PVM, context switching is faster and [ pp-pym2 st i 26.33| 13.38] 9.04] 6.98
the performance improves with 8 tasks. Performance als§ pppymzst| - 26.24| 13.25] 895 6.83
improves with 12 tasks for PM-PVM implentations Sequential 466.86

based onSolaris threadsand even with 16 tasks when - -
PM-PVM2" is used, since the message length decreases Table 3: Performance of the Bubble Soralgorithm

as the number of tasks increases. 5.1.3 Gaussian elimination.This application performs
With the PM-PVM hybrid paallel programming " . T . P pe
L : : he Gaussian elimination of a 960 x 960 matrix of real
model, an optimized implementation has been produce . . .
- umbers and evaluates its determinant. The initial task
by avoiding the master to send sets of rows to the slaves a :
Creates as many other tasks as required and sends to them

each iteration. The array representing the surface isthe range of columns onto which they should work. The

defined as a shared variable and, since each slave : ; : .
. . ange of columns is associated with the tasks according to
operates on different rows, they are accessed Wlthou{

: o heir tids. Every task reads the full matrix from an input
mutual exclusion synchronization. Message lengths are. . . oo
ile. During the Gaussian elimination procedure, the task

reduced, but the number of messages does not change 10

N : . olding the current pivot element calculates and sends
ensure the correct task synchronization at each iteration. : . .
the corresponding set of multipliers to the tasks with

# of tasks 2 4 8 12 16 bigger tids. Then, each task performs the necessary

PM-PVM1 | 21.48| 18.70] 16.48 17.59 18.19 calculations and sends its partial determinant result to the
PM-PVM2 | 21.14| 18.33| 16.132 17.04 17.19 initial task that finds the final determinant value.
PM-PVM3 | 21.47| 18.66] 1644 17.4f 17.88 [ #oftasks | 2 7 8 1 16
PM-PVM1®| - |1885| 1599| 1550 15.16 PVM 4450 26.92 24.14 2535 28.50
PM-PVM2*| - | 15.86| 1379 13.24 1319 [Tpym-pvMm1 | 44.11| 25.32] 22.1Q 21.2f 21.43
PM-PVM3®| - |1885] 1592| 1533 152p ["pm-PVM2 | 44.28| 25.88] 23.9 24.86 26.7
Table 2: Optimized SOR implementation PM-PVM3 | 44.18| 25.24| 22.07 2156 21.594
Table 2 shows the results produced with the optimized PM-PVM1%'| - | 25.26| 19.23| 181Q 17.78
SOR implementation. The smaller message lengthd PM-PVM2* - 25.87| 19.79] 19.3Q0 19.92
improve the performances of all PM-PVM | PM-PVM3% - 25.27| 19.13] 18.24 17.70
implementations. This is more evident with FNM2, Sequential 82.24
which is more sensitive to the message lengths. Table 4: Gaussian Elimination Performance

Table 4 shows that PVM and PM-PVM havenigar
gerformances for up to 4 tasks. From tloen PM-PVM1
and PM-PVM3 perform better, inditng that they

5.1.2 Bubble sort. The bubble sort parallel
implementation uses a master-slave approach and work

in two phases. The first one consists of dividing a vector X o ,
with 96000 integers in sections and sorting them in benefit more from context switching between tas'ks. With
PM-PVM2, however, performance gets worse with more

parallel. In the second phase, the ordered sub-vectors ar%an 8 tasks because the number of messades increases
repeatedly merged together in pairs by a decreasing} 9



when the messages are longer. As expectedthan PVM with executiortimes up to 54% smaller. In
implementations based osolaris threadsget more  applications where the tasks are idle for some time, PM-

benefit from increasing the number of tasks. PVM implemernations based ofolaris threadsiormally
perform better since context-switching is faster.
5.1.4 Genetic algorithm.This application aims at solving PM-PVM2 performs better in appétons with a small

the placement problem in VLSI design and uses anumber of short messages. PM-PVM3 and PM-PVM1

distributed processing model where each processor runperform better than PM-PVM2 in appditons with

the full genetic algorithm on a fraction of the total effective message sharing, such as broadcasting intensive

population [9]. The originaPVM implemenation has  applications. In contrast with PMYM2, PM-PVM3

been ported to PM-PVM wusing a hybrid abel performance is less sensitive to the message size. PM-

programming model in which some of the initialization PVM1, however, does not perform well in applions

messages have been eliminated with the use of shareidsuing several messages with multiple fragments.

data structures among the tasks. Future work will mainly focus on the optimization of
Two test circuits have been used: Circuit_ 1 (80 PM-PVM implemenations for cluster-based distributed

modules and 30 nets) and Circuit_ 2 (100 modules andshared memory architectures such as Multiplus and on

300 nets). Table 5 shows the performance results for thehe integration of PMRVM with PVM in order to provide

placement of both circuits, considering a population with a scalable and efficient environment for use in

1024 individuals. The parallel versions achieve an heterogeneous networks of SMP workstations.

excellent speed-up because the evolution of populations in

parallel finds “fitter” individuals earlier in the process, 7. Acknowledgements

leading the algorithm to the optimum result faster.
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