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Abstract

This paper aims to describe the implementation of
TAKAKAW , an efficient parallel application for the sim-
ulation of molecular dynamics designed to handle large
proteins in biology. The implementation is based on the
multi-threading parallel programming environment, called
ATHAPASCAN 1 which allows to implement and evaluate
easily several load-balancing strategies. Some experiments
run on one of the largest molecule ever simulated (an hy-
drated�-galactosidase with 413039 atoms) show the inter-
est of such a parallel programming environment.

keywords. Load balancing - Threads - Parallel Molecular
Dynamics.

1 Introduction

Simulations of molecular dynamics is an important chal-
lenge of today. Biologists started recently to study the
behavior of large molecular systems consisting of sev-
eral thousands of atoms with the help of parallel comput-
ers [15, 6, 2]. The computational complexity of such sys-
tems increases considerably with the molecule size.

Part of molecular dynamic application is to simulate the
behavior of multiple-particles systems via numerical sim-
ulation techniques. The principle is to compute time se-
ries of positions and velocities of the atoms by integrat-
ing Newton’s equation of motion. At each step of molec-
ular dynamic application, the forces between atoms have to
be computed. The computation of non-bonded forces, the
Van der Waals and electrostatic (Coulomb) forces between
charged atoms is the most consuming portion for a typical
simulation [22, 5, 21, 15]

The non uniform distribution of the atoms in space pro-
duces highly irregular computations, the main challenge is
to provide a high performance implementation that scales

1ATHAPASCAN is part of the research project APACHE supported by
CNRS, INPG, INRIA and UJF

well as the size of the problem increases. Many parallel im-
plementations of molecular dynamic application have been
done. Most implementations consider static load-balancing
with stop and restart in case of important work-imbalance
at execution time. Only a few consider dynamic load-
balancing [15, 4].

TAKAKAW was designed to be able to simulate large
systems of atoms with the van der Waals and Coulomb
interactions as well as geometric interactions [2, 6] us-
ing Newtow’s equation of motion. The experiments on
one of the largest molecule ever simulated (an hydrated�-
galactosidase with 413039 atoms) is reported in this paper,

The organization of the paper is the following. We first
recall and discuss the common approaches used to paral-
lelize molecular dynamics. Then, we present the parallel
method and we briefly present the parallel programming en-
vironment on which TAKAKAW has been implemented. We
give the keypoints of our implementation that improve effi-
ciency. In section 3, we detail the algorithms of our paral-
lelization. We especially focus on the load-balancing prob-
lems. Finally, some experiments are presented and analyzed
on the CRAY T3E until 256 processors for studying the dy-
namic of a large system of atoms in the area of biology.

2 Model and parallel methods

2.1 General description

Molecular dynamics (MD) aims at studying the dynamic
behavior of multiple-particles systems via numerical simu-
lation techniques. This generic method is widely used for
simulating the properties of liquids, solids and gas. It is
also used to study mechanical and structural properties of
proteins and other biological molecules [6] [17] [2]. The
principle is to compute time series of positions of the atoms
by integrating Newton’s equation of motion. Within this
model, an atom is considered to be a charged point mass of
a given type (oxygen, carbon,. . . ).
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The numerical solution of these equations is usually
computed by an iterative integration loop from the positions
of the atoms and their velocities. Initial positions and veloc-
ities are given. It is necessary at each time step to compute
the forces between each atom of the system. The system is
essentially influenced by two types of forces:

� intra-molecular geometrical forces which model the
vibrations along covalent bonds, the bending vibra-
tions between two adjacentbonds, and the torsional
motions around bonds.

� usual non-bonded interaction forces of Coulomb and
Van der Waals. They are involved between all pairs of
atoms in the whole system.

Solving the previous set of equations can be expressed
in several steps nested inside a global integration loop. We
sketch below the principle of the general solution method:

for all time steps do
compute intramolecular forces;
compute non-bonded forces;
integrate Newton’s equation of motion;

end do;

Computing exactly the non-bonded forces may require
to calculate the non-bonded interactions betweeneach atom
in the system with every other atom, giving rise toO(N2)
evaluations of the interaction in each time step. In practice
the non-bonded forces consume the most significant part of
the computation time. It takes more than 90% of the to-
tal [22, 5, 21, 15]. For large systems, it becomes necessary
to avoid the explicit computation of all non-bonded inter-
actions. However, MD application usually truncates cal-
culation of the non-bonded forces at a fixedcutoff radius.
The non-bonded interactions decrease rapidly with increas-
ing distance between atoms. Then, it is possible to neglect
the interactions between two atoms separated by more than
a certain radius (called thecutoff radius). This means that
an atom has only non-bonded interactions with the atoms
which are in a sphere with a radius equal to thecutoff[6, 2].

The cutoff method reduces considerably the computa-
tions. However, our objective is to simulate the dynamic
of systems constituted by at least several tens of thousands
atoms for more than one hundred of thousands iterations
(this represents about100 ns of the biological simulation).
Although thecutoff approximation does not allow to take
into account all the electrostatical phenomena. However, it
is common to perform a series of integration steps withcut-
off between full-range iteration steps. Moreover, it can be
used as a basic bulk for many other methods (like multipole
methods (PFMA) [3]).

There exist essentially three kinds of numerical methods
for solving the molecular dynamics equations, namely, the

one which computes all the interactions, the PFMA, and the
cutoffapproximation methods. These general methods are
discussed in Plimton [20].

2.2 Parallel methods

Parallel implementations for large scale simulation in
MD have to distribute the data among the processors with
the lowest possible communication cost.

We can essentially distinguish three ways to parallelize
MD application.

� Atom decomposition.The atoms and the correspond-
ing non-bonded interactions are distributed among the
processors. All the coordinates of the atoms are ex-
changed before computing the interactions. Then, they
exchange the computed forces and calculate the new
positions of the atoms. These methods are character-
ized by reference to a collective communication pat-
tern (total exchange) which makes it rather inefficient.
However, this algorithm has been widely used be-
cause it is easy to implement [17] especially on shared-
memory multiprocessors [19].

� Force decomposition.These methods are based on a
block splittingof the matrix representing all the combi-
nations of atom pairs. They avoid the previous expen-
sive collective communication but, do not take into ac-
count the locality of data needed for calculating inter-
molecular forces. They are not scalable. They also re-
quire a number of processors equal to a perfect square.
For this reason, such methods are difficult to imple-
ment in practice [12].

� Spatial decomposition.These methods correspond to
a geometric decomposition of the domain. They are
often used for expressing parallelism with fine granu-
larity. Each part of the physical domain is assigned to a
processor. The main characteristic is that the atoms are
not assigned to a given processor, but they are allowed
to move from one processor to its neighbors [8, 16, 13].

Complexity of these three methods are summarized in
table 1.

Method Arithmetic cost Communication cost

Atom decomposition O(N=p) O(N)

Force decomposition O(N=p) O
�
N=
p
p
�

Spatial decomposition O(N=p) O(N=p)

Table 1. Complexities of the three classical methods to
parallelize onp processors a MD simulation withN atoms.
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In this paper, we are interested in the last method (also
calledlink-cell method [20]). Due to its complexity, it will
scale well on large parallel architectures. The data decom-
position enforces locality ofaccess to the neighbors of one
atom.

2.3 Overview of the program

The input of MD application is the description of a sys-
tem of particles in a thermodynamic state, the output is a
time series of thermodynamic states.

The principle of the parallel MD application based
on spatial decomposition, is to bin the atoms into 3-
dimensional boxes of side greater or equal than thecutoff
radius. In this case, the interactions are limited to the 26
neighbor boxes, that bound the communication cost.

Our parallel MD application subdivides the program into
smaller tasks associated with boxes: the tasks for integra-
tion of equations of motion, the tasks for computation of
non-bonded interactions foreach boxes and pair ofbox, the
tasks for evaluation of geometric interactionsetc.. Depen-
dency constraints between these tasks are based on a data
flow analysis of the algorithm. Additional constraints on
tasks are defined in order to preserve the locality of data ac-
cess: for instance, the tasks that compute geometric forces
and non-bonded interactions for thei-th box are mapped
onto the same processor. Then, the cost of each task is es-
timated using the number of atoms in eachbox, and a map-
ping algorithm is used to compute the initial distribution of
the tasks and the boxes among the processors.

Step after step the integration of equations of motion in-
troduces a drift of the work-load of the processors: some
runtime adjustments have to be done within a specific pe-
riod (see section 3.2).

From the implementation point of view, the tasks are ex-
ecuted by light weight processes (or threads discussed in the
next section). A thread has its own control flow and exe-
cutes concurrently with other threads. On each processor of
parallel distributed machine, TAKAKAW maintains different
threads: threads for local computation (one thread for non-
bonded interactions, an other one for other forces and inte-
gration), threads for communication (two threads per node
for each other processors, a first one that waits to receive
position and sends local evaluation of forces, and the sec-
ond one that is symmetric to the first). Figure 1 shows a
visualization of the activity of the multi-threaded program.

2.4 ATHAPASCAN: a multi-threading parallel pro-
gramming environnement

Given a parallel algorithm, a good implementation re-
quires that all potential parallelism inside a parallel machine
have to be used: parallelism across different processors,

parallelism between the communication and the computa-
tion. Light weight processes (shortlythreads) have been
shown as a good tool to efficiently use this different levels
of parallelism. They are useful to manage dynamic creation
of parallelism (new threads of control), due to their low
costs of creation and context switch. They are also widely
used for masking communication cost (latency), or to asyn-
chronously send of receive messages. The local multipro-
gramming of the processors allows to schedule efficiently
the threads corresponding toeach service.

bact.RND.5.nn2.trace  —  ~/Pajex/Traces
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Figure 1. Principle of the execution scheme on one pro-
cessor for one iteration.

The APACHE project aims at developing a parallel pro-
gramming environnement, called ATHAPASCAN, for high
performance computing [1]. An ATHAPASCAN program
is a set of nodes interconnected by a network. A node
is a Unix process: eachnode has its own address space
shared by several threads of control. A node can be
mapped onto a symmetric multi-processors (SMP). ATHA-
PASCAN provides several methods for communication be-
tween threads (shared data with synchronization features
(mutex, semaphore), message passing, remote memory op-
erations -read/write-). Basically, all operations from/to a
remote node are asynchronous to overlap some communi-
cation cost by computation.

Instrumentation of the ATHAPASCAN runtime sup-
port [10] is used to do post-mortem performance evaluation
of an execution of any ATHAPASCAN program. A visual
tool permits to analyze each specific step of a parallel exe-
cution (figure 1).
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The runtime support ATHAPASCAN provides efficient
implementation [7] of thread and communication function-
alities on various distributed platforms (IBM SP2, Cray
T3E, SGI Origin 2000). ATHAPASCAN is built on top of
the standard interfaces: MPI and POSIX-threads.

Figure 1 focuses on the execution scheme on four pro-
cessors for one iteration2. This tool permits to have ac-
cess to a pictural behavior of the program but also for
quantitative measurement as specific times (communica-
tion, computation) or statistic quantities. This figure has
been draw using a random mapping of tasks (discussed in
section 3.1). It shows the relatively poor performances and
work-imbalance of the execution.

3 Load-balancing issues

The load-balancing scheme in TAKAKAW is composed
by an initial mapping of data among the processors and of
runtime adjustment of the work-imbalance.

3.1 Initial data distribution

The initial allocation is computed by an algorithm based
on a recursive bisection for distributing the boxes onto the
processors. As we have already mentioned, the domain has
been decomposed into cubic boxes whose side is larger or
equal to the cut-off radius. These boxes may contain dif-
ferent numbers of atoms depending on the biological struc-
ture. The computational load of non-bonded interactions is
subdivided into tasks associated with boxes: the tasks for
computation of non-bonded interactions foreach box and
for each pair of neighbor boxes. Moreover additional con-
straints enforce the tasks to be mapped on the same proces-
sor as the one of its associated boxes. The recursive bisec-
tion method allows to capture the trade-off between a good
repartition of the number of atoms (which is proportional to
local computations) and a relatively small communication
cost [18].

The principle of this algorithm is recalled on figure 2.
In order to validate this initial allocation scheme, it has
been compared to a pure load balancing strategy which does
not take into account any communication: a greedy algo-
rithm based on the well-known LPT rule (which stands for
Largest Processing Time first [11]). The tasks that com-
pute non-bonded inter-actions associated to one box are first
sorted in decreasing order of load (i.e. the number on non-
bonded interactions they have to compute). Then, they are
allocated to the processors by chosing the less loaded one.
And then, according to previous mapping constraints, other

2For clarity of the figure, we put the master thread of the application
onto a specific processor with label 0. Usually it is mapped onto one of the
slave processors.
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Figure 2. Recursive partition (2 levels) of the box set in
2 dimensions.

tasks are mapped in a same manner. It is known to be effi-
cient for very large grain parallelism [9].

3.1.1 Impact on performances

Some experiments were run on a 32 nodes IBM SP parallel
machine in order to compare static load balancing policies
(LPT and recursive partition). The results given in figure 3
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Figure 3. Work-imbalance of one iteration over 16 pro-
cessors, using the different mappings. The biological sys-
tem is a dioxolane-gramicidine with 11615 atoms.

concern one iteration. As expected, the algorithm based on
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the recursive bisection outperforms LPT. We run the code
of the best static policy recursive bisection in order to study
the evolution in time. Figure 3 shows that the load balancing
behaves well but the performances decrease when the sys-
tem evolves. The next section will investigate the potential
benefit of using dynamic correction of the load repartition.

3.2 Dynamic adjustment

3.2.1 Lazy task migration

In our MD application, the movement of atoms causes ir-
regular repartition, and this phenomenon becomes more and
more critic as the time evolves (as shown in the left part of
figure 4, using the recursive bisection algorithm).
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Figure 4. Comparison of execution times between static
mapping (left part) and dynamic adjustment (right part) on
100 iterations for the simulation of an actual system with
35349 atoms. The upper part of the figure shows the delay
or the ahead for each of the eight processors from the aver-
age time of an iteration. The down part of the figure shows
the average times for each iteration decomposed in compu-
tation time (bottom line) and real time (top line). The region
in grey is the delay time for each iteration.

After a phase of transition, the imbalance of work-load
is bounded by the slow processor that reaches the end of
iteration. We only develop some local adjustments of the
load: only tasks that do not require communication of data
are moved, depending on the delay from the estimation time
to complete an iteration. From a good initial distribution of
work, it allows slight imbalance without lost of efficiency
(right part of figure 4).

The task that computes non-bonded forces between two
neighbor boxes could be moved without further communi-
cation: such tasks need positions of atoms that are sent even
if the task is not moved. Moreover this is the only kind of

tasks that could be sent without further communication. The
estimation of the time to completei-th iteration uses times
of completion of the(i � 2)-th iteration. During iteration
i� 1 the estimations are broadcasted to processors.

The reactivity of thedynamic adjustment algorithm is
at least3 iterations. Using an important number of pro-
cessors for medium size problems suppresses the improve-
ment of the dynamic adjustment algorithm. This can be
explained because the maximum imbalance between pro-
cessors is smaller using more processors. For instance, the
maximum delay between any processors is3 seconds us-
ing 8 processors in experiment report in figure 4. Using16
processors, this maximum delay decreases until0:8s.
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Figure 5. Comparison of execution time between static
mapping (left part) and dynamic adjustment (right part) on
200 iterations for the simulation of system of figure 4. A
synchronization to update internal data structures (position
of atoms) occurs every 40 iterations.

3.2.2 Migration of atoms

The motion of atoms all over the simulation could be more
important than the size of a box (even if we consider the
size of box extended by a tolerance zone). Two cases may
occur: if the atom changes between boxes but stays into the
same processor, or if the atoms changes to a neighbor box
located in another processor.

Changing boxes of atoms requires to update internal data
structures to fast access to their positions, that synchronize
all processors. TAKAKAW updates this data structure ev-
ery several tenths iterations using a distributed algorithm.
Figure 5 shows the experiments on the same system as for
figure 4 (with 35349 atoms). The left part reports exper-
iments using the initial recursive bisection mapping algo-
rithm and a synchronization every40 iterations to update
the data structure. After each synchronization, the behavior
of the simulation is similar to the previous figure 4.
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In studied biological systems, the work-imbalance does
not vary to much for hundreds of iterations. The initial map-
ping produced by recursive bisection and the dynamic ad-
justment are enough for typical simulation of thousands it-
erations. In case of an important work-imbalance, the sim-
ulation is stopped and restarted with a new initial data dis-
tribution using the recursive bisection algorithm [15].

Figure 6. Shape of the�-galactosidase alone (without the
solvant) a protein of about 65 240 atoms.

4 Simulation of a�-galactosidase

To show that our application is able to simulate large
molecular structures of proteins, we have simulated the
movement of the largest protein structure found in the
Brookhaven Protein Data Bank:�-galactosidase[14] (fig-
ure 6). The protein is immersed into a 100Å radius sphere
of water of about 65 240 atoms. The total number of atoms
into the system is 413039 atoms. The size of this system
is more than 4 times larger than the size of the systems
which can be simulated with the other current applications
of molecular dynamics.

4.1 Simulation onto IBM-SP

For this simulation, thecutoff radius has been fixed to
10 Å. We started with a small time step of integration of
0:1 � 10�15 s to equilibrate the system. We carried out a
first simulation of 300 steps to gradually heat the structure
from 50 K to 300 K, rescaling the atoms velocity according
to the target temperature every all 5 time steps. Then we
led a simulation of 700 steps at a constant temperature of
300 K (we rescaled the velocity every all 10 steps) to well
equilibrate the structure.

We then carried out a long simulation of 4 times 1400
steps with a time step of0:25�10�15s and without rescaling

the velocity, to check the energetic stability of the system.
This last test represents 35 hours of calculation on 20 nodes
of the IBM-SP.

4.2 Simulation onto CRAY T3E

To check scalability of our application, we also per-
formed some experiments on a T3E3 with a large number
of processors. Table 2 gives the average times of an itera-
tion of molecular dynamics for the system of 413039 atoms
that contains the�-galactosidaze. We did not show the ef-

413 039 atoms(time in second)
Nb. Proc. (p) 8 16 32
ttot(p) 65.21 27.70 11.69

Nb. Proc. (p) 64 128 256
ttot(p) 5.88 3.07 1.69

Table 2. Average execution time and efficiency of an
iteration of molecular dynamics on a T3E. Thecutoff
radius is 10̊A.

ficiency because it is not significant. Indeed there is not
enough memory on a node of the T3E to allow the compu-
tation of a such big system on less than 8 processors. In
fact, it needs even 32 processors to have enough memory to
generate all the non-bonded interaction lists and to perform
computation at full speed. Below 32 processors only a part
of the non-bonded list of interaction is generated,according
to the size of the free memory on eachnode. For a task that
computes non-bonded interactions, if there is not interaction
list available for this task, the application computes interac-
tions between all pairs of atoms inside the boxes associated
to the task. It is slower than using a list of the non-bonded
interactions, but it uses less memory. On 256 processors,
useful computation for the simulation is 82% of the time
of an iteration. The 18% remainder are, for a half, the de-
lay time due to imbalance and for other half the computing
time to manage distributed data structures (displacement of
the atoms over the processors) and the management of the
communications.

5 Conclusions

In this paper we have described TAKAKAW , a molec-
ular dynamic application designed for large scale simula-
tions in biology. We have reported some experiments on
one of largest molecule ever simulated (a�-galactosidase
with 413039 atoms). This simulation has been possible with
the design of specialized algorithms for the dynamic load

3T3E-750 with 256 processors (EV5.6 375Mhz) and each with 128 Mo
of memory
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balancing problem (recursive partition and dynamic adjust-
ment), but also by the use of the efficient runtime support
(ATHAPASCAN) for parallel multi-threading programming.
Moreover this code is portable across different platforms
(IBM-SP, Cray T3E, SGI Origin 2000).

Current developments are to improve treatment of
the hydrated medium (simulated proteins are surround
molecules of water) to a better approximation of the elec-
trostatic interactions. Our dynamic molecular code will be
coupled with a code for numerical solution of partial deriva-
tive equations applied to electrostatic fields within charges.
This is part of SimBio, an INRIA project4.
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