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Implementation of NAS Parallel Benchmarks in High Performance Fortran*

Michael Frumkin, Haoqiang Jin and Jerry Yan**

Abstract
We present an HPF implementation of BT, SP, LU,
FT, CG and MG of the NPB2.3-serial benchmark
set. The implementation is based on HPF perfor-
mance model of the benchmark specific primitive
operations with distributed arrays. We present pro-
filing and performance data on SGI Origin 2000
and compare the results with NPB2.3. We discuss
advantages and limitations of HPF and pghpf com-
piler.

1. Introduction
The goal of this study is an evaluation of High Perfor-

mance Fortran (HPF) as a choice for machine indepen-
dent parallelization of aerophysics applications. These
applications can be characterized as numerically inten-
sive computations on a set of three-dimensional (3D)
grids with local access patterns to each grid and global
synchronization of boundary conditions over the grid
set. In this paper we limited our study to six benchmarks
from NAS Parallel Benchmark (NPB) suite [2,14]: sim-
ulated applications BT, SP, LU and kernel benchmarks
FT, CG and MG.

HPF provides a data parallel model of computation
[9]. In this model calculations are performed concurrent-
ly with data distributed across processors. Each proces-
sor operates on the segment of data which it owns
(owner computes rule). The sections of distributed data
can be processed in parallel if there are no dependences
between them. The sections with dependences may or
may not be processed in parallel depending on the HPF
compiler’s ability to pipeline computations.

The data parallel model of HPF appears to be a good
paradigm for aerophysics applications working with
data defined on structured 3D grids. A block decompo-
sition of grids into independent sections of closely locat-
ed points followed by a distribution of these sections
across processors would fit into the HPF model. In order
to be processed efficiently these sections should be inde-
pendent and balanced in size multidimensional blocks.
In our implementation of the benchmarks we address

these issues and suggest data distributions satisfying
these requirements.

HPF has a limitation in expressing pipelined compu-
tations. Pipelined computations are essential for parallel
processing of distributed data with dependences be-
tween sections, i.e., solving systems of linear equations
across processors. This limitation requires the redistri-
bution of data in a direction orthogonal to the depen-
dences. It also requires additional scratch arrays with an
alternate distribution (see sections on BT, SP and FT).
Some experimental HPF compilers (see [1]) can pipeline
computations and show promise to remove this limita-
tion.

A practical evaluation of the HPF versions of bench-
marks was done with the Portland Grouppghpf 2.4
compiler [13] on an SGI Origin 2000 (the only HPF
compiler available to us at the time of writing). In the
course of the implementation we had to address several
technical problems: overhead introduced by the compil-
er, unknown performance of operations with distributed
arrays, and additional memory required for storing ar-
rays with an alternative distribution. To address these
problems we built an empirical HPF performance mod-
el. In this respect our experience confirms two known
problems with HPF compilers [12,4]: lack of a theoreti-
cal performance model and the difficulty of tracking
down the poor performing pieces of the code. A signifi-
cant advantage of using HPF is that the conversion from
Ffortran to HPF results in a well structured easily main-
tained portable program. An HPF code can be developed
on one machine and run on another (more than 50% of
our development was done on a “Pentium cluster”).

In Section 2 we consider a spectrum of choices HPF
provides for parallelization and discuss performance of
different HPF constructs. In Section 3 we characterize
the algorithmic nature of BT, SP, LU, FT, CG and MG
benchmarks and describe an HPF implementation for
each of them. In Section 4 we compare our performance
results with the performance of NPB2.3 benchmarks.
Related work and conclusions are discussed in Sections
5 and 6, respectively.
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2. HPF Programming Paradigm
In the data parallel model of HPF, calculations are

performed concurrently over data distributed across pro-
cessors. Each processor operates on the segment of data
it owns. In many cases HPF compiler can detect concur-
rent calculations with distributed data. HPF advises a
two-level strategy for data distribution. First, arrays
should be coaligned with the ALIGN directive. Then
each group of coaligned arrays should be distributed
onto abstract processors with the DISTRIBUTE direc-
tive.

There are several ways to express parallelism in HPF:
F90 style of array expressions, FORALL and WHERE
constructs, the INDEPENDENT directive and HPF li-
brary intrinsics [10]. In array expressions, operations are
performed concurrently on segments of data owned by a
processor. The compiler takes care of communicating
data between processors if necessary. The FORALL
statement performs computations for all values of the in-
dex (indices) of the statement without guaranteeing any
particular ordering of the indices. It can be considered as
a generalization of F90 array assignment statement.

The INDEPENDENT directive asserts that there are
no dependences between different iterations of a loop
and the iterations can be performed concurrently. In par-
ticular it asserts that Bernstein’s conditions are satisfied:
sets of read and written memory locations on different
loop iterations don’t overlap and no memory location is
written twice on different loop iterations [9, p. 193]. All
loop variables which do not satisfy the condition should
be declared as NEW and are replicated by the compiler
in order for the loop to be executed in parallel.

The concurrency provided by HPF does not come for
free. The compiler introduces overhead related to pro-
cessing of distributed arrays. There are several types of
the overhead: creating communication calls, implement-
ing independent loops, creating temporaries, and access-
ing distributed arrays’ elements. The communication
overhead is associated with requests of elements resid-
ing on different processors when they are necessary for
evaluation of an expression with distributed arrays or ex-
ecuting an iteration of an independent loop. Some com-
munications can be determined at compile time while
others can be determined only at run time causing extra
copying and scheduling of communications [13, Section
6]. As an extreme case, the calculations can be scalar-
ized resulting in a significant slowdown.

The implementation of independent loops inpghpf
extends the "owner computes" rule. It assigns ahomear-
ray to each independent loop and uses the home array for
the localization of loop iterations. The compiler selects
a home array from array references within the loop or
creates a new template for the home array. If there are ar-

rays which are not aligned with the home array they are
copied into a temporary array. This involves allocat-
ing/deallocating of the temporaries on each execution of
the loop. An additional overhead is associated with the
transformations on the loop which the compiler has to
perform to ensure its correct parallel execution.

Temporaries can be created for passing a distributed
array to a subroutine. All temporarily created arrays
must be properly distributed to reduce the amount of
copying. Inappropriate balance of the computation/copy
operations can cause noticeable slowdown of the pro-
gram.

The immanent reason of the overhead is that HPF
hides the internal representation of distributed arrays. It
eliminates the programming effort necessary for coordi-
nating processors and keeping distributed data in a co-
herent state. The cost of this simplification is that the
user does not have a consistent performance model of
concurrent HPF constructs. Thepghpf compiler from
Portland Group has a number of ways to convey the in-
formation about expected and actual performance to the
user. It has flags-Minfo for the former,-Mprof for
the later and-Mkeepftn for keeping the intermediate
FORTRAN code (containing the communication calls)
for the user examination. Thepghpf USER’s guide
partially addresses the performance problem by disclos-
ing the implementation of the INDEPENDENT direc-
tive and of distributed array operations [13, Section 7].

To compensate for the lack of a theoretical HPF per-
formance model and to quantify compiler overhead we
have built an empirical performance model, see [6].
Here we only mention some observations:

• Distribution of an array can have a significant per-
formance penalty even when running on single pro-
cessor.

• A placement of the independent directive before a
loop over a nondistributed dimension confuses the
compiler and slows down the program.

• Efficiency of some parallel operations is close to 1
while others have efficiency less then 0.5.

• Passing distributed array sections as arguments is an
order of magnitude slower then passing the whole
array.

We have used these observations to choose the partic-
ular way to implement operations with distributed ar-
rays. For example, we have used an array syntax instead
of loops in the cases where communications were re-
quired (such as calculating differences along the distrib-
uted direction). Also we have inlined subroutines called
inside of loops with sections of distributed arrays as ar-
guments. We have parallelized a loop even if it seemed
to perform a small amount of computations and not af-
fect the total computation time.
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3. HPF Implementation of NAS
Benchmarks

NAS Parallel Benchmarks consist of eight bench-
mark problems (five kernels and three simulated CFD
applications) derived from important classes of aero-
physics applications [2,14]. The NPB2.3 suite contains
MPI implementations of the benchmarks which have
good performance on multiple platforms and are consid-
ered as a reference implementation. The NPB2.3-serial
suite is intended to be starting points for the develop-
ment of parallel versions for both shared memory and
distributed memory systems, for testing parallelization
tools, and also as single processor benchmarks. We have
not included HPF version of EP since we don’t expect to
get any useful data on HPF performance from EP. We
have not included HPF version of C benchmark IS ei-
ther.

We took NPB2.3-serial as a basis for HPF version.
We used the empirical HPF performance model as a
guide for achieving performance of HPF code. Also we
relied on the compiler generated messages regarding the
information on loop parallelization and warnings about
expensive communications. We used standard HPF di-
rectives (actually a very limited basic subset of the direc-
tives) as specified in [8].

We limited ourselves to moderate modifications of
the serial versions such as inserting HPF directives, writ-
ing interfaces, interchanging loops and depth-1 loop un-
rolling. We avoided significant changes such as inlining,
removing arrays from common blocks and passing them
as subroutine arguments. We avoided usage of optimized
low level linear algebra and FFT library subroutines. We
used flag-Mmpi to pghpf compiler to generate a par-
allel code andmpirun  to run it.

The source code of NPB can be found in the NAS par-
allel benchmarks home page, see [2]. The page also con-
tains links to HPF implementations of NPB by Portland
Group and by Advanced Parallel Research. A compari-
son of different approaches to semi-automatic parallel-
ization of NPB is given in [5].

Benchmarks BT, SP and LU solve a 3D discretization
of Navier-Stokes equation:

whereu andr are 5x1 vectors defined at the points of a
3D rectangular grid andK is a 7 diagonal block matrix
of 5x5 blocks. The three benchmarks differ in the factor-
ing of K. The FT performs FFT of a 3D array, CG solves
a sparse system of linear equations by the conjugate gra-
dient method, and MG solves a discrete Poisson problem
on a 3D grid by theV-cycle multigrid algorithm.

3.1 BT Benchmark
BT uses Alternating Direction Implicit (ADI) ap-

proximate factorization of the operator of equation (1):

whereBTx, BTy andBTzare block tridiagonal matrices of
5x5 blocks if grid points are enumerated in an appropri-
ate direction. The resulting system is then solved by
solving the block tridiagonal systems inx-, y- andz-di-
rections successively. The main iteration loop of BT
starts from the computation ofr (compute_rhs ) fol-
lowed by successive inversion ofBTx, BTy and BTz
(x_solve , y_solve andz_solve ) and is concluded
with updating of the main variableu (add ).

The subroutines x_solve, y_solve and
z_solve solve a second order recurrence relations in
the appropriate directions. These computations can be
performed concurrently for all grid lines parallel to an
appropriate axis while the computation along each line
is sequential. A concurrency inx_solve and
y_solve can be achieved by distributing the grid along
z-direction. This distribution would formally preclude
concurrency inz_solve since HPF contains no ex-
pression mechanism to organize processors to work in a
pipelined mode. In order forz_solve to work in par-
allel the grid has to be redistributed alongx- or y-direc-
tion or both.

In our HPF implementation of BT the subroutines
compute_rhs, x_solve , y_solve andadd work
with u, rhs andlhs distributed blockwise alongz-di-
rection. The subroutinez_solve works withuy, rhsy
and lhsy are copies ofu, rhs and lhs distributed in
y-direction. The redistribution ofrhs to rhsy is per-
formed at the entrance toz_solve and back redistribu-
tion is performed upon exit fromz_solve . The
redistributionuy=u is performed just before calculation
of lhsy .

The main loop in x_solve (symmetrically
y_solve andz_solve ) for each grid point calls 5x5
matrix multiplication, 5x5 matrix inversion and 5x5 ma-
trix by 5x1 vector multiplication. We found that the calls
had generated a significant overhead probably related to
passing a section of a distributed array to a subroutine.
These subroutines were inlined and the external loop
was unrolled. This reduced the execution time by a fac-
tor of 2.9 on up to 8 processors. For a larger number of
nodes scaling limitations come into effect and reduction
is less.

The inlining and loop unrolling made the internal
loop of x_solve too complicated and the compiler
message indicated that it had not been able to parallelize
the loop. The INDEPENDENT directive was sufficient

Ku r= 1( )

K BTx BTy BTz⋅ ⋅≅
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for parallelization of the loop. It, however, introduced an
overhead which caused the program to run 1.85 times
slower on single processor relative to the program com-
piled with -Mf90  flag.

Note that use of two-dimensional distributions would
not give any reduction in the communication to compu-
tation ratio. In fact, it would require the redistribution of
data three times per iteration and would result in a slow-
er program.

The profile of main BT subroutines is shown on
Figure 1. The subroutines which do not involve redistri-
bution and/or communications scale nicely. The com-
munication during the computations of fluxes and
dissipation in thez-direction affects scaling of therhs .
The redistribution time essentially stays constant with
the number of processors and is responsible for the re-
duction of the efficiency on more than 8 processors.

FIGURE 1. BT profile on Origin 2000.

3.2 SP Benchmark
SP uses the Beam-Warming approximate factoriza-

tion and Pulliam-Chaussee diagonalization of the opera-
tor of equation (1) and adds fourth-order artificial
dissipation:

where Tx, Ty andTz are block diagonal matrices of 5x5
blocks,Px, Py andPz are scalar pentadiagonal matrices.
The resulting system then solved by inverting block di-
agonal matrices , , and
and solving the scalar pentadiagonal systems.

The main iteration loop of SP is similar to the one in
BT. It starts with the computation ofrhs which is al-
most identical tocompute_rhs in BT followed by an
interleaved inversion of block diagonal and scalar penta-
diagonal matrices and is concluded with updating of the
solutionu (add ).

Parallelization of SP is similar to the parallelization
of BT: all subroutines exceptz_solve operate with
data distributed blockwise in thez-direction. The sub-
routine z_solve works with data distributed block-
wise in y-direction. The redistribution ofrhs and of a
few auxiliary arrays is performed at the entrance to
z_solve and back redistribution ofrhs is performed
on the exit fromz_solve . As in BT a 2D distribution
would require more redistributions and would slow
down the benchmark.

Profile of SP (see Figure 2) suggests a few conclu-
sions. The dominant factor of the execution time is the
computation ofrhs and the redistribution. The redistri-
bution time varies slightly with the number of processors
and is the major factor affecting scaling of the bench-
mark. The communications involved in the computing
rhs in z-direction also affect the scaling. The solver it-
self takes much less time than these two operations and
scales well.

FIGURE 2. SP profile on SGI Origin 2000. The
redistribution and communications in rhsz  effect

scaling of SP.

3.3 LU Benchmark
LU implements a version of SSOR algorithm by split-

ting of the operator of equation (1) into a product of low-
er triangular matrix and upper triangular matrix:

whereω is a relaxation parameter,D is the main block
diagonal ofK, Y consists of three sub block diagonals
andZ consists of three super block diagonals. The prob-
lem is solved by computing elements of the triangular
matrices (subroutinesjacld and jacu ) and solving
the lower and the upper triangular system (subroutines
blts  andbuts ).

Thessor is implemented as a sequence of sweeping
of the horizontal planes of the grid. The subroutinesja-
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cld , jacu , add andrhs are completely data parallel
meaning that operations can be performed concurrently
in all grid points. Bothblts andbuts have a limited
parallelism because processing of an(i,j,k) grid point de-
pends on the values in the points(i+e,j,k), (i,j+e,k) and
(i,j,k+e), where e = -1 for blts ande = 1 for buts .
The small amount of work on each parallel step would
cause too many messages to be sent. A method of in-
creasing parallelism and of reduction of the number of
messages, called Hyperplane Algorithm (HA), was pro-
posed by Lamport and used in [3] for the LU implemen-
tation and we decided to choose this algorithm for HPF
implementation.

In the HA, computations are performed along the
planesi+j+k=m, wherem is a hyperplane number,m =
6,...,nx+ny+nz-3. For calculation of the values on each
plane, values from the previous plane (lower triangular
system) or from the next plane (upper triangular system)
are used. In the HA the external loop onk was replaced
by the loop on the plane numberm, and j-loop bounds
became functions ofm andi-loop bounds became func-
tions ofm, andj andk is computed ask = m-i-j. These
loop bounds are stored in precalculated arrays.

Parallelization of LU was done by distribution of ar-
rays blockwise in thej-direction. An advantage of LU
relative to BT and SP is that no redistributions are nec-
essary. A disadvantage is uneven distribution of plane
grid points causing load imbalance. A 2D distribution
could not be handled by the compiler efficiently. (The
problem was in assigning of an appropriate home array
to a nest of two independent loops with variable loop
bounds.)

Profile of LU is shown in Figure 3. Low efficiency of
LU resulted from two sources: a large number of rela-
tively small messages (caused by processing of triangu-
lar shaped arrays) have to be sent after each iteration of
m loop, and a poor load balancing.

FIGURE 3. LU profile on SGI Origin 2000.

3.4 FT Benchmark
FT implements Fast Fourier Transformation (FFT) of

a 3D array. The transformation can be formulated as a
matrix vector multiplication:

whereu andv are 3D arrays of dimensions(m,n,k)rep-
resented as vectors of dimensionsmxnxk andFl, l=m,n,k
is an FFT matrix of the orderl1. The algorithm is based
on representation of the FFT matrix as a product of three
matrices performing several FFT in one direction.
Henceforth FT performs FFTs inx-, y- andz- directions
successively. The core FFT is implemented as a Swarz-
trauber’s vectorization of Stockham autosorting algo-
rithm performing independent FFTs over sets of vectors.
The number of vectors in the sets are chosen to fit the
sets into the primary cache.

For the HPF implementation we distributedu block-
wise in z-direction, perform FFTs inx-direction, trans-
pose the array, perform FFT iny-direction, redistribute
the array iny-direction and perform FFT inz-direction.
The loops with FFTs in one direction calling pure
Swarztrauber subroutine were declared as INDE-
PENDENT. The transposition and redistribution opera-
tions were converted bypghpf compiler to FORALL
statements automatically.

Note that iterations of FT are independent since the
result of one iteration is not used for the next one. Nei-
ther our HPF version of FT nor NPB2.3 version take ad-
vantage of this level of parallelism.

The profile of FT (see Figure 4) shows that the core
FFT computations consume about 50% of total time and
scale well with the number of processors. The redistribu-
tion does not scale as consistently as the core calcula-
tions, reducing the efficiency of the benchmark on a
large number of processors.

FIGURE 4. FT profile on SGI Origin 2000.0 110 10
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3.5 CG Benchmark

CG is different from the other benchmarks since it
works with a large sparse unstructured matrix. CG esti-
mates the largest eigenvalue of a symmetric positive def-
inite sparse matrix by the inverse power method. The
core of CG is a solution of a sparse system of linear
equations by iterations of the conjugate gradient meth-
od. One iteration can be written as follows:

, , ,

, , ,

, ,

The main iteration loop contains one sparse matrix
vector multiplication, two reduction sums, threedaxpy
operations and a few scalar operations. The most com-
putationally expensive operation is the sparse matrix
vector multiplication . Nonzero elements of
A are stored by rows in a compressed format. The col-
umn indices of matrix elements are stored in a separate
arraycolidx .

The matrix vector multiplication anddaxpy opera-
tions are parallel, meaning that the computation of each
component of the result is independent. In our HPF im-
plementation we distributedz,q,randx and replicatedA,
pandcolidx . This allowed the matrix vector operation
to be performed in parallel, howeverdaxpy operations
were performed with vectors having different distribu-
tions.

The replication ofA will cause problems ifA will not
fit into the memory of one processor. On each processor
only a small number of rows ofA are used to calculate
the section ofq distributed onto the processor. The spar-
sity of A makes the sizes of the rows vary and in order to
distribute it we created a matrixB with number of col-
umns equal to the maximum number of nonzero ele-
ments in rows ofA. We aligned rows ofB with q and
copiedA to B row by row. This eliminated replication of
A but resulted in 20% slower code.

The daxpy operations of a replicated vectorp with
distributed vectorsr andz scale negatively. We distibut-
ed vectorp and performed it’s replication before the ma-
trix vector multiplication.

The profile of CG is shown in Figure 5. The matrix
vector multiplication and thedaxpy operations of a dis-
tributedp with distributedr andz scale well. The repli-
cation scales negatively, ruining performance on 32
processors. An algorithm for matrix vector multiplica-
tion which does not require all-to-all communication is
given in [11].

FIGURE 5. CG profile on SGI Origin 2000

3.6 MG Benchmark

MG benchmark performs iterations ofV-cycle multi-
grid algorithm for solving a discrete Poisson problem

on a 3D grid with periodic boundary condi-
tions [2]. Each iteration consists of evaluation of the re-
sidual:

and of the application of the correction:

whereM is theV-cycle multigrid operator.
The V-cycle starts from an approximate solution on

the finest grid, computes the residual and projects it onto
progressively coarse grids (down substep). On the coars-
est grid it computes an approximate solution by smooth-
ing the residual (psinv subroutine), interpolates the
solution onto a finer grid, computes the residual and ap-
plies the smoothing on the finer grid (up substep). In a
few interp-resid-psinv substeps theV-cycle fin-
ishes with an updated solution on the finest grid.

To implement MG in HPF we introduced a 4 dimen-
sional array and mapped grids of different coarseness
into 3D sections of this array with a fixed value of the
last dimension. We used 1D BLOCK distribution of the
array in thez-direction. The projection, interpolation,
smoothing and computation of the residual are per-
formed at each grid point independently. 2D or 3D par-
titions would reduce the surface to volume ratio of the
array sections and would reduce the number of messag-
es. In practice, however 2D partition resulted in a slight-
ly slower code and 3D partition resulted in a
significantly slower code.

The HPF implementation of MG stretches the limits
of pghpf in a few respects. First, the number of grids
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and their sizes vary depending on the benchmark class.
In order to be able to implement a loop over the grids we
need an array of pointers to arrays. This feature is not
implemented in the version ofpghpf compiler which
we used. As a work around we introduced the 4D array
and used its last dimension as a grid pointer. The over-
head of this is allocation of significantly larger memory
than actually is used and large strides in accessing points
of coarse grids.

Second, the residual and the smoother work on the
same grid performing convolutions with 3x3x3 kernels.
This operation requires access to non local sections of
data and results in a poor scalability of these two subrou-
tines (see MG profile on Figure 6). An implementation
of these convolutions with an array syntax did not speed
up the benchmark.

The projection and the interpolation subroutines work
with a pair of grids, one of which is a refinement of an-
other. Using the same block distribution for all grids
squeezes the coarsest grids onto a smaller number of
processors. It inhibits access to the appropriate portions
of the coarser grid. The projection and the interpolation
subroutines involve the shuffling operation, see [6].

The compiler was not able to parallelize the loop with
the shuffling operation in the body because of complex
index expressions (according to the compiler’s mes-
sage). We have used the array syntax andONHOME
clause for parallelization (see [6] for details).

The profile of MG (see Figure 6) shows that the
smoothing and the residual operators do not scale well.
These operators are not factored and require communi-
cations to access grid points distributed on different pro-
cessors.

FIGURE 6. MG profile on SGI Origin 2000.

4. Comparison with MPI version of NPB2.3

The timing results of the benchmarks are summarized
in Table 1 and the plot is shown in Figure 7. As a refer-
ence we use the time on SGI Origin 2000 of the MPI ver-
sion reported on the NPB home page [2].

The HPF version are consistently slower than the
MPI versions. The lower performance of HPF versions
results from two main sources: a single node HPF code
runs slower and it does not scale as well as MPI code.

A comparison of single process performance of
pghpf compiled code versusf77 code shows that
former generates about 2 times slower code than the lat-
ter. Since we did not do any code modifications which
would change the total operations count or would distort
any array layout in the memory (CG and MG are excep-
tions), we would account for this slowdown to the com-
piler introduced overhead and cost of the redistribution.
(The redistribution on a single processor consumes less
then 10% of the computational time.)

Processor utilization in HPF code is not as efficient as
in the MPI versions (NPB 2.3) for two reasons. HPF ver-
sions require an extra redistribution of big arrays and the
redistribution does not scale well. Some improvement in
load balancing was achieved when we removed padding
in the distributed dimension as was suggested by Doug
Miles from PGI, and independently was implemented in
[1]. In the version of the compiler which we used, the
REDISTRIBUTE statement had not been implemented.
Implementation of this directive would allow one to or-
ganize computations in BT and SP in the following se-
quence

x_solve, y_solve, z -> y redistribution,
z_solve, x_solve, y -> x redistribution,
y_solve, z_solve, x -> z redistribution, ...
This would require 3 redistributions per 2 iterations

instead of the current 4 and would reduce the redistribu-
tion overhead by a factor of 3/4. Doing this by hand
would involve unrolling the main loop in the solver and
would require significant code rewriting. The redistribu-
tion was the main reason of flattening performance be-
tween 16 and 32 processors in BT, SP and FT. An
efficient implementation of redistribution would im-
prove scalability of these benchmarks. In the HPF 2.0
language specification, however, the status of REDIS-
TRIBUTE was changed from a language statement to an
approved extension (see [8]) probably because of diffi-
culties with the implementation. Also HPF does not ac-
commodate advanced domain decompositions like
multi-partitioning as implemented in the MPI version of
NPB2.3.. However, multi-partitioning itself does require
some communication during the matrix inversion.
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TABLE 1. Benchmarks time in sec on SGI Origin 2000 (195 MH machine)

5. Related Work
The NPBs are well recognized benchmarks for test-

ing parallelizing compilers, parallel hardware and paral-
lelization tools [1,12,14]. These benchmarks contain
important kernels of aerophysics applications and may
be used for early validation of various approaches to the
development of high performance CFD codes.

Performance results of HPF implementation of “pen-
cil and paper” NPB specifications submitted by APR1

and Portland Group2 are reported in [14]. The compiler
vendors know the implementation of operations with
distributed arrays and may be implicitly have an HPF
performance model. It allows them to choose the most
efficient option for implementation choice. In some cas-
es they use intrinsic customized HPF functions. It allows
some pghpf compiled benchmarks to outperform
handwritten MPI versions of NPB on CRAY T3D and
CRAY T3E. Neither implementation has a version of the
LU benchmark. APR’s implementation of MG uses pro-
prietary HPF directives. The Portland Group FT imple-
mentation uses some HPF intrinsic functions custom-
ized for the benchmark.

The portability and scalability of HPF programs are
studied in [12]. EP, FT and MG are used for comparison
of a number of compilers, MPI and ZPL (a data parallel
language developed at the University of Washington)
implementations. One of the conclusions is that a consis-

tent HPF performance model is important for scalability
and portability of HPF programs. The authors of the pa-
per regret: “Unfortunately, a portable HPF version of
these (NPB) benchmarks is not available ...”. The current
paper provides a solution to the problem.

A development of a large parallel application in an
HPF programming environment calledFx is reported in
[15]. The authors showed that an air pollution model
Airshed fits into the HPF programming paradigm, how-
ever it requires a number of redistributions to keep par-
allelism on the acceptable level. The code demonstrated
good performance on up to 64 processors of the Cray
T3D and Cray T3E.

An HPF implementation of a reservoir simulation in-
volving a Gaussian elimination algorithm for dense ma-
trices is reported in [7]. Two compilers were compared
and good scalability results were achieved on a number
of platforms.

A number of advanced compilation techniques were
implemented in dHPF compiler [1]. The techniques in-
volve: optimization of use of privatizable arrays, reduc-
tion of the communication overhead, elimination of
inter-loop communications and data availability analy-
sis. A significant advantage of the compiler is its ability
to pipeline computations with dependence in the distrib-
uted dimensions. The techniques were applied to HPF
versions of BT and SP and performance within 15%-
33% of MPI version has been achieved.

Nprocs      1     2     4    8    9   16   25   32

BT.A pghpf 2.4 2975.0 1479.4 714.4 347.6 349.6 179.7 149.6 108.4

BT.A NPB2.3 2611.0 731.5 314.0 161.4 91.9

SP.A pghpf 2.4 2894.9 1489.0 626.5 267.7 260.1 138.2 115.5 97.0

SP.A NPB2.3 1638.4 352.6 142.0 79.1 46.2

LU.A pghpf 2.4 3512.2 2142.3 1046.3 567.4 488.3 311.8 228.5 230.6

LU.A NPB2.3 1741.5 795.0 308.2 144.3 67.4 33.8

FT.A pghpf 2.4 174.4  95.0 44.3 23.2 12.9 8.2

FT.A NPB2.3 132.8 85.8 44.4 23.1 11.8 6.3

CG.A pghpf 2.4 54.0 30.6 14.9 6.8 6.3 5.9 7.9 10.0

CG.A NPB2.3 36.4 20.7 9.6 4.4 2.6 1.6

MG.A pghpf 2.4 143.6 119.9 82.8 46.9 25.3 16.4

MG.A NPB2.3 52.7 30.0 15.0 7.6 4.0 2.1

1.  http://www.apri.com/apr_nasbench.html
2.  http://www.pgroup.com/npb_results.html
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FIGURE 7. HPF versus MPI time for class A on SGI Origin 2000. The horizontal axis is number of
processors and the vertical axis is execution time in seconds
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6. Conclusions

HPF gives the programmer high-level programming
language constructs for expressing parallelism existing
in a sequential code. It allows the porting of certain
classes of sequential codes to a parallel environment
with a moderate effort and results in a well structured
parallel program. The machine architecture can be ac-
counted for by using an appropriate lower level message
passing library as specified by-Mmpi , -Msmp or -
Mrmpflags to thepghpf compiler and requires a mini-
mal effort from the user.

The hiding of distributed array handling results in un-
certainty of the overhead of primitive operations with
distributed arrays. Currently there are no HPF language
constructs which can convey this overhead to the user.
For example, data movement between processors can
not be expressed in terms of the HPF language. The
problem is addressed inpghpf compiler directives-
Minfo and-Mkeepftn as well as inpgprof ability
to show message size and number. A clear performance
model for handling distributed arrays would allow the
user to steer the code to a better performance.

The HPF model of parallelism appears to be adequate
for expressing the parallelism that existed in BT, SP and
FT with one exception. Due to the inability of HPF to ex-
press pipelined computations or express multipartition-
ing, an extra 3D array redistribution was required in each
of these benchmarks. The concurrency regions of the LU
benchmark are planes normal to the grid diagonal and
nontrivial (however small) code modifications were re-
quired to express the parallelism. The efficiency of MG
was affected by inability of the compiler to handle arrays
of pointers.

At the current level of HPF compiler maturity it gen-
erates code which runs about 2 times slower on a single
processor than the original serial code. On multiple pro-
cessors the code speeds up almost linearly until the point
(in the 16-32 processor range) where the redistribution
creates a significant overhead. We have plans to imple-
ment the ARC3D code in HPF and evaluate performance
and portability of the benchmarks compiled with other
HPF compilers.
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