
A Robust Adaptive Metric for Deadline Assignment
in Heterogeneous Distributed Real-Time Systems

Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology

S–412 96 G¨oteborg, Sweden
janjo@ce.chalmers.se

Abstract
In a real-time system, tasks are constrained by global end-

to-end (E-T-E) deadlines. In order to cater for high task
schedulability, these deadlines must be distributed over com-
ponent tasks in an intelligent way. In this paper, we present
an improved version of the slicing techniqueand extend it to
heterogeneous distributed hard real-time systems. The salient
feature of the new technique is that it utilizes adaptive met-
rics for assigning local task deadlines. Using experimen-
tal results we show that the new technique exhibits superior
performance with respect to the success ratio of a heuristic
scheduling algorithm. For smaller systems, the new adaptive
metric outperforms a previously-proposed adaptive metric by
300%, and existing non-adaptive metrics by more than an or-
der of magnitude. In addition, the new technique is shown to
be extremely robust for various system configurations.

1 Introduction
In a distributed real-time computing system, applications

are decomposed into tasks, which are then assigned to pro-
cessors according to a task-assignment technique based on,
for example, clustering [1], list scheduling [2], or a branch-
and-bound strategy [3, 4]. Task assignments are governed
by locality constraintsthat are eitherstrict (the assignment
of a task is known beforehand) orrelaxed (more than one
assignment alternative exist for each task). While there are
some well-known solutions to the task-assignment problem,
an important remaining problem isdeadline distribution. To
guarantee the functionality of a real-time system, an applica-
tion is constrained to start its execution and complete within
a given time span called theend-to-end deadline. The ap-
plication has usually been logically decomposed into a set of
sequential and/or parallel tasks, often because the system de-
signers are forced to modularize software for maintainability
and reusability reasons or exploit parallelism for performance
reasons. As a consequence of this decomposition, the E-T-E
deadline must be distributed over the component tasks.

Many researchers have addressed the deadline-distribution
problem [5, 6, 7, 8, 9, 10], all under a common assumption

that task assignments are knowna priori, that is, strict locality
constraints. In many real-time systems, however, only a small
number of task assignments are governed by strict locality
constraints, typically those tasks constrained by demands of
resources in their physical proximity such as sensors and ac-
tuators. The constraints on the remaining task assignments
are not strict. This means thata priori information regarding
task execution times and intertask communication cost will
not be available. For a homogeneous system and negligible
intertask communication cost this poses no problem since all
processors are interchangeable. For a heterogeneous system,
however, tasks may have different execution times on differ-
ent processors, and hence the deadline-distribution problem
under relaxed locality constraints is much harder to solve.
Furthermore, task-assignment techniques require informa-
tion about individual task deadlines for scheduling purposes.
Deadline distribution using conventional techniques, on the
other hand, can only be performed if the task assignment
is completely known. Thus, there exists a circular depen-
dency between the deadline-distribution and task-assignment
problems which makes the combined deadline-distribution
and task-assignment problem even harder to solve. The task-
assignment problem is, in the general case, an NP-complete
problem [11], and good solutions to the combined deadline-
distribution and task-assignment problem must, therefore, be
found through the use of sub-optimal heuristic techniques.

In this paper, we present a heuristic technique for deadline
distribution in a heterogeneous system under relaxed locality
constraints. Our technique is based on theslicing technique
[5, 12] where the E-T-E deadline for each sequence of tasks in
the application is decomposed into a set of non-overlapping
task execution windows calledslices. The distinguishing fea-
ture of the slicing technique is that the slices for sequen-
tial tasks are non-overlapping. This allows for a divide-and-
conquer approach to solving the problem that first divides the
overall problem into smaller problems that are solved locally
and then combined to obtain a global solution. This can dras-
tically reduce the computational complexity of the problem.
More importantly, however, non-overlapping slices guaran-
tees that each task will finish its execution before the arrival

time of its successor task. This has the following important
implications.

I1. The scheduling of sequential tasks on two different pro-
cessors can be performed independently of each other.
This is useful in heterogeneous systems where different
scheduling strategies are employed in different proces-
sors. It also allows for parallel scheduling of sequential
tasks, a feature that can aid in increasing the scheduling
performance for systems with on-line scheduling [13].

I2. The release jitter of each task as caused by precedence
constraints can be eliminated. As discussed in, for ex-
ample, [14, 15], uncontrolled release jitter can nega-
tively affect the schedulability of real-time applications.

The deadline-distribution problem is addressed in the con-
text of distributed hard real-time systems. In such systems,
task assignment and scheduling are usually assumed to be
performed pre-run-time in order to guarantee the 100%a pri-
ori schedulability of each hard real-time task in the system.
Systems with these characteristics are mission/safety-critical
where the workload is known beforehand. The applications
of interest in this paper are those that consist of sequential–
parallel precedence-constrained tasks with individual arrival
times and deadlines. Our scheduling objective is to maximize
thesuccess ratio, that is, the ratio of the number of success-
fully scheduled task sets to the total number of considered
task sets. We consider a system with a non-preemptive, time-
driven, task dispatching strategy.

We demonstrate the salient features of our technique
by means of an extensive experimental evaluation using
randomly-generated application task sets and a multiproces-
sor system of varying size. In particular, we study the impact
of variations in architecture and application properties on the
success ratio for a baseline deadline-driven task assignment
and scheduling algorithm. The properties under investiga-
tion are system size, tightness of E-T-E deadlines, and task
execution time distribution. The first property is interesting
because schedulability could depend on how well the inher-
ent application parallelism can be exploited on the available
processors, the second because it directly controls the amount
of slack time available for distribution, and the third because,
with a non-preemptive dispatching strategy, the schedulabil-
ity is directly affected by the execution time distribution.

Our main contributions in this paper are:

C1. We apply the slicing technique to a heterogeneous sys-
tem with relaxed locality constraints. This is an ex-
tension of the work recently reported in [12] where
only homogeneous systems were considered. Other
known deadline-distribution techniques all make the
common assumption that task assignment is already
known, and thereby avoid the many difficulties associ-
ated with scheduling on heterogeneous systems.

C2. We propose an improvement of the work in [12]. We
show that the new technique exhibits very good perfor-

mance with respect to the success ratio. For smaller sys-
tems, the performance increase is more than 300% over
the technique in [12], and an order of magnitude over the
technique in [5]. In fact, for systems with near-uniform
task execution times, the increase in performance over
bothof these existing techniques is as high as an order
of magnitude. Moreover, the new technique is shown to
exhibit extremely robust performance over a wide range
of architecture and application scenarios.

The rest of the paper is organized as follows: Section 2 de-
scribes work related to ours. Section 3 describes the assumed
system models. Section 4 describes the deadline-distribution
problem and presents a basic algorithm to solve the prob-
lem. Section 5 describes the experimental setup. Section 6
presents the experimental evaluation. Section 7 discusses
complementary results and possible future work. Finally,
Section 8 summarizes the results in this paper.

2 Related work
The slicing technique proposed by Di Natale and

Stankovic in [5] assigns slices, execution windows, to tasks
using a critical path concept. The strategy used for finding
slices is to determine a critical path in the task graph that
maximizes the minimum laxity of the tasks. Two basic met-
rics (previously proposed in [9, 10]) were used for evaluating
paths in the task graph: one assigns a task deadline based on
its execution time, and the other assigns a task deadline based
on the number of tasks in the critical path. The slicing tech-
nique is optimal in the sense that it maximizes the minimum
task laxity in the application. However, optimality applies
only if task assignment is completely known in advance. The
technique was demonstrated using a non-preemptive time-
triggered run-time model, but is not inherently constrained
to such a run-time model.

In a recent paper [12], we proposed a set of adaptive met-
rics for the slicing technique, suitable for homogeneous sys-
tems with relaxed locality constraints. The proposed metrics
were shown to outperform the original metrics in [5] in situa-
tions where application parallelism cannot be fully exploited
on the system. In [12], the slicing technique was evaluated
with respect to the maximum task lateness, because the ap-
plication E-T-E deadlines were assumed to be loose enough
to guarantee a near 100% success ratio.

Several deadline-distribution techniques have been pro-
posed where task assignment is assumed to be known before-
hand. In [6], Gutiérrez Garc´ıa and Gonz´alez Harbour pro-
posed a heuristic iterative approach that, given an initial local
deadline assignment, finds an improved solution in reason-
able time. For each iteration a new deadline assignment is
calculated based on a metric that measures by “how much”
schedulability failed. Bettati and Liu [7] presented a tech-
nique for scheduling a system of flow-shop tasks. Local dead-
lines are assigned by distributing E-T-E deadlines evenly over
tasks. For this method, the simplifying assumption is made
that execution times are either identical for all tasks or identi-
cal for all tasks assigned to the same processor. Saksena and

Hong [8] proposed a deadline-distribution technique based
on a critical scaling factor that is applied to the task execu-
tion times. The E-T-E deadline is expressed as a set of local
deadline-assignment constraints. Given a set of local dead-
line assignments, they calculated the largest value of the scal-
ing factor that still makes the tasks schedulable. The local
deadline assignment is then chosen to maximize the largest
value of the scaling factor. The techniques in [6, 7, 8] all as-
sume that the application consist of purely sequential tasks
and that task assignment is known beforehand.

Kao and Garcia-Molina presented multiple strategies
for distributing E-T-E deadlines over sequential [9] and
sequential–parallel [10] tasks. However, these strategies are
only aimed at, and evaluated in the context of, soft real-
time systems with completea priori knowledge of task–to–
processor assignment.

3 System model
3.1 Architecture Model

We consider a multiprocessor architecture with a set
P = fpq : 1 � q � mg of schedulable processors and an in-
terconnection network with a set of communication links.
The processors are heterogeneous in the sense that they
have different hardware configurations in terms of process-
ing speed, instruction pipeline, and cache/primary memory
resources. This means that the execution time for a task
may differ depending on which processor it will execute on.
Therefore, we introduce a setE = fek : 1 � k � meg of
processor classes, and then associate to each processorpq a
processor classe(pq) 2 E that determines the actual hard-
ware configuration. Given a set of processor classes, the pro-
cessors can be classified as being eitheridentical, uniform, or
unrelated[16]. For identical processors, the hardware con-
figuration is the same for all processors and each task takes
the same amount of time to execute on any processor. For
uniform processors, a task’s execution time is the product of
a basic execution time and a scaling factor associated with
each processor. For unrelated processors, a task’s execution
time on one processor is not necessarily related to its execu-
tion time on some other processor.

The interconnection network is an arbitrary topology that
may include dedicated as well as shared links. The architec-
ture is assumed to supportasynchronouscommunication in
the network, that is, communication is allowed to take place
concurrently1 with processor computation. The communica-
tion between two tasks residing on the same processor is done
via accessing shared memory, and its cost is assumed to be
negligible. The communication cost between two tasks on
different processors is expressed as the product of the length
of a message and a nominal communication delay. The nom-
inal delay is an upper-bounded and predictable worst-case
communication delay that reflects the scheduling strategy of
the underlying interconnection network.

We will assume that the system maintains a globalsystem
time that is discrete and represented bytime unitsindexed by

1Using, for example, a communication co-processor.

the natural numbers, that is,t 2 N. Without loss of gen-
erality, we assume that task activities begin and end at time
units, and that application timing parameters are expressed as
a multiple of time units. A consistent view of system time
is maintained in each processor by means of a system-wide
clock synchronization mechanism. We assume that an exact
clock synchronization is maintained in the system. In addi-
tion, we assume that processors and communication links are
free from faults during the lifetime of the system.
3.2 Application model

We consider a real-time application that consists of a set
T = f�i : 1 � i � ng of tasks. Each task�i 2 T is char-
acterized by a 4-tuplehci; �i; di; Tii, which we will refer to
as thestatic task parameters. Theworst-case execution time
ci is an array of upper bounds on the execution times of the
task for each processor class. The worst-case execution time
(WCET) for �i on a processor of classek is ci[ek]. We make
the assumption that the worst-case execution time includes
various architecture overhead such as the cost for cache mem-
ory misses, pipeline hazards, and context switches. When-
ever it is clear to which processor�i is assigned, we write
ci. In the case when task assignments are not yet known, we
use anestimated WCET, �ci. Suitable strategies for estimating
�ci will be evaluated later in this paper. Thephasing, �i, is
the earliest time at which the first invocation of the task will
occur, measured relative to some fixed origin of time. The
relative deadline, di, is the amount of time within which the
task must complete its execution, once it has been invoked.
Theperiod, Ti, is the time interval between two consecutive
invocations of the task.

A periodic task�i gives rise to an infinite sequence of in-
vocations, and we denote thekth invocation of the task by�ki ,
wherek 2 Z+. The dynamic behavior of�ki is characterized
by thedynamic task parameters(aki ; D

k
i), where theabsolute

arrival time, aki = �i+Ti(k�1), is the earliest time at which
�ki is allowed to begin execution, and theabsolute deadline,
Dk

i = aki + di, is the latest time at which�ki must finish its
execution. When it is clear from the context what invocation
of �i is being referred to, we will drop the use of invocation
superscripts and write(ai; Di).

Precedence constraints between tasks are represented by
an irreflexive partial order� overT. If task �j cannot be-
gin its execution until task�i has completed its execution, we
write �i � �j . In this case�i is said to be apredecessorof �j ,
and, conversely,�j a successorof �i. In addition, whenever
�i � �j and the condition:(9�k : (�i � �k) ^ (�k � �j))
holds, we write�i �� �j . In this case,�i is said to be aimme-
diate predecessorof task�j and�j a immediate successorof
�i. A task which has no predecessors is called aninput task
and a task which has no successors is called anoutput task.

A task chainis defined as a task followed by a series of
immediate successors. Thelengthof a task chain is the sum
of the estimated worst-case execution times of all tasks in the
chain. Thestatic level, SL(�i), for task�i is the length of the
longest task chain that starts with�i and ends with an output
task. Apathis a task chain that begins with an input task and

ends with an output task. Acritical path is one for which a
given performance measure assumes a minimal or maximal
value.

Communication of data in the application can be embed-
ded in the precedence constraints between tasks, and im-
plement general communication primitives such as SEND–
RECEIVE–REPLY and QUERY–RESPONSE [3]. The
amount of data sent between task�i and task�j is denoted
by a message sizemi;j . The worst-case communication cost
for sending a message from one task to another depends on
factors such as task assignment, message size, communica-
tion medium bandwidth, and message dispatching strategy
employed in the system. We assume that the cost for packe-
tizing and depacketizing messages is constant and included in
the worst-case execution times of the communicating tasks.

Rather than illustrating the computational and communi-
cation demands of all tasks in the task set, and the precedence
constraints among them, in terms of parameter tuples and a
partial order, we use a directed acyclic graphG = (N;A)
called atask graph.N is a set of nodes representing the tasks
in setT. A is a set of directed arcs representing the prece-
dence constraints between the tasks inT, that is, if �i �� �j
then(�i; �j) 2 A. Each node inN is annotated with a non-
negative weight representing the computational demands of
the corresponding task. For those arcs inA that represent
communication channels, a non-negative weight is used rep-
resent the message size.

3.3 Multiprocessor Scheduling
A time-driven, non-preemptive multiprocessor schedule

for a task setT and a multiprocessor architectureP is the
mapping of each task�i 2 T to astart time, si, and a proces-
sor, p(�i) 2 P. The task is then scheduled to run without
preemption on processorp(�i) in the time interval[si; fi],
with its finish timebeingfi = si + ci. The time interval
[ai; Di], denoted bywi, is called theexecution windowof �i.
For periodic tasks, the static task parameters are assumed to
satisfydi � Ti, that is, the execution windows of two invo-
cations of the same task cannot overlap in time. Furthermore,
the execution time,ci, cannot exceed the length,jwij, of the
execution window. Note that we assume astatic assignment
strategy, which implies that the execution of all invocations
of �i is performed on the same processorp(�i).

To handle a periodic task system, we need only analyze
the task behavior within a specific period that will repeat it-
self throughout the lifetime of the system. This period,P ,
is called theplanning cycleof the task set. For a set of
tasks with identical arrival times, the planning cycle can be
found as follows. Without loss of generality, assume that
8�i 2 T : ai = 0. We then chooseP = [0; L), whereL,
the length of the planning cycle, is defined as the least com-
mon multiple offTi : �i 2 Tg. Within P , �i will be invoked
L=Ti times. For a set of tasks with arbitrary arrival times, we
find the planning cycle as follows. Without loss of generality,
assume thatminfai : �i 2 Tg = 0. Furthermore, define
a = maxfai : �i 2 Tg. We then chooseP = [0; a+ 2L).

4 Deadline Distribution
4.1 Problem statement

The problem addressed in this paper is the following. We
assume that the application is represented by a task graph
G = (N;A) with n = jNj tasks. Given an E-T-E deadline,
D�, and a corresponding input–output task pair(��1 ; ��2),
the deadline distribution problemis to partition (distribute)
D� into an arrival time,ai, and a relative deadline,di, for a
task�i in the task graph in such a way that the path constraint

X
�i2�

di � D� (1)

is satisfied for every path� between��1 and��2 .

4.2 Quality assessment
A solution to the deadline-distribution problem cannot be

accepted simply because it satisfies the path constraint de-
fined above. One must also consider the practical issue of
schedulability: the relative deadline of a task must be derived
in such a way that the task is likely to be feasibly sched-
uled. If one deadline-distribution strategy is able to feasibly
schedule more task sets than another strategy, we can clearly
consider the first strategy superior to the other. Therefore,
our primary performance measure for a deadline distribution
strategy is thesuccess ratio. If a deadline distribution strat-
egy is able to find feasible schedules forx of the considered
y task sets, its success ratio is said to be(x=y).

When the E-T-E deadlines are loose enough to guarantee
a near 100% success ratio, a secondary performance mea-
sure should be used to assess the quality of different deadline-
distribution strategies. Two important measures that are often
used for this purpose are theminimum laxityand themaxi-
mum latenesstaken over all tasks in the system. The laxity,
Xi = di � �ci, is the maximum amount of time that the ex-
ecution of task�i can be delayed in its execution window
without it missing its absolute deadline. The laxity is deter-
mined beforethe task is scheduled and is thus an indicator
of how much contention for the processors the task can with-
stand during scheduling. The lateness,Li = fi � Di, is
the amount by which task�i misses its deadline, that is, a
non-positive quantity for a valid schedule. The lateness is de-
termined afterthe tasks have been scheduled and is thus an
indicator of the quality of the schedule. The maximum late-
ness refers to the lateness of only one task – the one with its
lateness closest to 0 – and is thus an indicator of “how far”
from infeasibility the schedule is and how much additional
background workload the schedule can handle.

4.3 The slicing technique
We solve the deadline-distribution problem with an im-

proved version of theslicing techniqueproposed in [5]. A
fundamental concept in the slicing technique is that ofcrit-
ical path. A critical path in a task graph is one for which
a given performance measure assumes a minimum or maxi-
mum value. Correct identification of a critical path is crucial
for the quality of the deadline distribution and the system’s

schedulability. Acritical path metric is used to assess the
criticalness of each path in the task graph.

When a critical path has been identified, the E-T-E dead-
line is distributed over the tasks in the critical path. This
is done by assigningslices, non-overlapping execution win-
dows, of the E-T-E deadline to each of the tasks in the critical
path. The slices are derived governed by the constraint that
the arrival time of a task must be equal to the absolute dead-
line of its predecessor in the critical path. Note that, whereas
the execution time windows of tasks in the same path can-
not overlap, the execution windows of tasks in different paths
may overlap and thus are subject to contention for available
processors during scheduling. Therefore, the size of each
task slice must be derived in such a way that the task can
be scheduled to meet its timing constraints even in the pres-
ence of other, overlapping, task slices or task release jitter as
caused by interprocessor communication delays. This can be
achieved by assigning an ample laxity to each task.

For a system with completea priori information on
task-processor assignment and interprocessor communica-
tion cost, the best critical path can easily be found as de-
scribed in [5]. When the assignment is not entirely fixed,
however, finding the best critical path is no longer an easy
task. The reason is that it is not yet known what pairs of tasks
will be afflicted with interprocessor communication over-
head. Therefore, the deadline-distribution algorithm must
rely on the prediction of the “possibly best” critical path.

In [12] we presented an adaptive slicing technique that was
able to make better predictions on the critical path under re-
laxed locality constraints than did the original technique in
[5]. The predictions in [12] were based on two observations.
First, we found that in systems where the application paral-
lelism exceeds the number of processors available, it is a good
strategy to assign longer slices to tasks whose execution times
exceed a certain threshold. The rationale for this is that tasks
with longer execution times are likely to be most vulnerable
in the case of high resource contention. Second, we found
that it is a good strategy to assume that there will be no com-
munication cost between tasks whose processor assignments
are not known. The intuition behind this is that many task as-
signment and scheduling algorithms tend to cluster tasks that
communicate heavily [1]. Furthermore, in many distributed
real-time applications the communication volume is quite low
[17], and therefore any communication cost will be relatively
small compared to the task execution times. In [12], we also
showed that, even in the presence of significant communi-
cation cost, it is better to assume no communication cost as
this will yield the largest amount of overall laxity to distribute
over the application tasks.
4.4 Deadline-distribution algorithm

A pseudo-code form of the algorithm for distributing
E-T-E deadlines over the tasks according to the slicing tech-
nique is given in Figure 1. The algorithm takes a task graph as
the input and produces an annotated task graph containing in-
formation about task arrival times and relative deadlines. The
various steps in the algorithm are described below in detail.

Algorithm SLICING:

1. initialize set� with all tasks in the task graph;
2. while f � 6= ; g loop
3. find a critical path� in � that minimizes metricR;
4. distribute the E-T-E deadline of� by assigning

arrival times and deadlines to the tasks in�;
5. for f each task� in � g loop
6. for f each immediate predecessor�p of � g loop
7. assign an E-T-E deadline to�p that is equal to

the arrival time of� ;
8. end loop;
9. for f each immediate successor�s of � g loop
10. assign an arrival time to�s that is equal to

the absolute deadline of� ;
11. end loop;
12. end loop;
13. remove all tasks in� from�;
14.end loop;

Figure 1: The deadline-assignment algorithm.

Initialize task set (Step 1): Assume that all input/output
tasks have already been assigned appropriate arrival times
and E-T-E deadlines, respectively, according to the temporal
requirements of the application. All tasks in the task graph
are then inserted into a task set� that represents all tasks not
yet assigned arrival times and deadlines. The time complex-
ity of this step isO(jNj). This does not include the time for
initializing data structures used by the critical path metricR.

Find a critical path (Step 3): The breadth-first traversal
of the task graph determines a critical path� among all po-
tential paths for the tasks in�. The critical path is identified
using the critical path metric,R. The time complexity of
a breadth-first traversal of the task graph isO(jNj + jAj).
Therefore, for any acyclic task graph, the total time complex-
ity of this step, taken over all iterations of the main loop, is
O(jNj2), not counting the time needed for evaluatingR.

Distribute the E-T-E deadline (Step 4): The E-T-E dead-
line D� of the critical path� found in Step 3 is distributed
over the tasks in�. The deadline distribution is governed
by the constraint that the arrival time of a task must be equal
to the absolute deadline of its immediate predecessor in�.
Thus, all tasks in the path will be assigned slices of the E-T-E
deadline. The total time complexity of this step isO(jNj).

Attach the remaining tasks(Steps 5 – 12): The tasks in
� now constitute a “spine” to which the remaining tasks must
attach, that is, adapt their arrival times and absolute deadlines.
Therefore, the arrival time for each task not in� is set to the
latest absolute deadline of any immediate predecessor task in
�. Similarly, the absolute deadline for each task not in� is
set to the earliest arrival time of any immediate successor task
in �. The total time complexity of this step isO(jNj+ jAj).

Remove critical-path tasks(Step 13): The tasks in� are
removed from� to mark that they have been assigned arrival
times and deadlines. The arrival times and deadlines of tasks
not in� now constitute new E-T-E deadlines in�. The total

time complexity of this step isO(jNj).
Repeat until no tasks remain(Steps 2 and 14): The main

loop in the algorithm is repeated until no tasks are left in�.
Adding the time complexities of the steps described above,

the worst-case time complexity of the algorithm isO(n2), not
counting the time needed for evaluatingR.

4.5 Critical path metrics
In [5], Di Natale and Stankovic introduced two metrics for

the slicing technique. The first metric, thenormalized laxity
ratio (NORM), is the ratio of the overall laxity to the sum of
the execution times of all tasks in a path�. With this metric,
laxity is assigned in proportion to task execution time. The
metric value,RNORM, and the relative deadline,di, for each
task�i are consequently defined as

RNORM = (D� �
X
�i2�

�ci)=
X
�i2�

�ci (2)

di = �ci(1 +RNORM) (3)

The second metric in [5], thepure laxity ratio(PURE), is
the ratio of the overall laxity to the number of tasks,n�, in a
path�. With this metric, all tasks are assigned an equal share
of laxity. The metric value,RPURE, and the relative deadline,
di, for task�i are thus

RPURE = (D� �
X
�i2�

�ci)=n� (4)

di = �ci +RPURE (5)

In [12], we showed that none of the NORM or PURE
metrics are suitable for systems with relaxed locality con-
straints owing to their lack of information on contention over
resources. As a remedy, we therefore introduced two con-
cepts as an aid in improving the performance of the slicing
technique, namely,execution time thresholdandvirtual ex-
ecution time. The execution time threshold is a mechanism
for guaranteeing that only certain tasks are allotted extra lax-
ities. By using the execution time threshold to filter out tasks
with sufficiently large execution times, we managed to im-
prove the performance in those situations where task graph
parallelism cannot be fully exploited. The purpose of a vir-
tual execution time is to make a task appear computationally
more consuming than it actually is. By assigning virtual ex-
ecution times that are larger than the real execution times,
the deadline-distribution algorithm will allocate more laxity
to those tasks for which the real execution time is equal to or
above the given execution time threshold.

On the basis of these two concepts, we introduced the
globally adaptive laxity ratio(ADAPT-G). This metric is sim-
ilar to the PURE metric but has a virtual execution time ofĉi
instead of the estimated execution time,�ci. The ADAPT-G
metric is adaptive in the sense that the amount of assigned
surplus is not fixed but will adapt itself to the degree of task
graph parallelism that can be exploited on the system. The

virtual execution time for task�i is defined as

ĉi =

(
�ci if �ci < cthres

�ci(1 + kG�=m) if �ci � cthres
(6)

wherekG is theglobal adaptivity factor, � is theaverage task
graph parallelism, andm is the number of processors in the
system. The expressionkG�=m constitutes asurplus factor
that defines the amount of laxity by which the real execu-
tion time should be increased for those tasks whose execution
times exceedcthres . The average task graph parallelism,�, is
defined as the application workload divided by the length of
the longest path inT, that is

� =
X
�i2T

�ci=maxfSL(�j) : �j 2 Tg (7)

Our main contribution in this paper is to propose thelo-
cally adaptive laxity ratio(ADAPT-L) metric, which is an im-
provement of the ADAPT-G metric in the sense that ADAPT-
L is able to identify the available parallelism that affects only
a certain task. For ADAPT-L, the virtual execution time is
defined as:

ĉi =

(
�ci if �ci < cthres

�ci(1 + kLj	ij=m) if �ci � cthres
(8)

wherekL is thelocal adaptivity factor, 	i is theparallel set
of �i, andm is the number of processors in the system. The
parallel set	i is the set of tasks that are potential candidates
for executing in parallel with�i, that is, those tasks that are
neither predecessors nor successors of�i. ADAPT-L intro-
duces the extra complexity to the deadline-distribution algo-
rithm that a parallel set must be calculated for each task. The
parallel set	i for task�i can easily be found by first con-
structing the transitive closureG� for the task graphG, and
then including in	i only those tasks that are neither reach-
able from�i, nor can reach�i. The construction of the tran-
sitive closureG� can be done during the initialization phase
(Step 1) of the deadline assignment algorithm and takes time
O(n3) [18].

5 Experimental setup
5.1 System architecture

We have used an experimental platform based on a het-
erogeneous multiprocessor architecture with a shared bus in-
terconnection network. The system size ranges from two to
eight processors. The number of processor classes in the sys-
tem,me = jEj, was randomly chosen to be one, two, or three.
The class,e(pq), of each processorpq in the system was ran-
domly chosen from the set,E, of generated processor classes.
We assumed that the shared bus is time-multiplexed in such a
way that the communication cost between two processors is
one time unit per transmitted data item.

5.2 Workload
In all experiments2, a set of 1024 task graphs was gener-

ated using a random task graph generator. Each task graph
contained between 40 and 60 tasks. Task execution times
were chosen at random assuming a uniform distribution with
a mean execution time,cmean , of 20 time units. The execu-
tion time for each task deviated by at most�25% from the
mean execution timecmean for different processor classes.
To mimic the situation that a task requires special hardware
resources for its execution, we also deemed a task inappropri-
ate for execution on a particular processor class with a prob-
ability of 5%.

To mimic different application scenarios, task execution
times were chosen based on theexecution time distribution
(ETD), the maximum deviation (in percent) of a task’s exe-
cution time from the mean execution timecmean . Thus, for
a givenETD, the task execution times were chosen at ran-
dom to be in the range[cmean(1�ETD); cmean(1+ETD)].
To evaluate the performance of the metrics under variably
tight timing constraints, an E-T-E deadline was chosen for
each input–output task pair based on theoverall laxity ratio
(OLR), the ratio of the E-T-E deadline to the average accu-
mulated task graph workload. The precedence constraints in
the task graph were also randomly generated. The number
of successors/predecessors of each task was chosen at ran-
dom to be in the range of one to three, and the depth of the
task graph was chosen at random to be between eight and
12 levels.The number of data items in each message passed
between a pair of tasks was chosen in such a way that the
communication–to–computation cost ratio(CCR) of the av-
erage message communication cost to the average task exe-
cution time corresponded to 0.1.
5.3 Estimation of WCET

We investigate three different WCET estimation strate-
gies. For theWCET-AVGstrategy,�ci is calculated as the av-
erage of all valid execution times, taken over all processor
classes:

�ci =
X
ek2E

ci[ek]=jEj (9)

For theWCET-MAXstrategy,�ci is set to the maximum of all
valid execution times, that is

�ci = max
ek2E

ci[ek] (10)

Finally, for theWCET-MINstrategy,�ci is set to the minimum
of all valid execution times:

�ci = min
ek2E

ci[ek] (11)

5.4 Task assignment and scheduling
We used a baseline task assignment and scheduling strat-

egy based on a list scheduling version of the earliest-deadline-
first (EDF) algorithm. For each scheduling step, our EDF

2All modeling and simulations in the experiments were performed within
the GAST [19] evaluation framework.

0

20

40

60

80

100

2 3 4 5 6 7 8

S
u
c
c
e
s
s

r
a
t
i
o

(
%
)

Number of processors

[ETD = 25%, OLR = 0.8]

PURE
NORM
ADAPT-G
ADAPT-L

Figure 2: Success ratio as a function of system size.

algorithm selected one task (the one with the closest abso-
lute deadline) from all ready tasks. The selected task was
then scheduled on the available processor that yielded the
earliest start time, taking into account possible communica-
tion cost and the arrival time constraints of the task. The set
of ready tasks was updated with the immediate successors
of the scheduled task. The complexity of this algorithm is
O(n2 �m) for a system withn tasks andm processors.

6 Experimental evaluation
This section evaluates the performance (success ratio) of

the metrics presented in Section 4.5. The experimental eval-
uation was made using the deadline-distribution algorithm in
Figure 1 and the experimental setup in Section 5. Unless
otherwise noted, all simulations were performed assuming
a scenario withETD = 25% andOLR = 0:8. The follow-
ing default parameter values were used for the adaptive met-
rics during the experiments:cthres = 1:0 � cmean , kG = 1:5,
kL = 0:2. The estimated WCET for a task was calculated
according to the WCET-AVG strategy.

6.1 Effect of system size on performance
Since one of our objectives is to find metrics that perform

well for high processor contention, it is interesting to study
how the slicing metrics will behave for different system sizes.
By varying the number of processors, we can identify the
capability of each metric to exploit the available application
parallelism on the platform architecture. Intuitively, all met-
rics should perform worse for small system sizes than for a
larger system. For a small system, that is, where the applica-
tion parallelism exceeds the number of available processors,
the contention between tasks over a few available processors
forces multiple tasks to be scheduled within overlapping ex-
ecution windows on the same processor. As the system size
increases, more parallelism in the task graph can be exploited,
which will decrease the contention over processors. Conse-
quently, the success ratio will increase with increasing system
size until a point at which all generated task graphs are suc-
cessfully scheduled. This behavior is duly corroborated by
the plots in Figure 2.

With a deadline-driven scheduling strategy, tasks with
longer execution times will be the most vulnerable to proces-
sor contention as shorter tasks are more likely to have shorter

0

20

40

60

80

100

0.5 0.6 0.7 0.8 0.9 1.0

S
u
c
c
e
s
s

r
a
t
i
o

(
%
)

Overall Laxity Ratio

[ETD = 25%, 3 processors]

PURE
NORM
ADAPT-G
ADAPT-L

Figure 3: Success ratio as a function ofOLR.

deadlines. As a consequence, longer tasks should be assigned
more laxity to compensate for this imbalance. The figure
shows how the PURE metric, with its equal-share distribution
strategy, exhibits the worst performance among all metrics.
For example, only 35% of all scheduling attempts succeed on
a system with four processors when PURE is used. The per-
formance of the NORM metric is significantly better, mainly
owing to its strategy to assign deadlines in proportion to task
execution times. This approach gives tasks with longer ex-
ecution times more laxity and hence a better chance to be
scheduled feasibly. For the four-processor system, more than
65% of all scheduling attempts succeed using NORM.

The figure clearly illustrates that the non-adaptive metrics
(PURE and NORM) do not perform well for small systems.
For example, the fraction of successful scheduling attempts
does not exceed 30% for a system with three processors for
any non-adaptive metric. The explanation for the poor per-
formance is that these metrics do not account for the resource
contention that occurs when the application parallelism ex-
ceeds the number of available processors. Hence, many task
deadlines will be too short to guarantee a feasible schedule.
This shortcoming is partly remedied with the ADAPT-G met-
ric. By assigning task laxities based on the knowledge that
application parallelism may not be fully exploited on the sys-
tem, it is reasonable to believe that a higher performance can
be attained with ADAPT-G. As the plots indicate, this extra
intelligence of ADAPT-G gives a significant performance in-
crease for small systems. For example, more than 60% of all
scheduling attempts succeed for the three-processor system
when ADAPT-G is used. Note that this is more than twice
the performance of the best non-adaptive metric.

The ADAPT-L metric exhibits the best performance in this
experiment. For example, the plots indicate that around 95%
of all scheduling attempts succeed for the three-processor
system when the ADAPT-L metric is used. This is a three-
fold improvement as compared to the non-adaptive metrics.
The improvement is even more stunning for a two-processor
system: the number of successful scheduling attempts is more
than an order of magnitude higher for ADAPT-L than for
the non-adaptive metrics, and four times higher than for the
ADAPT-G metric. The superior performance associated with
ADAPT-L can be attributed to the detailed knowledge it pos-

0

20

40

60

80

100

0 25 50 75 100

S
u
c
c
e
s
s

r
a
t
i
o

(
%
)

Execution time distribution (%)

[3 processors, OLR = 0.8]

PURE
NORM
ADAPT-G
ADAPT-L

Figure 4: Success ratio as a function ofETD.

sesses regarding the contention situation for individual tasks.
This is in contrast to ADAPT-G, where the potential con-
tention for each task is derived using the same constant value,
namely the average task graph parallelism. However, it must
be recalled that the superior performance of ADAPT-L comes
at the price of a higher time complexity.
6.2 Effect of OLR on performance

Another goal with a deadline-distribution strategy is that
it should use metrics that perform well for varying tightness
of the E-T-E deadlines. In particular, by varying the value of
OLR when there is significant processor contention, we can
identify the capability of each metric to exploit the available
surplus time and to distribute it wisely. The plots in Figure 3
show some salient results for a system with three processors.

Again, we observe the same relative performance of the
metrics. Here, too, ADAPT-L outperforms the other metrics
by a significant amount. For example, the performance gain
as compared to the non-adaptive metrics is nearly an order
of magnitude for tight deadlines. The ADAPT-G metric also
performs consistently better than the non-adaptive metrics.
For tight deadlines, the plots indicate a three-fold increase in
performance for ADAPT-G over the non-adaptive metrics.
6.3 Effect of ETD on performance

So far, our adaptive metrics have been shown to outper-
form their non-adaptive counterparts under all system sizes
and all degrees of deadline tightness. In this section, we will
identify the robustness of each metric under different applica-
tion scenarios with varying execution time distributions. The
plots in Figure 4 illustrate the success ratio as a function of
ETD assuming a fixed system size and a fixedOLR. We
show here the results forOLR = 0:8 and three processors
while varyingETD from 0% to 100% in steps of 25%.

The observed trends in this experiment are quite similar
to the ones demonstrated in the previous experiments, with
one notable exception. As the plots clearly indicate, the
performance of the NORM metric is not as consistent as in
the previous studies. Instead of consistently being inferior
to ADAPT-G, the performance of NORM will increase past
ADAPT-G asETD gets large enough. This behavior can
be attributed to the proportional-share distribution strategy of
NORM. With an increasing proportion of short tasks, there
will be more tasks with shorter deadlines competing for the

0

20

40

60

80

100

0.5 0.6 0.7 0.8 0.9 1.0

S
u
c
c
e
s
s

r
a
t
i
o

(
%
)

Overall Laxity Ratio

[ETD = 25%, 3 processors]

WCET-AVG
WCET-MIN
WCET-MAX

Figure 5: Success ratio for ADAPT-L as a function ofOLR
for different WCET estimation strategies.

processors. NORM is able to compensate long tasks with a
larger amount of laxity to handle the contention. Because it
is based on the PURE metric, ADAPT-G cannot handle this
situation with the same amount of flexibility.

Note that, whenETD = 0%, the PURE, NORM, and
ADAPT-G metrics all converge to the same success ratio
(6%). This is because all tasks have identical estimated exe-
cution times�ci. It is easy to see that, with identical execution
times, the deadline for each task�i in a critical path� will be
di = D�=n�, regardless of what metric is used. In the case
of ADAPT-G, the virtual execution timeŝci are also identi-
cal since, forETD = 0%, the original execution times of all
tasks are equal to or higher than the execution time thresh-
old cthres and the surplus factors (kS andkG, respectively)
are constant. In the case of ADAPT-L, however, the virtual
execution time of each task is defined by the size of its par-
allel set and may thus differ between tasks. This property
of ADAPT-L gives it an order-of-magnitude performance in-
crease for systems with uniform task execution times.

Also, note the anomalous behavior of ADAPT-G and
ADAPT-L as ETD exceeds 50%. As shown in [20], the
performance of the adaptive metrics is most vulnerable to
changes inETD. For the chosen values ofkG and kL,
the performance of both ADAPT-G and ADAPT-L will drop
slightly for applications with a largeETD.
6.4 Effect of WCET estimation strategy on perfor-

mance
Since we are assuming a heterogeneous distributed sys-

tem, it is interesting to investigate how the strategy for cal-
culating �ci, the estimated WCET of�i, affects the schedule
quality. In this section, we investigate the three WCET esti-
mation strategies presented in Section 5.3.

The plots in Figure 5 illustrate the success ratio for
ADAPT-L as a function of WCET estimation strategy assum-
ing a three-processor system. As can be seen in the plots,
the overall best performance is attained when the pessimistic
WCET-MAX strategy is used. By accounting for the worst-
case situation that can occur during scheduling, this strategy
outperforms WCET-AVG by approximately 5%. The worst
performance is attained with WCET-MIN owing to its overly
optimistic estimations regarding the final task assignment. As

0

20

40

60

80

100

0 25 50 75 100

S
u
c
c
e
s
s

r
a
t
i
o

(
%
)

Execution time distribution (%)

[3 processors, OLR = 0.8]

WCET-AVG
WCET-MIN
WCET-MAX

Figure 6: Success ratio for ADAPT-L as a function ofETD
for different WCET estimation strategies.

can be seen in the plots, this strategy performs approximately
5% worse than WCET-AVG.

It should be noted that WCET-MAX is not as robust for all
application scenarios. Figure 6 illustrates the success ratio as
a function ofETD assuming a fixedOLR. AsETD increases
past 75%, the performance of WCET-MAX becomes worse
than that of the other strategies because the larger presence
of tasks with long execution times causes too much overall
laxity to be consumed from task with short execution times.

The results from this study indicate that, for systems with
uniform or near-uniform task execution times, the WCET-
MAX strategy is the best choice. For systems with a large
distribution of task execution times, on the other hand, the
WCET-AVG strategy is the preferred choice.

7 Discussion
7.1 Finding the best adaptive parameters

To be able to apply the adaptive metrics (ADAPT-G and
ADAPT-L) in practice, it is important to find what the value
of the adaptivity factorskG andkL must be for a given appli-
cation. In the general case, one must be aware of the fact that
there exists no overall best value for any factor. However, we
believe that the values used in our experiments are also useful
for many other applications. Although the adaptivity factors
of ADAPT-G and ADAPT-L are clearly sensitive to the actual
application parallelism, the adaptive metrics will still outper-
form the non-adaptive counterparts as long as the parallelism
deviates within reasonable bounds from the chosen values.

7.2 Complexity issues
Whether to use ADAPT-G or ADAPT-L depends to a large

extent on the nature of the target system. For example, in a
system that is scheduled off-line, the cost of the deadline-
distribution algorithm are often not of major concern and
hence theO(n3) algorithm with ADAPT-L could be used.
For a system with on-line scheduling, on the other hand, tasks
typically arrive dynamically and hence the scheduling com-
plexity is a major source of consideration. Here, theO(n2)
algorithm with ADAPT-G may be a better choice. Another
property of the system that will affect the choice of metric
is the task assignment and scheduling strategy used. If an

O(n2) polynomial-time scheduling algorithm is used, apply-
ing ADAPT-G adds little to the total complexity. However,
if a branch-and-bound algorithm is used, its high complexity
would make ADAPT-L a viable alternative as its complexity
would be negligible in comparison.
7.3 Future work

We believe that the techniques presented here can be ap-
plied not only to computational resources such as processors
but also to general resources including shared data structures.
Future work would include evaluation of techniques that can
also take such general resource requirements into account.

Although the slicing technique has been evaluated under
a time-driven non-preemptive task dispatching policy in this
paper, it is not restricted to that policy as we showed by impli-
cations I1 and I2 in Section 1. Future work would therefore
encompass exploring the performance of the new metrics un-
der various task assignment and scheduling policies.

8 Conclusions
Distribution of E-T-E deadlines over tasks in a distributed

real-time system is an important, but difficult, problem to
solve. It is particularly difficult to solve the problem for sys-
tems with relaxed locality constraints where a majority of the
tasks are not pre-assigned to particular processors. In this
paper, we have proposed a new adaptive metric that will sig-
nificantly improve the performance of our original adaptive
slicing technique [12]. The results of an extensive simulation
study show that the new metric outperforms all existing met-
rics over a wide range of system configurations. In particular,
we find that, for small systems, the new metric outperforms
non-adaptive metrics by as much as an order of magnitude.
Furthermore, it outperforms the previously-proposed adap-
tive metric with a three-fold increase in performance.

References
[1] K. Ramamritham, “Allocation and Scheduling of Precedence-

Related Periodic Tasks,”IEEE Trans. on Parallel and Dis-
tributed Systems, vol. 6, no. 4, pp. 412–420, Apr. 1995.

[2] F. Wang, K. Ramamritham, and J. A. Stankovic, “Bounds on
the Performance of Heuristic Algorithms for Multiprocessor
Scheduling of Hard Real-Time Tasks,”Proc. of the IEEE Real-
Time Systems Symposium, Phoenix, Arizona, Dec. 2–4, 1992,
pp. 136–145.

[3] D.-T. Peng and K. G. Shin, “Static Allocation of Periodic
Tasks with Precedence Constraints in Distributed Real-Time
Systems,”Proc. of the IEEE Int’l Conf. on Distributed Com-
puting Systems, New Port Beach, California, June 1989, pp.
190–198.

[4] C.-J. Hou and K. G. Shin, “Allocation of Periodic Task Mod-
ules with Precedence and Deadline Constraints in Distributed
Real-Time Systems,”Proc. of the IEEE Real-Time Systems
Symposium, Phoenix, Arizona, Dec. 2–4, 1992, pp. 146–155.

[5] M. Di Natale and J. A. Stankovic, “Dynamic End-to-End
Guarantees in Distributed Real-Time Systems,”Proc. of the
IEEE Real-Time Systems Symposium, San Juan, Puerto Rico,
Dec. 7–9, 1994, pp. 216–227.

[6] J. J. Gutiérrez Garc´ıa and M. Gonz´alez Harbour, “Optimized
Priority Assignment for Tasks and Messages in Distributed

Hard Real-Time Systems,”Proc. of the IEEE Workshop on
Parallel and Distributed Real-Time Systems, Santa Barbara,
California, Apr. 25, 1995, pp. 124–132.

[7] R. Bettati and J. W.-S. Liu, “End-to-End Scheduling to Meet
Deadlines in Distributed Systems,”Proc. of the IEEE Int’l
Conf. on Distributed Computing Systems, Yokohama, Japan,
June 9–12, 1992, pp. 452–459.

[8] M. Saksena and S. Hong, “Resource Conscious Design of
Distributed Real-Time Systems: An End-to-End Approach,”
Proc. of the IEEE Int’l Conf. on Engineering of Complex Com-
puter Systems, Montreal, Canada, Oct. 21–25, 1996, pp. 306–
313.

[9] B. Kao and H. Garcia-Molina, “Deadline Assignment in a Dis-
tributed Soft Real-Time System,”Proc. of the IEEE Int’l Conf.
on Distributed Computing Systems, Pittsburgh, Pennsylvania,
May 25–28, 1993, pp. 428–437.

[10] B. Kao and H. Garcia-Molina, “Subtask Deadline Assignment
for Complex Distributed Soft Real-Time Tasks,”Proc. of the
IEEE Int’l Conf. on Distributed Computing Systems, Poznan,
Poland, June 21–24, 1994, pp. 172–181.

[11] M. R. Garey and D. S. Johnson,Computers and Intractability:
A Guide to the Theory of NP-Completeness, Freeman, New
York, 1979.

[12] J. Jonsson and K. G. Shin, “Deadline Assignment in Dis-
tributed Hard Real-Time Systems with Relaxed Locality Con-
straints,” Proc. of the IEEE Int’l Conf. on Distributed Com-
puting Systems, Baltimore, Maryland, May 27–30, 1997, pp.
432–440.

[13] S. Cheng, J. A. Stankovic, and K. Ramamritham, “Dynamic
Scheduling of Groups of Tasks with Precedence Constraints in
Distributed Hard Real-Time Systems,”Proc. of the IEEE Real-
Time Systems Symposium, New Orleans, Louisiana, Dec. 2–4,
1986, pp. 166–174.

[14] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings, “Applying New Scheduling Theory to Static Priority
Pre-emptive Scheduling,”Software Engineering Journal, vol.
8, no. 5, pp. 284–292, Sept. 1993.

[15] M. Di Natale and J. A. Stankovic, “Applicability of Simulated
Annealing Methods to Real-Time Scheduling and Jitter Con-
trol,” Proc. of the IEEE Real-Time Systems Symposium, Pisa,
Italy, Dec. 5–7, 1995, pp. 190–199.

[16] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rin-
nooy Kan, “Optimization and Approximation in Deterministic
Sequencing and Scheduling: A Survey,”Annals of Discrete
Mathematics, P. L. Hammer, E. L. Johnson, and B. H. Korte,
Eds., vol. 5: Discrete Optimization II, pp. 287–326. North-
Holland, Amsterdam, 1979.

[17] R. S. Raji, “Smart Networks for Control,”IEEE Spectrum, pp.
49–55, June 1994.

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction
to Algorithms, The MIT Press, Cambridge, Massachusetts,
1990.

[19] J. Jonsson, “GAST: A Flexible and Extensible Tool for
Evaluating Multiprocessor Assignment and Scheduling Tech-
niques,” Proc. of the Int’l Conf. on Parallel Processing, Min-
neapolis, Minnesota, Aug. 10–14, 1998, pp. 441–450.

[20] J. Jonsson,The Impact of Application and Architecture Prop-
erties on Real-Time Multiprocessor Scheduling, Ph.D. the-
sis, School of Electrical and Computer Engineering, Chalmers
University of Technology, G¨oteborg, Sweden, Sept. 1997.

