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Abstract that task assignments are knoavpriori, that is, strict locality

In a real-time system, tasks are constrained by global eff@nstraints. In many real-time systems, however, only a small
to-end (E-T-E) deadlines. In order to cater for high tasRumber of task assignments are governed by strict locality
schedulability, these deadlines must be distributed over cdiinstraints, typically those tasks constrained by demands of
ponent tasks in an intelligent way. In this paper, we presdfgources in their physical proximity such as sensors and ac-
an improved version of the slicing technicared extend it to tuators. The constraints on the remaining task assignments
heterogeneous distributed hard real-time systems. The sal@i not strict. This means thafpriori information regarding
feature of the new technique is that it utilizes adaptive mé&sk execution times and intertask communication cost will
rics for assigning local task deadlines. Using experimeROt be available. For a homogeneous system and negligible
tal results we show that the new technique exhibits superitertask communication cost this poses no problem since all
performance with respect to the success ratio of a heurigBtocessors are interchangeable. For a heterogeneous system,
scheduling algorithm. For smaller systems, the new adapti¥@vever, tasks may have different execution times on differ-
metric outperforms a previously-proposed adaptive metric 89t processors, and hence the deadline-distribution problem
300%, and existing non-adaptive metrics by more than an giider relaxed locality constraints is much harder to solve.
der of magnitude. In addition, the new technique is shownfigrthermore, task-assignment techniques require informa-

be extremely robust for various system configurations. tion about individual task deadlines for scheduling purposes.
Deadline distribution using conventional techniques, on the

i other hand, can only be performed if the task assignment

1 Introduction is completely known. Thus, there exists a circular depen-

In a distributed real-time computing system, applicatiodgncy between the deadline-distribution and task-assignment
are decomposed into tasks, which are then assigned to problems which makes the combined deadline-distribution
cessors according to a task-assignment technique basediod task-assignment problem even harder to solve. The task-
for example, clustering [1], list scheduling [2], or a branclassignment problem is, in the general case, an NP-complete
and-bound strategy [3, 4]. Task assignments are goverpesblem [11], and good solutions to the combined deadline-
by locality constraintsthat are eithestrict (the assignment distribution and task-assignment problem must, therefore, be
of a task is known beforehand) eglaxed (more than one found through the use of sub-optimal heuristic techniques.
assignment alternative exist for each task). While there arein this paper, we present a heuristic technique for deadline
some well-known solutions to the task-assignment problegistribution in a heterogeneous system under relaxed locality
an important remaining problem éeadline distribution To constraints. Our technique is based onsleing technique
guarantee the functionality of a real-time system, an appli¢8; 12] where the E-T-E deadline for each sequence of tasks in
tion is constrained to start its execution and complete withiie application is decomposed into a set of non-overlapping
a given time span called thend-to-end deadlineThe ap- task execution windows calledlices The distinguishing fea-
plication has usually been logically decomposed into a settafe of the slicing technique is that the slices for sequen-
sequential and/or parallel tasks, often because the systentidetasks are non-overlapping. This allows for a divide-and-
signers are forced to modularize software for maintainabiliégnquer approach to solving the problem that first divides the
and reusability reasons or exploit parallelism for performanegerall problem into smaller problems that are solved locally
reasons. As a consequence of this decomposition, the E-drld then combined to obtain a global solution. This can dras-
deadline must be distributed over the component tasks. tically reduce the computational complexity of the problem.

Many researchers have addressed the deadline-distributime importantly, however, non-overlapping slices guaran-
problem [5, 6, 7, 8, 9, 10], all under a common assumptitees that each task will finish its execution before the arrival



time of its successor task. This has the following important mance with respect to the success ratio. For smaller sys-
implications. tems, the performance increase is more than 300% over

, . . the technique in [12], and an order of magnitude over the
I1. The scheduling of sequential tasks on two different pro- technique in [5]. In fact, for systems with near-uniform

cessors can be performed independently of each other. {45 execution times, the increase in performance over
This is useful in heterogeneous systems where different ot of these existing techniques is as high as an order
scheduling strategies are employed in different proces- ot magnitude. Moreover, the new technique is shown to

sors. It also allows for parallel scheduling of sequential - gypipit extremely robust performance over a wide range
tasks, a feature that can aid in increasing the scheduling of architecture and application scenarios.

performance for systems with on-line scheduling [13].

The rest of the paper is organized as follows: Section 2 de-

12. The relgase jitter of gagh task as ca_used by precede&qﬁ)es work related to ours. Section 3 describes the assumed
constraints can be eliminated. As discussed in, for &%

le 114. 15 trolled rel it stem models. Section 4 describes the deadline-distribution
ample, [14, 15], uncon rofied release Jiter can negge, i em and presents a basic algorithm to solve the prob-
tively affect the schedulability of real-time application

em. Section 5 describes the experimental setup. Section 6
The deadline-distribution problem is addressed in the cdf€sents the experimental evaluation. Section 7 discusses

text of distributed hard real-time systems. In such systeri@Mplementary results and possible future work. Finally,

task assignment and scheduling are usually assumed to>Bglion 8 summarizes the results in this paper.

pgrformed pre'-.run—time in orderto guarantee the 160%6- 2 Related work

ori schedulability of each hard real-time task in the system. 1,0 slicing technique proposed by Di Natale and

Systems with these (_:haracteristics are mission/safety-cr_it@@énkovic in [5] assigns slices, execution windows, to tasks
where the workload is known beforehand. The applicatiofSing a critical path concept. The strategy used for finding
of interest in this paper are those that consist of sequentigiizes is to determine a critical path in the task graph that
parallel precedence-constrained tasks with individual arrivgl yimizes the minimum laxity of the tasks. Two basic met-

fully scheduled task sets to the total number of considefigdeyecution time, and the other assigns a task deadline based
task sets. We consider a system with a non-preemptive, tif§the number of tasks in the critical path. The slicing tech-

driven, task dispatching strategy. . nique is optimal in the sense that it maximizes the minimum
We demonstrate the salient features of our techniqugy |axity in the application. However, optimality applies

by means of an extensive experimental evaluation usigay if task assignment is completely known in advance. The
randomly-generated application task sets and a multiproggshnique was demonstrated using a non-preemptive time-
sor system of varying size. In particular, we study the impaghgered run-time model, but is not inherently constrained
of variations in architecture and application properties on theq,-h a run-time model.

success ratio for a baseline deadline-driven task assignment, 5 recent paper [12], we proposed a set of adaptive met-
and scheduling algorithm. The properties under investigas for the slicing technique, suitable for homogeneous sys-
tion are system size, tightness of E-T-E deadlines, and tggs with relaxed locality constraints. The proposed metrics
execution time dlStI’!buthI’]. The first property is interestingere shown to outperform the original metrics in [5] in situa-
because schedulability could depend on how well the inh&gis \where application parallelism cannot be fully exploited
ent application parallelism can be exploited on the availabg the system. In [12], the slicing technique was evaluated

processors, the second because it directly controls the amgy respect to the maximum task lateness, because the ap-
of slack time available for distribution, and the third becausgi-ation E-T-E deadlines were assumed toybe loose enough
with a non-preemptive dispatching strategy, the schedulaﬁ

o9 e AR ‘guarantee a near 100% success ratio.
ity is directly affected by the execution time distribution. Several deadline-distribution techniques have been pro-
Our main contributions in this paper are:

posed where task assignment is assumed to be known before-

C1. We apply the slicing technique to a heterogeneous sjénd- In [6], Gutgrrez Gar@ and Gonalez Harbour pro-
tem with relaxed locality constraints. This is an e y0sed a heuristic iterative approach that, given an initial local

tension of the work recently reported in [12] Whergeadline assignment,' finds an improved splution jn reason-
only homogeneous systems were considered. otRBje time. For each iteration a new deadline a53‘5|gnment |§.
known deadline-distribution techniques all make tHe& culated't.)aseq on a metric that measures by *how much
common assumption that task assignment is ahea}%hedulablllty fal[ed. Bettati and Liu [7] presented a tech-
known, and thereby avoid the many difficulties assod! ueforsch.edullngasys;em.offlow-shoptas_ks. Local dead-
ated with scheduling on heterogeneous systems. Ines are aSS|gned by d|str|but|'ng ETE deadlme; evgnly over
tasks. For this method, the simplifying assumption is made
C2. We propose an improvement of the work in [12]. What execution times are either identical for all tasks or identi-
show that the new technique exhibits very good perfaral for all tasks assigned to the same processor. Saksena and



Hong [8] proposed a deadline-distribution technique basthé natural numbers, that is,c N. Without loss of gen-
on a critical scaling factor that is applied to the task execerality, we assume that task activities begin and end at time
tion times. The E-T-E deadline is expressed as a set of logaits, and that application timing parameters are expressed as
deadline-assignment constraints. Given a set of local deadnultiple of time units. A consistent view of system time
line assignments, they calculated the largest value of the samaintained in each processor by means of a system-wide
ing factor that still makes the tasks schedulable. The lockdck synchronization mechanism. We assume that an exact
deadline assignment is then chosen to maximize the largastk synchronization is maintained in the system. In addi-
value of the scaling factor. The techniques in [6, 7, 8] all aen, we assume that processors and communication links are
sume that the application consist of purely sequential tastee from faults during the lifetime of the system.
and that task assignment is known beforehand. 3.2 Application model

Kao and Garcia-Molina presented multiple strategies \wg consider a real-time application that consists of a set
for distributing E-T-E deadlines over sequential [9] angr — {r;:1<i<n} of tasks. Each task; € T is char-
sequential—parallel [10] tasks. However, these strategies &&yrized by_a 4Ttupl(aci, s, d;, T;), which we will refer to

only aimed at, and evaluated in the context of, soft regls thestatic task parametersTheworst-case execution time
time systems with complet priori knowledge of task—t0— .. js an array of upper bounds on the execution times of the

processor assignment. task for each processor class. The worst-case execution time
3 System model (WCET) for r; on a processor of clagg is ¢;[er]. We make
3.1 Architecture Model the assumption that the worst-case execution time includes

s\éqrious architecture overhead such as the cost for cache mem-
P = {p,: 1 < ¢ <m} ofschedulable processorsand an iy MISSes, pipeline hazards, and context switches. When-
gver it is clear to which processey is assigned, we write

terconnection network with a set of communication links. 1 the case when task assianments are not vet Known. we
The processors are heterogeneous in the sense that fh'%k/ 9 y ’

have different hardware configurations in terms of proceé?— arestimated WCEIZ;. Suitable strategies for estimating

ing speed, instruction pipeline, and cache/primary memgj will b.e ev:_:lluated IaFer n th'.s paper. Tlpea5|ng @i IS .
resources. This means that the execution time for a t Eearhest time at which the first invocation of the task will

may differ depending on which processor it will execute offccur. measu'red re]atwe to some flxgd ongin of time. The
Therefore, we introduce a S@ — {ey : 1 < k < m,} of rélative deadlined;, is the amount of time within which the

processor classesnd then associate to each proceggoa task must com.plete it_s exgcution, once it has been invqked.
processor class(p,) € E that determines the actual hard! heperiod T, is the time interval between two consecutive
yocations of the task.

ware configuration. Given a set of processor classes, the ;5? o . . o .
A periodic taskr; gives rise to an infinite sequence of in-

cessors can be classified as being eiithentical uniform, or ; . . %
unrelated[16]. For identical processors, the hardware Coxgcatlzns, ;_r:d %’_\ﬁ dgnOte thtél; w;}vogaugfr;cqf thﬁ tasl; b’.’i ' d
figuration is the same for all processors and each task t rex € £°. 'hedynamic ekaw%r i 1S characterize
the same amount of time to execute on any processor. PY hedynamic task paramete(s;, D;'), where thabsolute
]nval time, a¥ = ¢, +T;(k—1), is the earliest time at which

uniform processors, a task’s execution time is the product"ﬂ; . 4 .
a basic execution time and a scaling factor associated w l,g's a”(,gwed to begin execution, and _tbbksolute deadline
= a} + d;, is the latest time at which” must finish its

each processor. For unrelated processors, a task’s execution

time on one processor is not necessarily related to its exe%xec?st'gginwr:;% :trésd Ctloeavrvg?lvrir;l tgfociﬂfﬁtsvgrﬁti'nr:/\goczatitgonn
tion time on some other processor. Ti 9 ' P

The interconnection network is an arbitrary topology th§pPerscripts and writg;, D).

may include dedicated as well as shared links. The architec-'?reced?nce constraints between tasks are represented by
ture is assumed to supp@synchronougsommunication in an |lrreerX|ve.part|aI_ ordex overT. If task 7j cannot be-
the network, that is, communication is allowed to take pla@d its execution until task; has completed its execution, we
concurrently with processor computation. The communicd!Mte 7i < 7;. In this caser; is said to be predecessanf 7;,
tion between two tasks residing on the same processor is d@Rd conversely; a successoof T”_ - In addition, whenever
via accessing shared memory, and its cost is assumed t ibﬁ 7j and the conditior (37 : (; < 1) A (T < 75))
negligible. The communication cost between two tasks §f9S: We writer; < ;. In this casey; is said to be amme-
different processors is expressed as the product of the le fite predecgsscm‘ taskr; andr; a|mmgd|ate sgccessmf

of a message and a nominal communication delay. The ndp-A ask Wh'.Ch has no predecessor_s is calledngut task
inal delay is an upper-bounded and predictable worst-c208 @ task which has no successors is calleuaput task

communication delay that reflects the scheduling strategy;, of* tgsk chainis defme(_j”?; ar':a?k follcl)(wid .by' a ﬁerles of
the underlying interconnection network. immediate successors. gthof a task chain is the sum

We will assume that the system maintains a glalyatem of the estimated worst-case execution times of all tasks in the
timethat is discrete and representedtioye unitsindexed by Chain. Thestatic leve] SL(r;), for taskr; is the length of the
longest task chain that starts withand ends with an output
LUsing, for example, a communication co-processor. task. Apathis a task chain that begins with an input task and

We consider a multiprocessor architecture with a




ends with an output task. Aritical pathis one for which a 4 Deadline Distribution
given performance measure assumes a minimal or maxiga Problem statement

value. o _ o The problem addressed in this paper is the following. We
Communication of data in the application can be embegssume that the application is represented by a task graph
ded in the precedence constraints between tasks, and d@m= (N, A) with n = |N| tasks. Given an E-T-E deadline,
plement general communication primitives such as SENDy-  and a corresponding input-output task H@ir, , T, ),
RECEIVE-REPLY and QUERY-RESPONSE [3].  Thene deadline distribution problenis to partition (distribute)
amount of data sent between taskand taskr; is denoted p, into an arrival timeg;, and a relative deadlind;, for a
by a message size; ;. The worst-case communication coggskr; in the task graph in such a way that the path constraint
for sending a message from one task to another depends on
factors such as task assignment, message size, communica- Z d <D (1)
tion medium bandwidth, and message dispatching strategy t=e
employed in the system. We assume that the cost for packe-

tizing and depacketizing messages is constant and included igtisfied for every patlh betweenr,, andr,.
the worst-case execution times of the communicating taski.z Quality assessment

Rather than illustrating the computational and communi- \uti he deadline-distributi bl b
cation demands of all tasks in the task set, and the precedend@ SPlution to the deadline-distribution problem cannot be

constraints among them, in terms of parameter tuples an?icﬁgpt%d simply becauselit satisfi%s thﬁ path c_on?r aint def—
partial order, we use a directed acyclic gra@h= (N, A) '”ﬁ dal Ot\;'(la'. .Orr:e mlust ajo %?.ns' ?r t ekpractlcg |jsu_e 3
called atask graph N is a set of nodes representing the tasR§"€dulability: the relative deadline of a task must be derive

in setT. A is a set of directed arcs representing the predg-Such a way that the task is likely to be feasibly sched-
dence constraints between the taskdirthat is, ifr; <-7; uled. If one deadline-distribution strategy is able to feasibly

then(r;, 7;) € A. Each node inN is annotated with a ncm_schedule more task sets than another strategy, we can clearly
iy 1y .

negative weight representing the computational demand<S@psider the first strategy superior to the other. Therefore,
the corresponding task. For those arcsAirthat represent CUr Primary performance measure for a deadline distribution

communication channels, a non-negative weight is used raf2te9y is thesuccess ratioIf a deadline distribution strat-
resent the message size. egy is able to find feasible schedules foof the considered

y task sets, its success ratio is said tqbgy).
3.3 Multiprocessor Scheduling When the E-T-E deadlines are loose enough to guarantee
near 100% success ratio, a secondary performance mea-

A time-driven, non-preemptive multiprocessor schedifle . ; .
for a task sefl’ and a multiprocessor architectuleis the sure should be used to assess the quality of different deadline-

mapping of each task € T to astart time s;, and a proces- distribution'strategies. Two im_pgrtant measures that are often
sor, p(r;) € P. The task is then scheduled to run withodtS€d for this purpose are tineinimum laxityand themaxi-

preemption on process@(r;) in the time intervals;, fi], mun_1 Iatene_sta_tkeﬂ over :_aII tasks in the s]}lgtem.hThehIaX|ty,
with its finish timebeing f; = s; + ¢;. The time interval i = di — Ci, IS the maximum amount of time that the ex-

[ai, D;], denoted byw;, is called theexecution windovof ;. ecution of taskr; can be delayed in its execution window

For periodic tasks, the static task parameters are assumé’(‘ii.tt%oUt it missing its a_bsolute deadiine. _The laxity ?S dgter-
satisfyd; < T;, that is, the execution windows of two invo-m'ned beforethe task is scheduled and is thus an indicator
P ’ ow much contention for the processors the task can with-

cations of the same task cannot overlap in time. Furthermd?tehd duri heduli he | .
the execution timeg;, cannot exceed the lengthy;|, of the srt]an urmgbsc ﬁ. l;]mg. The ater)efﬁ, :dl'fi - ﬁl 1S
execution window. Note that we assumetatic assignment € @mount by which task; misses its deadline, that is, a

strategy, which implies that the execution of all invocatiofon-POsitive quantity for a valid schedule. The lateness is de-

of 7; is performed on the same processpr,). termined afteithe tasks have been scheduled and is thus an
TSP P BOr) iggicator of the quality of the schedule. The maximum late-

To handle a periodic task system, we need only analy, _
the task behavior within a specific period that will repeat it~ >> refers to the lateness of only one task — the one with its

e - - ateness closest to 0 — and is thus an indicator of “how far”
isseI(f:;n(re%u?hheoplf;rt]ﬁnIgeg;lrzli (;f :ﬁ: ts g/sskteg.t TE'OSr p: rslg? c)ffrom infeasibility the schedule is and how much additional

tasks with identical arrival times, the planning cycle can ki))gckground workload the schedule can handle.

found as follows. Without loss of generality, assume th4t3 The slicing technique

V7; € T : a; = 0. We then choos® = [0, L), whereL, We solve the deadline-distribution problem with an im-
the length of the planning cycle, is defined as the least copneved version of thelicing techniqueproposed in [5]. A
mon multiple of{T; : 7; € T}. Within P, 7; will be invoked fundamental concept in the slicing technique is thatrif

L/T; times. For a set of tasks with arbitrary arrival times, wieal path A critical path in a task graph is one for which
find the planning cycle as follows. Without loss of generalitg, given performance measure assumes a minimum or maxi-
assume thatnin{a; : 7; € T} = 0. Furthermore, definemum value. Correct identification of a critical path is crucial
a = max{a; : 7; € T}. We then choos® = [0,a + 2L). for the quality of the deadline distribution and the system’s

€D



schedulability. Acritical path metricis used to assess the
criticalness of each path in the task graph.

When a critical path has been identified, the E-T-E dea
line is distributed over the tasks in the critical path. This
is done by assigninglices non-overlapping execution win-
dows, of the E-T-E deadline to each of the tasks in the critic
path. The slices are derived governed by the constraint th
the arrival time of a task must be equal to the absolute deg

line of its predecessor in the critical path. Note that, whereas7

the execution time windows of tasks in the same path ca
not overlap, the execution windows of tasks in different path
may overlap and thus are subject to contention for availab
processors during scheduling. Therefore, the size of ea
task slice must be derived in such a way that the task ci
be scheduled to meet its timing constraints even in the pre
ence of other, overlapping, task slices or task release jitter
caused by interprocessor communication delays. This can

Algorithm SLICING:

j- 1. initialize seflI with all tasks in the task graph;

. 2. while { IT # 0 } loop
3. find a critical path® in IT that minimizes metridz;
N 4. distribute the E-T-E deadline @f by assigning
arrival times and deadlines to the tasksbin
aly o { each task in ® } loop
d.  for { each immediate predecessgrof = } loop

assign an E-T-E deadline g that is equal to
the arrival time ofr;
end loop
for { each immediate successarof r } loop
assign an arrival time tq that is equal to
the absolute deadline of
end loop
end loop;
remove all tasks i@ from II;

n_

S 8.
le9.
chl0.

an
s-11.

asl2-

be, .

achieved by assigning an ample laxity to each task.

nd loop;

For a system with completa priori information on
task-processor assignment and interprocessor communica-
tion cost, the best critical path can easily be found as de-

scribed in [5]. When the assignment is not entirely fixeg slasltlﬁg/z t;?:;det (bségg ;)Sis'io‘snseu dm: thr‘:[ ?:Lizp:rt:i(\)/::ptlijées
however, finding the best critical path is no longer an easa y 9 pprop

task. The reason is that it is not yet known what pairs of tas MdE-TE deadlines, respectively, according to the temporal

S
will be afflicted with interprocessor communication ove

rr_equirements of the application. All tasks in the task graph
head. Therefore, the deadline-distribution algorithm mEE then inserted into a task $kthat represents all tasks not
rely on the prediction of the “possibly best” critical path.

yet assigned arrival times and deadlines. The time complex-
In [12] we presented an adaptive slicing technique that V\%%/ﬁOf this step isO(|N). This does not include the time for

able to make better predictions on the critical path under re—'a_lIIZIng d?_ta structures used by the critical path metic
laxed locality constraints than did the original technique in Find a critical path (Step 3): The breadth-first traversal
[5]. The predictions in [12] were based on two observatiorf, the task graph determines a critical pattamong all po-
First, we found that in systems where the application par&ntial paths for the tasks iil. The critical path is identified
lelism exceeds the number of processors available, itis a g#§i'd the critical path metricR. The time complexity of
strategy to assign longer slices to tasks whose execution tifd¥ €adth-first traversal of the task graptOfN| + |A]).
exceed a certain threshold. The rationale for this is that tagk§refore, for any acyclic task graph, the total time complex-
with longer execution times are likely to be most vulnerab®y of t2h|s step, taken over all iterations of the main loop, is
in the case of high resource contention. Second, we fodAtN|"), not counting the time needed for evaluatifig
that it is a good strategy to assume that there will be no com-Distribute the E-T-E deadline (Step 4): The E-T-E dead-
munication cost between tasks whose processor assignmiémsDg of the critical path® found in Step 3 is distributed
are not known. The intuition behind this is that many task egver the tasks inb. The deadline distribution is governed
signment and scheduling algorithms tend to cluster tasks thythe constraint that the arrival time of a task must be equal
communicate heavily [1]. Furthermore, in many distributdd the absolute deadline of its immediate predecess@r. in
real-time applications the communication volume is quite loWhus, all tasks in the path will be assigned slices of the E-T-E
[17], and therefore any communication cost will be relativejeadline. The total time complexity of this stepl$|IN|).
small compared to the task execution times. In [12], we alsoAttach the remaining tasks (Steps 5 — 12): The tasks in
showed that, even in the presence of significant commuainow constitute a “spine” to which the remaining tasks must
cation cost, it is better to assume no communication costaagch, that is, adapt their arrival times and absolute deadlines.
this will yield the largest amount of overall laxity to distributerherefore, the arrival time for each task notinis set to the
over the application tasks. latest absolute deadline of any immediate predecessor task in
4.4 Deadline-distribution algorithm ®. Similarly, the absolute deadline for each task no®irs

A pseudo-code form of the algorithm for distributing€t to the earliest arrival time of any immediate successor task
E-T-E deadlines over the tasks according to the slicing te¢h$. The total time complexity of this step 3(|N| + [A).
nigue is givenin Figure 1. The algorithm takes a task graph asRemove critical-path tasks(Step 13): The tasks i# are
the input and produces an annotated task graph containing@moved frondI to mark that they have been assigned arrival
formation about task arrival times and relative deadlines. Ttimes and deadlines. The arrival times and deadlines of tasks
various steps in the algorithm are described below in detaihot in ® now constitute new E-T-E deadlinesIih The total

Figure 1: The deadline-assignment algorithm.



time complexity of this step i©(|IN|). virtual execution time for task; is defined as

Repeat until no tasks remain(Steps 2 and 14): The main
loop in the algorithm is repeated until no tasks are lefflin . G if & < Cnres

Adding the time complexities of the steps described above, € = { Gi(l+ke€/m) if & >cu ©
the worst-case time complexity of the algorithnign?), not ' b e

counting the time needed for evaluatifig wherek¢ is theglobal adaptivity factor¢ is theaverage task

4.5 Critical path metrics graph parallelism andm is the numb_er of processors in the

In [5], Di Natale and Stankovic introduced two metrics fapyStem- The expressida;¢/m constitutes asurplus factor
the slicing technique. The first metric, thermalized laxity that defines the amount of laxity by which the real execu-
ratio (NORM), is the ratio of the overall laxity to the sum ofion time should be increased for those tasks whose execution
the execution times of all tasks in a pah With this metric, UMeS exceeds,.;. The average task graph paralleligis
laxity is assigned in proportion to task execution time. THi§fined as the application workload divided by the length of
metric value,Rnoru, and the relative deadling;, for each the longest path i, that is
taskr; are consequently defined as

¢€= Y &/max{SL(r;) : 7; € T} (7)
Rxorm = (Do — Z )/ Z Ci (2) mi€T
T1_€¢ T1‘€¢ . - . - . .
di = &(1+ Ryorm) 3) Our main contribution in this paper is to propose the

cally adaptive laxity ratiqADAPT-L) metric, which is an im-
provement of the ADAPT-G metric in the sense that ADAPT-

The' second metric in [5]' theure laxity ratio(PURQ, IS isable to identify the available parallelism that affects only
the ratio of the overall laxity to the number of tasks,, in @ 5 certain task. For ADAPT-L, the virtual execution time is
path®. With this metric, all tasks are assigned an equal sh3f&ined as:

of laxity. The metric valueRpyrg, and the relative deadline,

d;, for taskr; are thus { & it & < cp
éz — B 1 ) _7, res (8)
Reure = (De— Y &)/na (4) G(L+k|¥s|/m) i & > chres
Ti€P . .. .
d; = &+ Rpurg 5) whereky, is thelocal adaptivity factoy ¥; is theparallel set

of 7;, andm is the number of processors in the system. The
arallel set¥; is the set of tasks that are potential candidates
r executing in parallel with;, that is, those tasks that are
either predecessors nor successors; ofADAPT-L intro-
%uces the extra complexity to the deadline-distribution algo-
> . CPftAm that a parallel set must be calculated for each task. The
cepts as an aid in improving the performance of the SI'C”B%raIIeI setW; for taskr, can easily be found by first con-
techniqug, namelyaxecu'gion t_ime thresholdr)dvirtual ex- structing the ltransitive élosu@* for the task graplé, and
ecution time The execution time threshold is a mechanisf, , including in¥; only those tasks that are neither reach-
for guaranteeing that only certain tasks are allotted extra | le fromr,, nor can reach;. The construction of the tran-

ities' By }Jsing the execution t'ime 'threshold to filter out taskgive closureG* can be done during the initialization phase
with sufficiently large execution times, we managed to i wa

In [12], we showed that none of the NORM or PUR
metrics are suitable for systems with relaxed locality COR
straints owing to their lack of information on contention ov
resources. As a remedy, we therefore introduced two

) Lo ep 1) of the deadline assignment algorithm and takes time
prove the performance in those situations where task gr

3

parallelism cannot be fully exploited. The purpose of a vir- n°) 18],
tual execution time is to make a task appear computationgdl .
more consuming than it actually is. Bypgssigning%irtual e _y Experlmenta! setup
ecution times that are larger than the real execution timésl ~System architecture
the deadline-distribution algorithm will allocate more laxity We have used an experimental platform based on a het-
to those tasks for which the real execution time is equal to@bgeneous multiprocessor architecture with a shared bus in-
above the given execution time threshold. terconnection network. The system size ranges from two to

On the basis of these two concepts, we introduced tight processors. The number of processor classes in the sys-
globally adaptive laxity rati¢ADAPT-G. This metric is sim- tem,m. = |E|, was randomly chosen to be one, two, or three.
ilar to the PURE metric but has a virtual execution time&,of The classe(p,), of each processay, in the system was ran-
instead of the estimated execution tinae, The ADAPT-G domly chosen from the sdi, of generated processor classes.
metric is adaptive in the sense that the amount of assigivéel assumed that the shared bus is time-multiplexed in such a
surplus is not fixed but will adapt itself to the degree of taskay that the communication cost between two processors is
graph parallelism that can be exploited on the system. Tdree time unit per transmitted data item.
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In all experiment a set of 1024 task graphs was gener- oET T
ated using a random task graph generator. Each task graph £ so | .
contained between 40 and 60 tasks. Task execution times 2 S,
were chosen at random assuming a uniform distribution with S 60} .
a mean execution time, ¢, of 20 time units. The execu- a
tion time for each task deviated by at mas25% from the ;,3 at -
mean execution time,,..,, for different processor classes.
To mimic the situation that a task requires special hardware 20 Now -
resources for its execution, we also deemed a task inappropri- ADAPT. L
ate for execution on a particular processor class with a prob- 04 L ] L * L
abl'lty of 5%. 2 3 Nurfber of 5processGors ! 8

To mimic different application scenarios, task execution , ) .
times were chosen based on tecution time distribution ~ Figure 2: Success ratio as a function of system size.
(ETD), the maximum deviation (in percent) of a task’s exelgorithm selected one task (the one with the closest abso-
cution time from the mean execution timg..,. Thus, for lute deadline) from all ready tasks. The selected task was
a givenETD, the task execution times were chosen at ratiten scheduled on the available processor that yielded the
dom to be in the rangecan (1 — ETD), ¢inean (1 + ETD)].  earliest start time, taking into account possible communica-
To evaluate the performance of the metrics under varialilyn cost and the arrival time constraints of the task. The set
tight timing constraints, an E-T-E deadline was chosen fof ready tasks was updated with the immediate successors
each input—output task pair based on t¢iverall laxity ratio of the scheduled task. The complexity of this algorithm is
(OLR), the ratio of the E-T-E deadline to the average aco0O{n? x m) for a system witm tasks andn processors.
mulated task graph workload. The precedence constraints in . .
the task graph were also randomly generated. The numBer EXperimental evaluation
of successors/predecessors of each task was chosen at rahhis section evaluates the performance (success ratio) of
dom to be in the range of one to three, and the depth of the metrics presented in Section 4.5. The experimental eval-
task graph was chosen at random to be between eight watdon was made using the deadline-distribution algorithm in
12 levels.The number of data items in each message pagdgdre 1 and the experimental setup in Section 5. Unless
between a pair of tasks was chosen in such a way that @teerwise noted, all simulations were performed assuming
communication—to—computation cost raf@CR of the av- a scenario witlETD = 25% andOLR = 0.8. The follow-
erage message communication cost to the average task égedefault parameter values were used for the adaptive met-
cution time corresponded to 0.1. rics during the experimentsip,.; = 1.0 * cyean, kg = 1.5,
5.3 Estimation of WCET kr =0.2. The estimated WCET for a task was calculated

We investigate three different WCET estimation strat@¢cording to the WCET-AVG strategy.
gies. For thaNVCET-AVGstrategyg; is calculated as the av-6.1 Effect of system size on performance
erage of all valid execution times, taken over all processor Since one of our objectives is to find metrics that perform

classes: well for high processor contention, it is interesting to study
G = Z ciler]/|E| (9) how the slicing metrics will behave for different system sizes.
ex€E By varying the number of processors, we can identify the
For theWCET-MAXstrategyy; is set to the maximum of all @pability of each metric to exploit the available application
valid execution times, that is parallelism on the platform architecture. Intuitively, all met-
rics should perform worse for small system sizes than for a
& = max ciler] (10) larger system. For a small system, that is, where the applica-
€x

tion parallelism exceeds the number of available processors,
the contention between tasks over a few available processors
forces multiple tasks to be scheduled within overlapping ex-
ecution windows on the same processor. As the system size
(11) increases, more parallelism in the task graph can be exploited,
which will decrease the contention over processors. Conse-
. . guently, the success ratio will increase with increasing system
5.4 Task assignment and scheduling size until a point at which all generated task graphs are suc-

We used a baseline task assignment and scheduling sgaksslly scheduled. This behavior is duly corroborated by
egy based on alist scheduling version of the earliest-deadlifpgs plots in Figure 2.

first (EDF) algorithm. For each scheduling step, our EDF \yji, a deadline-driven scheduling strategy, tasks with

2All modeling and simulations in the experiments were performed withl@NJer eerUtion times will be the most VU_|nerab|e to proces-
the GAST [19] evaluation framework. sor contention as shorter tasks are more likely to have shorter

Finally, for theWCET-MINstrategyg; is set to the minimum
of all valid execution times:

¢; = min c¢;[eg]
e, €E
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Figure 3: Success ratio as a function@iR. Figure 4: Success ratio as a functionBD.

deadlines. As a consequence, longer tasks should be assigasges regarding the contention situation for individual tasks.
more laxity to compensate for this imbalance. The figufidis is in contrast to ADAPT-G, where the potential con-
shows how the PURE metric, with its equal-share distributi¢@ntion for each task is derived using the same constant value,
strategy, exhibits the worst performance among all metric@mely the average task graph parallelism. However, it must
For example, only 35% of all scheduling attempts succeedlahrecalled that the superior performance of ADAPT-L comes
a system with four processors when PURE is used. The pairthe price of a higher time complexity.
formance of the NORM metric is significantly better, mainlg.2 Effect of OLR on performance
owing to its strategy to assign deadlines in proportion to task Another goal with a deadline-distribution strategy is that
execution times. This approach gives tasks with longer éxshould use metrics that perform well for varying tightness
ecution times more laxity and hence a better chance todighe E-T-E deadlines. In particular, by varying the value of
scheduled feasibly. For the four-processor system, more iR when there is significant processor contention, we can
65% of all scheduling attempts succeed using NORM. identify the capability of each metric to exploit the available
The figure clearly illustrates that the non-adaptive metrisgrplus time and to distribute it wisely. The plots in Figure 3
(PURE and NORM) do not perform well for small systemshow some salient results for a system with three processors.
For example, the fraction of successful scheduling attemptsAgain, we observe the same relative performance of the
does not exceed 30% for a system with three processorsnfetrics. Here, too, ADAPT-L outperforms the other metrics
any non-adaptive metric. The explanation for the poor péty a significant amount. For example, the performance gain
formance is that these metrics do not account for the resouasecompared to the non-adaptive metrics is nearly an order
contention that occurs when the application parallelism ex-magnitude for tight deadlines. The ADAPT-G metric also
ceeds the number of available processors. Hence, many te#forms consistently better than the non-adaptive metrics.
deadlines will be too short to guarantee a feasible schedfier tight deadlines, the plots indicate a three-fold increase in
This shortcoming is partly remedied with the ADAPT-G meperformance for ADAPT-G over the non-adaptive metrics.
ric. By assigning task laxities based on the knowledge tt&8 Effect of ETD on performance
application parallelism may not be fully exploited on the sys- So far, our adaptive metrics have been shown to outper-
tem, it is reasonable to believe that a higher performance gg#in their non-adaptive counterparts under all system sizes
be attained with ADAPT-G. As the plots indicate, this extrand all degrees of deadline tightness. In this section, we will
intelligence of ADAPT-G gives a significant performance indentify the robustness of each metric under different applica-
crease for small systems. For example, more than 60% ofi@h scenarios with varying execution time distributions. The
scheduling attempts succeed for the three-processor sysieits in Figure 4 illustrate the success ratio as a function of
when ADAPT-G is used. Note that this is more than twigeTD assuming a fixed system size and a fix@HR. We
the performance of the best non-adaptive metric. show here the results f@LR = 0.8 and three processors
The ADAPT-L metric exhibits the best performance in thighile varyingETD from 0% to 100% in steps of 25%.
experiment. For example, the plots indicate that around 95%The observed trends in this experiment are quite similar
of all scheduling attempts succeed for the three-procestnthe ones demonstrated in the previous experiments, with
system when the ADAPT-L metric is used. This is a threene notable exception. As the plots clearly indicate, the
fold improvement as compared to the non-adaptive metripsrformance of the NORM metric is not as consistent as in
The improvement is even more stunning for a two-processbe previous studies. Instead of consistently being inferior
system: the number of successful scheduling attempts is mrdDAPT-G, the performance of NORM will increase past
than an order of magnitude higher for ADAPT-L than foADAPT-G asETD gets large enough. This behavior can
the non-adaptive metrics, and four times higher than for the attributed to the proportional-share distribution strategy of
ADAPT-G metric. The superior performance associated wivORM. With an increasing proportion of short tasks, there
ADAPT-L can be attributed to the detailed knowledge it posw+ll be more tasks with shorter deadlines competing for the
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Figure 5: Success ratio for ADAPT-L as a function@ER Figure 6: Success ratio for ADAPT-L as a functionl5TD
for different WCET estimation strategies. for different WCET estimation strategies.

processors. NORM is able to compensate long tasks withan be seen in the plots, this strategy performs approximately

larger amount of laxity to handle the contention. Becausebfo worse than WCET-AVG.

is based on the PURE metric, ADAPT-G cannot handle this It should be noted that WCET-MAX is not as robust for all

situation with the same amount of flexibility. application scenarios. Figure 6 illustrates the success ratio as
Note that, wherETD = 0%, the PURE, NORM, and afunction ofETD assuming a fixe®LR. ASETD increases

ADAPT-G metrics all converge to the same success ragiast 75%, the performance of WCET-MAX becomes worse

(6%). This is because all tasks have identical estimated etken that of the other strategies because the larger presence

cution timesz;. Itis easy to see that, with identical executioaf tasks with long execution times causes too much overall

times, the deadline for each taskin a critical path® will be laxity to be consumed from task with short execution times.

d; = Dg/ns, regardless of what metric is used. In the case The results from this study indicate that, for systems with

of ADAPT-G, the virtual execution timeg are also identi- uniform or near-uniform task execution times, the WCET-

cal since, folETD = 0%, the original execution times of all MAX strategy is the best choice. For systems with a large

tasks are equal to or higher than the execution time thredlstribution of task execution times, on the other hand, the

old csres and the surplus factorg:¢ andkg, respectively) WCET-AVG strategy is the preferred choice.

are constant. In the case of ADAPT-L, however, the virtual

execution time of each task is defined by the size of its pdr- Discussion

allel set and may thus differ between tasks. This propefty Finding the best adaptive parameters

of ADAPT-L gives it an order-of-magnitude performance in- . .
crease for systems with uniform task execution times. D-L?P?—el_able to apply_the_adaptlve me]E'n%s (ﬁDAE TG Iand
Also, note the anomalous behavior of ADAPT-G an’gf th ;j)l? F;rafctlcie,;t IS wgzortant;[% '? what t evalye

ADAPT-L as ETD exceeds 50%. As shown in [20], the i eal aﬁl“" yfac °|r G andrz m“Stbe °ra9"’]?tr;]agp '; that
pefomance of e adapive meris s most wineraieffL7 108 %71 255 fe st be avere of e fct
changes inFiTD. For the chosen values dig and kz, believe that the values used in our ex e)r/iments-are also u,seful
the performance of both ADAPT-G and ADAPT-L will drop, o P L

for many other applications. Although the adaptivity factors

(sshghtl)llsz?r app]llc\:stcl?giwnh_ a 'aTQETD- ; of ADAPT-G and ADAPT-L are clearly sensitive to the actual
: ecto estimation strategy on perior- application parallelism, the adaptive metrics will still outper-

mance form the non-adaptive counterparts as long as the parallelism

Since we are assuming a heterogeneous distributed $yiates within reasonable bounds from the chosen values.
tem, it is interesting to investigate how the strategy for cal-

culating¢;, the estimated WCET of;, affects the schedule’-2 Complexity issues
quality. In this section, we investigate the three WCET esti- Whether to use ADAPT-G or ADAPT-L dependsto a large
mation strategies presented in Section 5.3. extent on the nature of the target system. For example, in a
The plots in Figure 5 illustrate the success ratio feystem that is scheduled off-line, the cost of the deadline-
ADAPT-L as a function of WCET estimation strategy assundistribution algorithm are often not of major concern and
ing a three-processor system. As can be seen in the plb&s)ce theO(n?) algorithm with ADAPT-L could be used.
the overall best performance is attained when the pessimigiic a system with on-line scheduling, on the other hand, tasks
WCET-MAX strategy is used. By accounting for the worstypically arrive dynamically and hence the scheduling com-
case situation that can occur during scheduling, this strat@dgxity is a major source of consideration. Here, &g?)
outperforms WCET-AVG by approximately 5%. The worstlgorithm with ADAPT-G may be a better choice. Another
performance is attained with WCET-MIN owing to its overlyproperty of the system that will affect the choice of metric
optimistic estimations regarding the final task assignment. i8sthe task assignment and scheduling strategy used. If an



O(n

2) polynomial-time scheduling algorithm is used, apply-

ing ADAPT-G adds little to the total complexity. However,

if a branch-and-bound algorithm is used, its high complexity
would make ADAPT-L a viable alternative as its complexityl7]
would be negligible in comparison.

7.3 Future work

We believe that the techniques presented here can be ap-

plied not only to computational resources such as processor

but also to general resources including shared data structures.

Future work would include evaluation of techniques that can
also take such general resource requirements into account.
Although the slicing technique has been evaluated undgg
a time-driven non-preemptive task dispatching policy in this
paper, it is not restricted to that policy as we showed by impli-
cations 11 and 12 in Section 1. Future work would therefore

encompass exploring the performance of the new metrics [

der various task assignment and scheduling policies.

8 Conclusions

Distribution of E-T-E deadlines over tasks in a distributed?]
real-time system is an important, but difficult, problem to
solve. Itis particularly difficult to solve the problem for sys-
tems with relaxed locality constraints where a majority of the?]

tasks are not pre-assigned to particular processors. In this

paper, we have proposed a new adaptive metric that will sig-
nificantly improve the performance of our original adaptive

slicing technique [12]. The results of an extensive simulati

study show that the new metric outperforms all existing met-
rics over a wide range of system configurations. In particular,
we find that, for small systems, the new metric outperforms
non-adaptive metrics by as much as an order of magnitude.
Furthermore, it outperforms the previously-proposed addp4]
tive metric with a three-fold increase in performance.
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