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Abstract

This paper presents a new algorithm called List-based
Load Balancing (LLB) for compile-time task scheduling
on distributed-memory machines. LLB is intended as a
cluster-mapping and task-ordering step in the multi-step
class of scheduling algorithms. Unlike current multi-
step approaches, LLB integrates cluster-mapping and task-
ordering in a single step. The benefits of this integration are
twofold. First, it allows dynamic load balancing in time,
because only the ready tasks are considered in the mapping
process. Second, communication is also considered, as op-
posed to algorithms like WCM and GLB. The algorithm has
a low time complexity ofO(E+V (log V +logP )), whereE
is the number of dependences,V is the number of tasks and
P is the number of processors. Experimental results show
that LLB outperforms known cluster-mapping algorithms of
comparable complexity, improving the schedule lengths up
to 42%. Furthermore, compared with LCA, a much higher-
complexity algorithm, LLB obtains comparable results for
fine-grain graphs and yields improvements up to16% for
coarse-grain graphs.

1 Introduction

The problem of efficiently scheduling programs is one of
the most important and difficult issues in a parallel process-
ing environment. The goal of the scheduling problem is to
minimize the parallel execution time of a program. Except
for very restricted cases, the scheduling problem has been
shown to be NP-complete [3]. For shared-memory systems,
it has been proven that even a low-cost scheduling heuristic
is guaranteed to produce acceptable performance [4]. How-
ever, for distributed-memory architectures, there is no such
guarantee and the task scheduling problem remains a chal-
lenge, especially for algorithms where low cost is of key
interest.

The heuristic algorithms used for compile-time task
scheduling on distributed-memory systems can be divided
into (a) scheduling algorithms for anunboundednum-
ber of processors (e.g., DSC [12], EZ [9], STDS [2] and
DFRN [6]) and (b) scheduling algorithms for abounded
number of processors (e.g., MCP [10], ETF [5] and
CPFD [1]). The problem in the unbounded case is easier,
because the constraint on the number of processors need not
be considered. Therefore, scheduling in the unbounded case
can be performed with good results at a lower cost com-
pared to the bounded case. However, in practical situations,
the necessary number of processors requested by an algo-
rithm for the unbounded case is rarely available.

Recently, a multi-step approach has been proposed,
which allows task scheduling at the low complexity of the
scheduling algorithms for the unbounded case [9, 11]. In
the first step, calledclustering, scheduling without duplica-
tion is performed for an unbounded number of processors,
tasks being grouped in clusters which are placed on virtual
processors. In the second step, calledcluster-mapping, the
clusters are mapped on the available processors. Finally, in
the third step, calledtask-ordering, the mapped tasks are
ordered on processors. Although the multi-step approach
has a very low complexity, previous results have shown that
their schedule lengths can be up to twice the length of a list
scheduling algorithm such as MCP [7].

This paper presents a new algorithm, called List-
based Load Balancing (LLB) for cluster-mapping and task-
ordering. It significantly improves the schedule lengths of
the multi-step approach to a level almost comparable to the
list scheduling algorithms, yet retaining the low complex-
ity of the scheduling algorithms for an unbounded number
of processors. The LLB algorithm combines the cluster-
mapping and task-ordering steps into a single one, which
allows a much more precise tuning of the cluster-mapping
process.

This paper is organized as follows: Next section de-
scribes the scheduling problem and introduces some defi-
nitions used in the paper. Section 3 briefly reviews existing



cluster-mapping algorithms. Section 4 presents the LLB al-
gorithm, while Section 5 shows its performance. Section 6
concludes the paper.

2 Preliminaries

A parallel program can be modeled by a directed acyclic
graphG = (V ; E), whereV is a set ofV nodes andE is a
set ofE edges. A node in the DAG represents a task, con-
taining instructions that execute sequentially without pre-
emption. Thecomputation costof a taskt, comp(t), is
the cost of executing the task on any processor. The edges
correspond to task dependencies (communication messages
or precedence constraints). Thecommunication costof an
edge(t; t0), comm(t; t0), is the cost to satisfy the depen-
dence. Thecommunication to computation ratio(CCR) of
a parallel program is defined as the ratio between its average
communication cost and its average computation cost.

A task with no input edges is called anentry task, while
a task with no output edges is called anexit task. A task is
said to bereadyif all its parents have finished their execu-
tion. A ready task can start its execution only after all its
dependencies have been satisfied. If two tasks are mapped
to the same processor or cluster, the communication cost be-
tween them is assumed to be zero. The number of clusters
obtained in the clustering step isC.

As a distributed system, we assume aP processor ho-
mogeneous clique topology with no contention on commu-
nication operations and non-preemptive tasks execution.

Once scheduled, a taskt is associated with a processor
PE(t), a start timeST (t) and afinish timeFT (t). If the
task is not scheduled, these three values are not defined.

The objective of the scheduling problem is to find a
scheduling of the tasks inV on the target system such
that the parallel completion time of the problem (schedule
length) is minimized. The parallel completion time is de-
fined asTpar = maxt2V FT (t).

For performance comparison, thenormalized schedule
lengthis used. In order to define the normalized scheduled
length, first theideal completion timeis defined as the ratio
between the sequential time (aggregate computation cost)
and the number of processors:Tideal = Tseq=P . The nor-
malized schedule length is defined as the ratio between the
actual parallel time (schedule length) and the ideal comple-
tion time:NSL = Tpar=Tideal. It should be noted that the
ideal time may not always be achieved, and that the optimal
schedule length may be greater than the ideal time.

3 Related Work

In this section, three existing cluster-mapping algorithms
and their characteristics are described:List Cluster Assign-

ment(LCA) [9], Wrap Cluster Merging(WCM) [11] and
Guided Load Balancing(GLB) [7].

3.1 List Cluster Assignment (LCA)

LCA is an incremental algorithm, that performs both
cluster-mapping and task-ordering in a single step. At each
step, LCA considers the unmapped task with the highest
priority. The task, along with the cluster it belongs to, is
mapped to the processor that yieldsthe minimum increase
of parallel completion time. The parallel completion time
is calculated as if each unmapped cluster would be exe-
cuted on a separate processor. The time complexity of LCA
isO(PC(C +E)).

One can note, that if each task would have been mapped
to a separate cluster, LCA degenerates to a traditional list
scheduling algorithm. If the clustering step produces large
clusters, the time spent to map the clusters to processors is
decreased, since all tasks in a cluster are mapped in a single
step. However, the complexity of LCA is still high, because
at each cluster-mapping step, it is necessary to compute the
total parallel completion timeP times.

3.2 Wrap Cluster Merging (WCM)

In WCM, cluster-mapping is based only on the clus-
ter workloads. First, each of the clusters with a workload
higher than the average is mapped to a separate processor.
Second, the remaining clusters are sorted in increasing or-
der by workload. Assuming the remaining processors are
renumbered as0; 1; : : :Q � 1 and the remaining clusters
as0; 1; : : :R � 1, the processor for clusterck is defined as
PE(ck) = k mod Q; k = 0; 1; : : :R�1. The time com-
plexity of WCM isO(C logC + V ).

Assuming that in the previous clustering step the ef-
fect of the largest communication delays are eliminated,
the communication delays are not considered in the cluster-
mapping step. The time complexity of WCM is very low.
However, it can lead to load imbalances among processors
at different stages during the execution. That is, the cluster-
mapping is performed considering only the sum of the ex-
ecution times of the tasks in clusters, irrespective of the
tasks’ starting times. As a result, processors may be tem-
porarily overloaded throughout the time.

3.3 Guided Load Balancing (GLB)

GLB improves on WCM by exploiting knowledge about
the task start times computed in the clustering step. A clus-
ter start time is defined as the earliest start time of the tasks
in the given cluster. The clusters are mapped in the order
of their start times to the least loaded processor at that time.
The time complexity of GLB isO(C logC + V ).



The start time of the first task determines the cluster
priority, thus providing information from the dependence
analysis in the clustering step. Topologically ordering tasks
yields a natural cluster ordering. Scheduling clusters in the
order they become available for execution generally yields
a better schedule compared to scheduling when only the
workload in a cluster is considered, because the work in
the clusters is spread over time. Using this approach, the
concurrent tasks (without dependencies between them) are
more likely to be placed on different processors and there-
fore run in parallel.

However, there are cases in which GLB still does not
produce the right load balance. For example, if a larger
cluster is mapped on a processor, it will significantly in-
crease the aggregate load of that processor and cause that
processor not to be considered in the next mappings, even if
it is already idle.

In [8] a graphical illustration is given of how the above
algorithms perform on an example task graph.

4 The LLB Algorithm

4.1 Motivation

Comparing the existing low-cost multi-step scheduling
algorithms with higher-cost scheduling algorithms, it can
be noticed that low-cost multi-step algorithms produce up
to 100% longer schedules compared to higher-cost schedul-
ing algorithms like MCP [7]. The existing low-cost cluster-
mapping algorithms (e.g., WCM, GLB) aim to balance the
workload of the clusters on processors. Neither the com-
munication costs, nor the order imposed to tasks by their
dependencies are considered when the clusters are mapped.
On the other hand, the higher cost cluster-mapping algo-
rithms (e.g. LCA), despite their better performance, are less
attractive in many practical cases, because of their high cost.

LLB is a low-cost algorithm intended to improve load
balance throughout the time by performing cluster-mapping
and task-ordering in a single step. Integrating the two steps
in a single one allows a better tracking of the running tasks
throughout the time when a new mapping decision is made.
This approach helps the scheduling process in two ways.
First it allows a dynamic load balancing throughout the
time, because only the ready tasks are considered in the
mapping process. Second, communication costs are also
considered when selecting tasks, as opposed to algorithms
such as WCM and GLB.

Similar to the other algorithms presented earlier, LLB
maps all tasks from a cluster in a single step. However,
instead of selecting the best processor for a given cluster,
the algorithm selects the best cluster for a given processor.
The selected processor is the first one becoming idle. This
new approach is taken because it significantly decreases the

complexity of the algorithm. Instead of scanning all pro-
cessors to find the best mapping for the cluster (O(PV )),
the selected processor is simply determined by identifying
the minimal processor ready time (O(logP )). The tasks are
scheduled one at a time, which implies task-ordering in the
same step as cluster-mapping. If the selected task has not
been mapped before, all other tasks in its cluster are mapped
along with the selected task. Scheduling tasks one at a time
allows better control of the scheduling throughout the time,
comparable to list scheduling algorithms, therefore leading
to better schedules.

4.2 The LLB Algorithm

Before describing the LLB algorithm, we introduce few
concepts on which the algorithm is based. In this paper
there is a clear distinction between the concept of a mapped
and a scheduled task. A task ismapped, if its destination
processor has been assigned to it. A task isscheduledif it is
mappedand its start time has been computed. Areadytask
is an unscheduled task that has all its direct predecessors
scheduled. Theurgencyof a task is defined as a static pri-
ority, in the same way as in list scheduling algorithms. We
use as the task urgency the sum of the computation and the
inter-cluster communication on the longest path from the
given task to any exit task. This urgency definition provides
a good measure of the task importance, because the larger
theurgencyis, the more work is still to be completed until
the program finishes.

The LLB algorithm maps all tasks in the same cluster
on the same processor. When the first task in a cluster is
scheduled on a processor, all the other tasks in the same
cluster are mapped on the same processor. The reason is to
keep the communication at the same low level as obtained
in the clustering step.

At each step one task is scheduled. First, the destina-
tion processor is selected as the processor becoming idle
the earliest. Each processor has a list of ready tasks al-
ready mapped on it. The ready unmapped tasks are kept in
a global list. Initially, the ready mapped task lists are empty
and the ready unmapped task list contains the entry tasks.
All ready task lists are sorted in descending order using the
task urgencies.

After selecting the destination processor a task to be
scheduled on that processor is selected. The candidates are
the most urgent ready task mapped on the selected processor
and the most urgent ready unmapped task. Between these
two tasks, the one starting the earliest is selected and sched-
uled on the selected processor. If the two tasks start at the
same time the mapped task is selected. If none of the two
candidates exists, the most urgent task mapped on another
processor is selected and scheduled on its own processor.

Finally, the ready task lists are updated. Scheduling a



task may lead to other tasks becoming ready. These ready
tasks can be mapped or unmapped. The mapped tasks are
added to the ready tasks lists corresponding to their proces-
sors. The unmapped tasks are added to the global ready
unmapped task list.

LLB ()
BEGIN

For each task compute urgencies.
WHILE NOTall tasks scheduled DO

p  the processor becoming idle the earliest
t_m  the most urgent ready task mapped on p
t_u  the most urgent ready unmapped task
SWITCH

CASE t_m and t_u exist:
IF ST( t_m , p) � ST( t_u , p) THEN

task  t_m
ELSE

task  t_u
END IF

CASE only t_m exists:
task  t_m

CASE only t_u exists:
task  t_u

CASE neither t_m nor t_u exist:
t  the most urgent ready task.

END SWITCH
Schedule t on p.
IF t has not been mapped THEN

Map all tasks in t ’s cluster on p
END IF
Add the new ready tasks to
the ready task lists.

END WHILE
END

The complexity of the LLB algorithm is as follows.
Computing task priorities takesO(E + V ). At each task
scheduling step, processor selection takesO(logP ) time.
Task selection requires at most two dequeue operations
from the ready task lists, which takesO(log V ) time. The
cumulative complexity of computing the task start times
throughout the execution of the while loop isO(E + V ),
since all the edges of the task graph must be considered.
Also, each new ready task in the task graph must be added
to one of the ready task lists. Adding one task to a list takes
O(log V ) time and, as there areV tasks,O(V logV ) time
is required to maintain the ready task lists throughout the
execution of the while loop. The resulting complexity of
the LLB algorithm is thereforeO(V (log V + logP )).

In [8] an elaborate description of the algorithm is pre-
sented including a sample execution trace and a comparison
to related work.

5 Performance Results

The LLB algorithm is compared with the three algo-
rithms described in Section 3, LCA, WCM and GLB. The
algorithms are compared within a full multi-step schedul-
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Figure 1. Algorithms running times

ing method to obtain a realistic test environment. The al-
gorithm used for the clustering step is DSC [12], because
of both its low cost and good performance. In case of us-
ing WCM and GLB for cluster-mapping, we use RCP [11]
for task-ordering. In our comparisons we also included the
well-known list scheduling algorithm MCP [10] to obtain a
reference to other type of scheduling algorithms.

We consider task graphs representing various types of
parallel algorithms. The selected problems areLU decom-
position, Laplace equation solver, a stencil algorithmand
fast Fourier transform(sample examples are shown in [8]).
For each of these problems, we adjusted the problem size
to obtain task graphs of about 2000 nodes. We varied the
task graph granularities, by varying the communication to
computation ratio (CCR). The values used forCCR were
0.2, 0.5, 1.0, 2.0 and 5.0. For each problem and eachCCR
value, we generated 5 graphs with random execution times
and communication delays (i.i.d., uniform distribution with
coefficient of variation 1)

One of our objectives is to observe the trade-offs between
the performance (i.e., the schedule length), and the cost to
obtain these results (i.e., the running time) required to gen-
erate the schedule. In Fig. 1 the average running time of the
algorithms is shown. For the multi-step scheduling meth-
ods, the total scheduling time is displayed (i.e., the sum of
clustering, cluster-mapping and task-ordering times). The
running time of MCP grows linearly with the number of
processors. For a small number of processors, the running
time of MCP is comparable with the running times of the
three low-cost multi-step scheduling methods (DSC-WCM,
DSC-GLB and DSC-LLB). However, for a larger number
of processors, the running time of MCP is much higher. All
three low-cost multi-step scheduling methods (DSC-WCM,
DSC-GLB and DSC-LLB) have comparable small running
times, which do not vary significantly with the number of
processors. DSC-LCA is not displayed, because its run-
ning times are much higher compared to the other running
times, varying from 82 seconds forP = 2 to 13 minutes for
P = 32.
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Figure 2. Normalized scheduling lengths for: (a) LU, (b) Laplace, (c) stencil (d) FFT

The average normalized schedule lengths (defined in
Section 2) for the selected problems are shown in Figure 2
for CCR values0:2, 1:0 and5:0 only (more measurements
are presented in [8]). For each of the consideredCCR val-
ues a set ofNSL values is presented. Note that theNSL
generally increases withP as a result of the limited paral-
lelism in the task graphs.

Within the class of high-cost algorithms, the schedule
lengths of DSC-LCA are still longer compared to MCP. In
a multi-step approach the degree of freedom in mapping
tasks to processors is decreased by clustering tasks together.
Mapping a single task from a cluster to a processor forces
all the other tasks within the same cluster to be mapped to
the same processor. In this case, using a higher-cost algo-
rithm (DSC-LCA vs. MCP) does not imply an increase in
scheduling quality.

While for small number of processors the performance
of the DSC-WCM is comparable with the high-cost algo-
rithms, for a large number of processors the performance
drops. If the computation time dominates, the difference in
the quality of the schedules is increasing in favor of high-
cost algorithms, going up to a factor of2 in some cases (row

LU decomposition,CCR = 0:2, P = 16). In the case of
fine-grain task graphs, DSC-WCM obtains results compa-
rable with high-cost algorithms. Minimizing the commu-
nication delays in the clustering step is the key factor in
obtaining these results.

DSC-GLB obtains better schedules compared with
DSC-WCM, since more information is used from the clus-
tering step. However, the quality increase varies both with
CCR and with the type of problem. For high values
of CCR (coarse-grain task graphs), the improvements in
schedule lengths over DSC-WCM are0 � 20% for stencil
problems and0�6% for LU decomposition, Laplace equa-
tion solver and FFT. For small values ofCCR, the improve-
ments over DSC-WCM are higher (2 � 12% for Laplace
equation solver and FFT, and5 � 25% for LU decomposi-
tion and stencil problems).

DSC-LLB outperforms both DSC-WCM and
DSC-GLB, while maintaining the cost at a low level.
It consistently outperforms DSC-WCM for all type of
problems with0� 10% for fine-grain graphs and1� 42%
for coarse-grain graphs (1 � 13% for FFT, 3 � 42% for
Laplace equation solver and stencil problems, and17�35%



for LU decomposition)
Compared with DSC-GLB for fine-grain graphs,

DSC-LLB generally performs comparable or better if there
is still speedup to be obtained (small number of proces-
sors). However, in some cases (Laplace equation solver),
the performance is somewhat lower. For coarse-grain
graphs, DSC-LLB consistently outperforms DSC-GLB
with 0� 14%. Moreover, in many cases DSC-LLB even
outperforms DSC-LCA, with up to16% (LU decomposi-
tion,CCR = 1:0, P = 8).

Compared to the more expensive MCP algorithm,
DSC-LLB generally obtains longer schedules. As LLB is
similar to list scheduling algorithms, its behavior is simi-
lar to MCP. The increase in schedule length depends on the
CCR values and the type of problem, but does not exceed
36% (stencil problem,CCR = 2:0, P = 16).

6 Conclusion

In this paper, a new algorithm, called List-based Load
Balancing (LLB), is presented. LLB is intended as a cluster-
mapping and task-ordering step in the multi-step class of
scheduling algorithms. Unlike the current approaches, LLB
integrates cluster-mapping and task-ordering in a single
step, which improves the scheduling process in two ways.
First it allows a dynamic load balancing in time, because
only the ready tasks are considered in the mapping process.
Second, the communication is also considered when select-
ing tasks, as opposed to algorithms likeWCMandGLB.

TheO(E + V (log V + logP )) complexity of LLB does
not exceed the complexity of a low-cost clustering algo-
rithm, like DSC. Thus, the low complexity of the multi-step
approach remains unaffected, despite our improvements in
performance.

Experimental results show that compared with known
cluster-mapping algorithms of low-complexity, LLB algo-
rithm improves the schedule lengths up to42%. Com-
pared with LCA, a much higher-complexity algorithm, LLB
obtains comparable results for fine-grain task graphs and
even better results for coarse-grain task graphs, yielding
improvements up to16%. In conclusion, LLB outper-
forms other algorithms in the same low-cost class and even
matches the better performing, higher-cost algorithms in the
list scheduling class.
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