
Reducing Parallel Overheads Through Dynamic Serialization∗

Michael Voss and Rudolf Eigenmann
Purdue University

School of Electrical and Computer Engineering

Abstract

If parallelism can be successfully exploited in a pro-
gram, significant reductions in execution time can be
achieved. However, if sections of the code are domi-
nated by parallel overheads, the overall program perfor-
mance can degrade. We propose a framework, based on
an inspector-executor model, for identifying loops that
are dominated by parallel overheads and dynamically
serializing these loops. We implement this framework
in the Polaris parallelizing compiler and evaluate two
portable methods for classifying loops as profitable or
unprofitable. We show that for six benchmark programs
from the Perfect Club and SPEC 95 suites, parallel pro-
gram execution times can be improved by as much as
85% on 16 processors of an Origin 2000.

1 Introduction

Identifying parallelism in a program is only a first
step in generating efficient parallel code. In a previous
study, we have found that even well-structured parallel
applications, on current shared-memory machines, may
run slower than their serial counterparts if they contain
parallel regions that cannot amortize the overheads as-
sociated with their parallel execution [5]. Detecting
such regions in a portable program is difficult. With
the new OpenMP shared-memory programming API,
applications can now be expressed in a form that al-
lows their parallel execution on most available shared-
memory machines. In writing portable programs, how-
ever, a user/compiler cannot easily take advantage of
advanced knowledge of the machine configurations on
which they will run. This makes predicting parallel
performance difficult if not impossible.

The specific goal of the work presented in this paper

∗This work was supported in part by DARPA contract
#DABT63-95-C-0097, NSF grant #9872516-EIA and an NSF
CAREER award. This work is not necessarily representative of
the positions or policies of the U. S. Government.

is to recognize situations in which the parallel execution
of a code section would perform less than its original
serial version, and to “undo” the parallel execution dy-
namically at runtime. The impact of parallel overheads
are a function of the program, the program input and
the machine configuration and hence can only be deter-
mined at runtime. We propose a method similar to an
inspector-executor scheme to identify unprofitable par-
allelism. Each parallel loop is first executed in parallel,
assuming that the parallelism will be beneficial. The
loop is timed as it executes and this timing is used to
decide if the loop is dominated by parallel overheads.
This decision guides subsequent executions of the loop
and will be reconsidered when necessary.

In Section 1.1, we describe two approaches to dy-
namically decide whether a parallel loop is profitable.
In Section 1.2, we give an overview of Polaris, the
parallelizing compiler in which we have implemented
our scheme. Section 1.3 describes related work. In
Section 2, we present an analytical evaluation of the
two proposed classification schemes. In Section 3, our
framework is described, as well as the two schemes im-
plemented in Polaris that use this framework. Section 4
gives experimental results for 6 benchmarks executed
on 16 processors of a Cray Origin 2000 system. Sec-
tion 5 concludes the paper.

1.1 Deciding loop profitability

We evaluate two approaches that classify parallelism
as profitable or unprofitable based upon the measured
parallel loop time. The first approach, scaled-test, com-
pares the measured parallel time to an estimated serial
time. If the parallel time is longer, it must be domi-
nated by overheads and the loop is classified as unprof-
itable.

In the scaled-test approach, it is the serial time of
the target machine that is modeled. In our implemen-
tation this is done by profiling the application on a base
machine, and scaling the loop timings based upon a mi-
crobenchmark executed at the start of the application.

1

This approach estimates the 1 processor performance
of the target machine, which is much simpler than pre-
dicting parallel performance.

The second approach, overhead-test, classifies a loop
as unprofitable if the parallel time is below a certain
threshold and so the loop must be dominated by over-
heads. We model the loop execution time as a parallel
startup overhead (ts), plus the work done by the loop
(tp), plus the parallel join overhead (te). The total par-
allel time Tp is then ts+ tp+ te. If we assume a perfect
speedup, Tserial = tp × p, where p is the number of
processors in the system. If tp × p < Tp, no gain is
possible from running the loop in parallel.

We cannot measure tp directly, but we can measure
the start/end overheads, tov = ts + te, of an empty
parallel loop and the actual parallel time of the loop.
Using tp = Tp − tov, we can then find the following
inequality that must hold if a parallel loop does not
perform enough work to speed up:

Tp < tov ×
p

p− 1
(1)

Unlike the scaled-test, the overhead-test makes an
assumption as to the source of the parallel overheads.
It assumes that the fork/join costs are the only source
of parallel overhead and thus neglects communication
overheads and differences in memory access latencies.

1.2 The Polaris parallelizing compiler

This work is done as an extension of the Polaris par-
allelizing compiler [1]. Polaris is a source-level restruc-
turer and compiler infrastructure, developed by Purdue
University and the University of Illinois at Urbana-
Champaign. Polaris includes many advanced tech-
niques such as scalar and array privatization, scalar and
array reduction recognition, induction variable substi-
tution and interprocedural analysis, which are used to
recognize and exploit loop-level parallelism. In this
study, we use the OpenMP back-end developed at Pur-
due University.

1.3 Related work

Several projects have developed techniques to avoid
excessive overheads by serializing parallel loops. In the
SUIF compiler, a simple heuristic based on the num-
ber of lines in the loop body and the iteration count is
used [7]. This approach requires that a single threshold
be chosen. A single threshold cannot capture the speed
of more than 1 machine and is therefore not portable.
Hall and Matronosi [2] have developed support in the
SUIF runtime libraries for dynamically selecting the

number of processors to execute a given parallel sec-
tion. There evaluation metric, however, is throughput
in a multiprogrammed environment, and thus a dif-
ferent problem is being addressed. In addition, they
have embedded the decision making into their machine-
specific SGI library, while our approach is embedded
into the machine-independent program itself.

Our technique uses a scheme similar to an inspector-
executor approach to identify non-profitable loops.
The inspector-executor model has been used by oth-
ers for scheduling parallel loops, orchestrating commu-
nication, and for performing runtime data dependence
analysis [4, 3].

2 Analytical evaluation

Figure 1.a shows the normalized execution time of
six benchmark programs, and the modeled times of
these codes for both the scaled-test and overhead-test
approaches. Both schemes’ execution times are mod-
eled by summing individual loop timings selected from
a profile of either a 1-processor execution, or a 16-
processor execution, of the original parallel program
run on an Origin 2000. The original parallel program
runs all parallel loops in parallel. The scaled-test time
is calculated by using the 16 processor loop time unless
the 1 processor loop time is smaller. The overhead-test
time is calculated by using a value of 50 µs as tov, and
evaluating Equation 1. The value of tov was determined
experimentally by timing an empty parallel loop. If
Equation 1 shows that the loop cannot speedup, the 1
processor time is used, otherwise the 16 processor time
is used.

These approximations show that improvements are
possible on five of the six codes. The scaled-test is al-
ways able to outperform the overhead-test since the for-
mer is assumed to be 100% accurate in identifying loops
to serialize. Significant gains can be seen in the pro-
grams flo52 and mdg, while arc2d, hydro2d and swim
show small gains for the scaled-test approach. Interest-
ingly, flo52 shows a dramatic gain for the scaled-test,
while a small decrease in performance is seen when the
overhead-test is used.

Figure 1.b shows the percentage of loops that the
overhead-test scheme can correctly identify. The
assumption of the overhead-test model is that the
fork/join overhead is the only significant parallel over-
head and that loops can be correctly classified using
only this metric. It is clear, from Figure 1.b, that this
is an over simplification. The overhead-test is seen to
correctly classify only 63% of the parallel loops.

The flo52 application, which shows poor perfor-
mance when the overhead-test is used, is shown to

2

(a) (b)

Figure 1. Analytical evaluation of dynamic serialization: (a) the normalized execution time of bench-
marks executed on 16 processors of an Origin 2000 (the bars labeled Original are the actual measured
time) and (b) the percentage of loops correctly classified by the overhead-test scheme.

have a less than 30% classification accuracy. The mdg
benchmark, with an accuracy of slightly over 40%, is
able to reduce the execution time by only 40% with
overhead-test, while the scaled-test is able to reduce it
by 85%. The average improvement shown for the six
codes in Figure 1.a is 26% for the scaled-test approach,
and 6% for the overhead-test approach.

3 Implementation

Figure 2 shows the state transition diagram of the
framework we propose. This inspector-executor frame-
work provides a means to correctly classify parallel
loops as profitable or unprofitable, through the ap-
plication of one of the previously described tests. It
also provides the capability to dynamically adapt to
changes in a loop’s context. Once a loop reaches either
the Serial or Parallel state, it will stay in this state
until the program ends unless the number of loop iter-
ations changes in a way that can affect its classification.
And finally, it avoids mis-classifications due to program
startup effects through its WarmUp State.

This paper uses the model in Figure 2 as a basis
for a proof of concept. There are many optimizations
that can improve the model. For example, the decision
to re-test could be refined to reduce unnecessary test-
ing: a loop that executes very quickly, and is therefore
serialized, may not need to be re-tested if its iteration
count increases by only little. One may note that loops
that execute only once may not be correctly classified.
However, loops that slow down are usually small, and
these loops would only become important if they were
executed frequently.

To use this framework with the scaled-test tech-
nique, requires several compilation steps. Since we are
interested in automatic parallelization, we assume that

WarmUp Sate:

Run WarmUp
Parallel Loop

 Test State:

Run and Time
Parallel Loop

/ STATE = TEST

Start State

/ STATE = WARMUP, LOOP = PARALLEL

TEST PASSES /
Update ITERATIONS
STATE = PARALLEL
LOOP = PARALLEL

TEST FAILS /
Update ITERATIONS
STATE = SERIAL
LOOP = SERIAL

 Serial State:

Run Serial Loop

 Parallel State:

Run Parallel Loop

iterations > ITERATIONS /
STATE = WARMUP
LOOP = PARALLEL

itertaions < ITERATIONS /
STATE = WARMUP
LOOP = PARALLEL

Figure 2. Classifying loops.

we begin with a sequential Fortran program. This pro-
gram is run through the Polaris compiler to generate
an optimized OpenMP program. This program is in-
strumented by Polaris in such a way that the average
per-iteration loop time will be collected for each paral-
lel loop as the program runs. This parallel program is
then run on 1 processor of a base machine.

This instrumented program will generate per-
iteration loop times that will be fed back into the
Polaris compiler. Polaris generates another paral-
lel OpenMP program, embedding the state machine,
shown in Figure 2, as well as a microbenchmark used
to scale the base machine timings. Currently, we use
a small matrix multiplication kernel to generate the
scaling factor. At runtime, the kernel is timed on the
target machine. The target machine kernel timing, di-
vided by the base machine kernel timing, is used to
scale each measurement from the base machine profile.

3

We use per-iteration loop times to attempt to com-
pensate for changes in the working-set size. We are cur-
rently developing schemes for making the scaling more
data-set independent. One possible approach to com-
pensate for incorrectly scaled values, would be to time
a loop if it is serialized, and compare this actual serial
time to the last measured parallel time, re-parallelizing
the loop if the actual serial time is larger. We will im-
plement this in future work.

To generate programs using the overhead-test, we
again begin with a sequential Fortran program. Polaris
is used to generate a parallel OpenMP program, and
embed the state machine and a test to determine the
value of tov. As discussed in Section 1.1, the overhead-
test approach assumes that the parallel overheads are
comprised solely of the fork/join overheads. We ap-
proximate these overheads by timing an empty parallel
loop.

4 Experimental results

Figure 3.a shows the execution time of six pro-
grams run on 16 processors of an Origin 2000. For
the scaled-test approach, base timings were collected
on a SPARCstation 20. The execution times are nor-
malized to the program as originally parallelized by Po-
laris with all parallellizable loops executed in parallel.
The scaled-test approach yields an average decrease of
15% and the overhead-test yields an average decrease
of 6%.

Four of the six programs show improvements when
the scaled-test is used with our inspector-executor
framework. The mdg benchmark shows performance
comparable to that predicted by our analytical model,
decreasing its time by nearly 85%. Flo52 shows a de-
crease of 20%. Swim and tomcatv show improvements
of less than 10%, which is consistent with the analyt-
ical model. However, both arc2d and hydro2d show a
performance degradation.

The arc2d benchmark, for which the analytical
model predicted a nearly 20% decrease in execution
time, has a nearly 20% increase in execution time.
The performance degradation is an indirect effect of
the program transformation due to inter-loop cache ef-
fects. For example, if two consecutive parallel loops
access the same data and are distributed in the same
manner, data cached by the first loop is reused by the
second loop. If the first loop is serialized, this cache
behavior is changed, causing misses to occur in both
loops. This is a parallelization benefit not accounted
for by our model. The correct handling of the situ-
ation requires global analysis, which is the subject of
our ongoing work, but beyond the scope of this paper.

Again examining Figure 3.a, the overhead-test shows
an improvement in three programs. In two of these
codes, the scaled-test performs better, as expected from
the analytical model. Both swim and tomcatv, which
the analytical model predicted would not benefit from
this scheme, show small decreases in execution time.

The classification accuracies of each scheme are
shown in Figure 3.b. These accuracies are based upon
the loop performance in the original parallel program.
If the 16 processor time measured for the original pro-
gram is smaller than the 1 processor time, loop par-
allelization is considered to be profitable, otherwise it
is unprofitable. In Figure 3.b, the percentage of loops
that are correctly classified by each scheme is shown.
The scaled-test accuracy is equal to, or better than, the
overhead-test in all cases.

Figure 3.c shows the percentage of loops domi-
nated by overheads that are correctly classified by each
scheme. The percentages shown in Figure 3.c, are
based only on loops that execute more than once. The
only programs that show a loss in performance with
the scaled-test are arc2d and hydro2d. The percent-
age of unprofitable loops that are correctly identified
in these codes are 60% and 37% respectively. All other
applications have classification rates larger than 80%
and show decreased execution times.

In Figure 3.d, the percentage of loops which speed
up and are accurately classified as Parallel by each ap-
proach is given. It is evident that the incorrect classi-
fications in flo52, hydro2d and tomcatv are of insignif-
icant loops, because their performance impact in Fig-
ure 3.a is small.

5 Conclusion

Parallelism, if efficiently exploited, can lead to sig-
nificantly reduced execution times. One issue, which
has increased in importance with the newest machine
generation, is that parallel execution may incur over-
heads that degrade performance. Such overheads may
be reduced by carefully considering the execution and
machine parameters of a parallel program. However,
this may lead to non-portable programs. In this paper
we address the issue of maintaining program portabil-
ity while factoring in parameters of machines and ex-
ecution environments. We have proposed a framework
similar to an inspector-executor model for identifying
loops that are dominated by parallel overheads.

We have shown that two tests can be used to iden-
tify such loops in our framework. The first scheme,
scaled-test, compares the measured parallel loop time
to a predicted serial time, classifying the parallelism as
profitable if the parallel time is smaller. The second

4

(a) (b)

(c) (d)

Figure 3. Experimental results: (a) the normalized execution time on 16 processors of an Origin 2000,
(b) the percentage of loops classified correctly by each test, (c) the percentage of nonprofitable loops
correctly classified and (d) the percentage of loops that speed up that are correctly classified.

scheme, overhead-test, makes the decision based upon
the fork/join overhead of a parallel loop. In our analyt-
ical evaluation of these two approaches on six bench-
marks from the Perfect Club and SPEC 95 benchmark
suites, we found that on 16 processors of an Origin
2000, the scaled-test should decrease the program ex-
ecution by an average of 26%. The overhead-test is
expected to decrease the execution times by an aver-
age of 6%.

We implemented both techniques using the Polaris
parallelizing compiler and experimentally evaluated
each on 16 processors of an Origin 2000. We found
that the scaled-test improved the execution time of the
six codes by an average of 15%, and the overhead-test
decreased the execution times by 6%. A detailed anal-
ysis of the loop classification accuracies was presented
for each scheme, showing that the scaled-test was equal
to or better than the overhead-test in all cases.

In future work, we will be combining dynamic se-
rialization with other adaptive techniques in a general
framework for generating dynamically adaptive paral-
lel programs [6]. This new paradigm of dynamic adap-
tation may not only yield truly performance-portable
programs but also lead to a new generation of optimiz-
ing compilers.

References

[1] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe-
flinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pot-
tenger, L. Rauchwerger, and P. Tu. Advanced program
restructuring for high-performance computers with po-
laris. IEEE Computer, Dec. 1996.

[2] M. W. Hall and M. Martonosi. Adaptive parallelism in
compiler-parallelized code. In Proc. of the 2nd SUIF
Compiler Workshop, Aug. 97.

[3] L. Rauchwerger and D. Padua. The LRPD Test: spec-
ulative run-time parallelization of loops with privati-
zation and reduction parallelization. In Proceedings of
the SIGPLAN 1995 Conference on Programming Lan-
guages Design and Implementation, June 95.

[4] J. Saltz, R. Mirchandaney, and K. Crowley. Run time
parallelization and scheduling of loops. IEEE Transac-
tions on Computers, 40(5), May 1991.

[5] M. Voss. Portable loop-level parallelism for shared-
memory multiprocessor architectures. Master’s thesis,
Purdue University, School of Electrical and Computer
Engineering, Dec 1997.

[6] M. Voss and R. Eigenmann. Dynamically adaptive
parallel programs. In Proceedings of the International
Symposium on High Performance Computing, Kyoto,
Japan, May 99.

[7] M. E. Wolf and J. Anderson. skweel man page. basesuif-
1.1.2, www-suif.stanford.edu, Apr. 1994.

5

