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Abstract

Multicast communication is one of the major techniques
to share the transmission cost. However, in the typical
multicast service, all destinations are expected to receive
the same multicast stream from the source at the same
time. Unfortunately, this is a severe restriction for some
on-demand multimedia applications, such as video-on-
demand (VOD), in which customers’ requests are
expected at various time. Therefore, only few customers
can be served in the same multicast group; thus
additional bandwidth is required. In this paper, we
propose a new multicast communication scheme to allow
the destinations accessing the same multicast stream at
different time by buffering technique and hence
tremendously reduce the communication bandwidth. We
call this type of communications as the on-demand
multicast  communications. We also define the
optimization problems of the on-demand multicast
routing and give a theoretical analysis. A greedy
algorithm for this problem is also presented and had been
implemented on our VOD systems.

1. Introduction

Multicast communications is an important technique to
share the transmission cost for multimedia applications,
such as distance education, teleconferencing, and video-
on-demand (VOD) [1, 2]. In this communication mode,
the same data stream are sent simultaneously from the
source to multiple destinations by setting up a routing
path to connect the members of the multicast group.
Therefore, designing a cost-effective multicast routing
algorithm with limited transmission delay is one of the
fundamental issues [3, 4, 5, 6]. The commonly used
approach for this problem is the tree-based routing which
can share many links in transmitting the data stream to
the destinations. In general, this style of multicast concept
assumes all destinations receive the transmitted data at

approximately the same time. However, this concept
severely restricts the on-demand multimedia applications
[7, 8] because the customers viewing the same movie at
different time can not be served in the same multicast
group. Therefore, individual multicast group is required
for each different request time. This is not efficient. In
this paper, we propose new multicast communication
scheme in which the destinations requesting the same
movie at different time can be served in the same
multicast group. We call this type of multicast
communications as the on-demand  multicast
communications. In addition, this scheme also provides
the VCR-like interactive control between the source and
the individual destination. The comparison between the
on-demand multicast tree and the conventional one is
demonstrated in Fig. 1. In Fig. 1a, all destination nodes
receive the same stream at the same time (ignoring the
transmission delay). In contrast, as indicated in Fig. 1b,
the on-demand multicast scheme can build up a multicast
tree allowing different access time.

Fig. 1. The conparison of the conventional multicast tree and the
on-demand multicast tree.

In this paper, we design a simple buffering mechanism
to construct the on-demand multicast trees. Based on this
mechanism, we define an optimization problem for this
on-demand multicast routing and give a theoretical
analysis on this problem. An optimal greedy algorithm in
a fully connected topology is also presented. In addition,
the transmission load is also proved balance and light in
our algorithm. To verify the performance of the on-
demand multicast communication, we implement it on
our VOD systems, which is also described in this paper.

The rest of this paper is organized as follows. Section 2



presents the basic mechanism to construct the on-demand
multicast trees. Section 3 defines an optimization
problem for the on-demand multicast routing and
presents an optimal greedy routing algorithm for this
problem. In Section 4, we discuss and simulate the
application of the on-demand multicast scheme on the
VOD systems. Conclusions are finally made in Section 5.

2. The construction of the on-demand
multicast trees

Before describing how to construct an on-demand
multicast tree, we first introduce a mechanism to allow
the destinations accessing the same multicast stream at
different time, using the buffering technique. In a tree-
based multicast routing approach, transmission delay may
not be avoided when messages are passed through or
replicated on the routing nodes in the multicast tree. Thus,
reducing the transmission delay is an important design
issue of a routing algorithm. However, this is not our
concern, in contrast, we deliberately intent to delaying the
incoming stream a specific time to satisfy the specific
conditions. In our approach, the incoming stream was
stored in the routing node and then sent out at various
time to produce outgoing streams at different time. Fig. 2
shows an example of this buffering technique. In Fig. 2a,
the incoming stream is flowed out immediately, no
transmission delay. In Fig. 2b, to simultaneously provide
another stream with 2 seconds transmission delay, the
incoming stream was stored in a pipe buffer and then sent
out after 2 seconds. Likewise, as shown in Fig. 2c¢, if the
size of the pipe buffer can store 5 seconds incoming
stream, another stream with 5 seconds transmission delay
can be provided in this routing node.
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Fig. 2. The buffering technique.

Based on this technique, the construction process of
the on-demand multicast trees can be explained by an
illustrative example of what happens when a destination
node issues a request for receiving the same stream. For
explanation, we partition the requested stream into
consecutive segments, s,, S, ..., 5,, where s; represents the
i minutes segment. Therefore, a two hours video stream
is represented by segments s, s,, ..., $,5-

Consider the example shown in Fig. 3. In Fig. 3a, the

destination D, issues the first request at 10:00 and a direct
path was established along the bold line from the source
node S to node D,. Fig. 3b shows the second request from
node D, at 10:02. At this moment, the segment s, is ready
to flow into the path from node 5 to node D, but the
segment s, and s, had gone (if the other transmission
delay factor can be ignored). Therefore, the node » and
D, can provide the data segments started from s; from
now on. Thus, node D, can immediately make a route to
get the segments s, and s, from the source node S and
then get the rest of segments from node b or D,, but two
minutes later. In this example, node b was chose. Notice
that the first route is temporary and will be released two
minutes later when the segment s, and s, are received,
therefore, making this route efficient is not as critical as
the other routes. On the other hand, to get the rest of
segments from node b two minutes later, a path must be
established from node b to node D, with delay of two
minutes, which means two minutes buffer is required
along this path. In this example, they are provided by
node a. In fact, there is a small trick may possibly reduce
the duration of the temporary route, even do not require
this route. The trick is to pre-buffer the data as much as
possible in the available buffer on each node along the
routing path. Although this pre-buffered data maybe
useless in the future, it is not a problem since this buffer
is still available for other routings. For example, if node b
pre-buffer 4 minutes stream at the first route, the
temporary route of destination D, is not necessary since
the segment s, and s, are still retained in node 4.

Fig. 3. An example of constructing on-demand multicast tree.

When the next request comes at 10:05, as shown in Fig.
3¢, we need only 3 minute buffer at node ¢ to establish a
path from node a to node D; with delay of 3 minutes. In
this case, the temporary path from node D; to the source
node S will be released 3 minutes later. Therefore,
following these procedures, an on-demand multicast tree
can be established.

Notice that, in an on-demand service, the requested
stream will be received in a few seconds after the request
was issued. Thus, in the rest of the paper, we assume that
there is no transmission delay between the source node
and the destination nodes if our buffering technique does
not be employed.



In addition, the interaction between the source node
and the destination nodes can be simply achieved by the
on-demand multicast routing scheme. For example,
consider the case that node D requests a stream at 10:00,
pauses at 10:04 and resumes at 10:08. When node D
resumes, it is equivalent to issue a new request at 10:08
but the requested stream is started from the segment s..
Therefore, we need a node to provide the required stream
for node D. Let us consider the following 3 routing cases.

The simplest case is to find a node providing the
segment started from s; immediately. In this case, we just
make a route from this node to node D with no
transmission delay. The second case is to find a node in
which the segment s; had been sent out and not stored in
its buffer, for example, only the segments started from s,
are provided. Note that this case is similar to the previous
construction process. Therefore, we simultaneously make
a temporary route to get the segments s and s, and then
make another route from the selected node with delay of
two minutes to get the rest of segments started from s,. In
the last case, if no node is satisfied the previous two cases,
we route this new request directly to the source node.

Similarly, the fast-forward operation can be made by
the same idea. At first, because of the data rate is
different, a temporary route is needed to provide the fast-
forward stream and the previous routing idea can be
applied when this operation is finished. The other
operations (ex, stop, jump-forward, jump-backward,
slow-down, ...) have the same property as the previous
discussed one, we skip it here.

3. On-demand multicast routing problem
and algorithm design

In this section, we formally define the problem of
constructing the on-demand multicast routing trees. In
addition, a greedy algorithm for this problem on a fully
connected topology is presented also.

3.1. On-demand multicast routing problem

The on-demand multicast routing problems may have a
variety of contexts, particularly in the domain of resource
allocation. We concern the following two versions which
are focus on the number of required multicast streams
since the less streams required, the more transmission
bandwidth shared.

1. Off-line on-demand multicast routing problem. Given a
network topology G, a source node S, and a set of
destination nodes labeled with a time for issuing the
request to receive the same stream, each node 7 contains a
buffer of size B;, and each link j has a bandwidth capacity
C;, what is the minimum number of required on-demand

multicast trees to serve all the given requests?

Il On-line on-demand multicast routing problem: The
definition is similar to the off-line version except that the
time for issuing the request is not pre-defined in advance.

Clearly, the process of on-line constructing the on-
demand multicast trees is very complicated since several
constraints should be considered together. For example,
there may exist many routing paths satisfying the
constraints, and even in a path, there still are many
different buffer allocation combinations available.
Furthermore, each routing path will affect the following
routing situations. Therefore, how to select one of the
paths and to determine the buffer allocation plan is quite
complicated. We think such routing problem is NP-
complete since the typical multicast problem (without
buffer allocation) on the general network is NP-complete
[11]. In this paper, we only discuss this problem on the
complete graph. For the off-line problem, the minimum
number of required on-demand multicast trees over the
complete graph could be derived in the following
analysis.

Let G denote a complete graph with » nodes. Let B
denote the total buffer size in all routing nodes and r is
the number of destination nodes. Let D, represent the
destination node issuing the i request at time ¢, without
loss of generality, we assume ¢, <¢, < ... <t. Clearly, if
the on-demand multicast tree is constructed by making a
route connecting D, to D, ,, least buffers used than all
other routing paths. Let 4, be the minimum buffer
required to connecting D, to D, ;,, which is equal to ¢- ¢,
Note that the first request must route to the source, thus,
d,/=0. The minimum number of the required on-demand
multicast trees can be calculated in two cases.

Case I - z d, < B : The minimum required buffer size is
i=1

less than the total amount of buffers, clearly, only one on-

demand multicast tree is required.

Case II - Zd,. > B: The total amount of buffers is not
i=1

sufficient, thus, more than one on-demand multicast tree
isrequired. Let d,’, d;, ..., d,” be the sorted sequence of
d,, d, ..., d,in nondecreasing order, that is, d," <d;' < ...<

d,. Let k=max{r| Zd, < B} and we define K be the

set of the destination nodes corresponding to d,’, d;', ...,
d,’. In the following, we prove the required number of the
on-demand multicast trees is n-k+1 in two steps.

At first, the n-k+1 is the least possible number of the
required on-demand multicast trees satisfying the buffer
constraint. If this is not true, there is a routing result in



which using less on-demand multicast trees and still
satisfying the buffer constraint. This is impossible by the
definition of 4.

Second, we present an off-line routing algorithm to
construct only n-k+1 on-demand multicast trees under the
buffer constraint. This off-line routing algorithm is
simple and explained as follows. For each destination
node in the set K, make it join the existing multicast tree
k
Zd; which is less
i=2
than or equal to B. On the other hand, all other n-k
destination nodes initiate multicast trees. Thus, there are
n-k+1 multicast trees in this routing method.

and thus consumes the buffer of size

Theorem 1: Let G be a fully connected topology and B be
the total amount of buffers. The number of minimum
required on-demand multicast trees is v — k + 1, where r
is the number of destination nodes and k is the largest

k
value such that zd;SB, and d, is the sorted
i=2

sequence stated above.

3.2. The greedy algorithm for on-line problem

The key idea of our greedy routing algorithm for the
complete graph is to route each request to the last (just
completed) request node and dynamically reroute some
requests which not in the set K of the off-line scheme
stated in section 3.1. Our on-line algorithm is depicted in
Fig. 4. This algorithm consists of two procedures: the
procedure routeRequest() route the current request to the
last request node, and the procedure rerouteDestination()
dynamically reroute some requests to satisfy the required
results. Let routing D; require #; buffer size, then r; = 0 if
D; directly connects to the source, otherwise, 7, = d,. Let B
is the current total buffer size, the detail of this algorithm
is explained below.

1. procedure routeRequest(D;

2.

3. if (B>r)

4. arbitrarily make a route from D; to D;.;.

5. else

6. if (rerouteDestination() == true)

7. arbitrarily make a route from D; to D; ;.

8. Else

9. make a route directly connecting to the source
10.}

11. procedure rerouteDestination()

12. {

13. if (rp=max{r, .., .}<n)

14. return false;

15. else {

16. reroute D, directly connecting to the source
17. return true;

18. }

19. }

Fig. 4. The on-demand multicast routing algorithm.

At first, line 3 tests whether the total buffer is sufficient.
If it is true, we make an arbitrarily route from D, to D, ,
by connecting a series of nodes to sastify the buffer
requirement. This routing path can be found since the
topology is fully connected. In addition, we exhaust each
node buffer as possible. This concept is illustrated in Fig.
5. Node D, issues a request at 10:25 and node D, is the
last request at 10:00. The remaining buffer of node D, is
10 minutes and no buffer is available in node D,. In this
situation, we make a route connecting node a (with buffer
5 minutes), node b (with buffer 8§ minutes) and node ¢
(with buffer 2 minutes) to satisfy the buffer requirement.
The buffer in nodes D, , a and b are exhausted, but there

J-b
are still 5 minutes buffer in node c.
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Fig. 5. An example of buffer allocation in a routing path.

On the other hand, if the answer in line 3 is false, that
is, the remaining node buffer is insufficient to serve the
current request, the procedure rerouteDestination() is
executed. To achieve the same results as the off-line
routing algorithm, this procedure only reroute the node
not in the set K and then release the occupied buffers for
other routings.

In line 13, if the largest consumed buffer is less than
D;’s required buffer, line 14 just return false and no buffer
is released. Thus, line 9 is executed. On the other hand,
we reroute D, directly to the source and release the
occupied buffer size r,, in line 16. Note that this released
buffer can be used in routing node D; in line 7. This
rerouting process is illustrated in Fig. 6.

request m-1 request m
10 min. 5 min. 8 min. 2 min.
request m-1 9 request m
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10 min. 5 min. 8 min. 2 min.

Fig. 6. Anillustrative example of the rerouting process.

In the following, we prove that, at final, only those
destination nodes in the set K are connected to the
existing on-demand multicast trees and the other nodes
initiate new on-demand multicast trees.

For each destination node D, if the procedure
rerouteDestination() was successfully executed, the node
consuming buffer of size p=max{r,, ..., r;,} will be
rerouted and the node D, will connect to the existing

multicast tree. Note that p=max{ r,, ..., r..3 and p>r), ie.



p=max{ r,, ..., r,,, r;}, the subsequent released buffer
must be less than or equal to p, thatis, p, 2 p,2p;2...2
p, =max{r;}, for all i, and p, is the k" released buffer size.
Thus, at final, only those destination nodes in the set K
(the nodes corresponding to the smallest 7;) will connect
to the existing multicast tree and the other nodes will be
rerouted to the source by our procedure. This proves our
on-line greedy algorithm is optimal.

In the following, we show that the required link
capacity of our algorithm is at most 2 times of the stream
bandwidth. To attain this result, we assume that all
requests occur at different time. This assumption implies
that an established path must consume some buffer. In
addition, the link is assumed to be full duplex.

request j-1

(a)

request j

request j request j+k

(b)

Fig. 7. An example for counting the required link capacity.

Consider a routing path from node D, to node D, , as
shown in Fig. 7. As mentioned before, the procedure
routeRequest() exhaust the node buffers on the routing
path as possible, thus, only the last two nodes could
remain buffers. In Fig. 7a, the buffers from node D, to
node ¢ are exhausted and there may have some buffer
remained in node d and node D,. Now please consider the

following two cases.

Case 1. Consider the links from node D;, to node c.
Because no buffer is available on these nodes, these links
cannot be used again. The other possible use of this link
is that the consecutive nodes issue consecutive requests
before this routing. For instance, node a issues the i"
request and node b issues the (i+1) ™ request. Therefore,
the required capacity of these links is at most twice of the

stream bandwidth.

Case 2. Consider the link connecting node d and node
D,. Since node d remains some available buffer, this link
can be used again. However, if this link is used again, the
node d must be an intermediate node but not be the last
two nodes on the routing path. This is the case 1 and node
d’s buffer will be exhausted (see Fig. 7b). Therefore, the
link connecting node d and node D, is traversed at most
two times.

Therefore, the required link capacity is at most two
times of the stream bandwidth.

4. Applying the on-demand multicast routing
on the switch-based VOD systems

The on-demand multicast communication is suitable
for VOD applications. It tremendously reduces the
transmission cost and also provides the VCR-like
interactions for individual customer. Although the current
router can not support this type of communications, we
can use workstations as the routing node just like the
most Mbone [12] routers. In addition, the same concept
can be applied on the switch-based VOD systems in
which network is organized as a complete graph.
Therefore, our greedy algorithm can be directly applied
on this network. In fact, we had implemented this on-
demand multicast routing algorithm on the NTHU VOD
systems [9].

The NTHU VOD architecture consists of one manager
PC (Microsoft™ Windows 95 + Web server), some video
servers (Microsoft™ Windows NT + SCSI HD), the
transport system (Ethernet switch and hubs) and a
number of customer PCs (Microsoft™ Windows 95). The
underlined network is composed of the tree-structured
switches and the scale of this architecture can be large
enough to provide thousands of customers by current
commercial products (see Fig. 8). For example, if root
switch has 120 ports (Lucent™ P550™ Cajun™ switch)
and level two switches have 48 ports each, 120x48=1340
customers can be served. Furthermore, if level two
switches have 120 ports each, the total served customers
are 120x120=13200.

to server

switch

‘ switch (

o 6B Bo

customers

Fig. 8. The tree-structured VOD architecture using the switch.

In our VOD systems, every customer PC is also a
video server since the video stream can be buffered and
then send out later. In our experiences, if the memory is
used as the cache buffer, at least 30 customers can be
supported in a Pentium PC with 100 Mbps Ethernet. If
hard disk is adopted, fewer customers are supported but
more buffers are provided. By carefully switching the
cache buffer between the memory and the hard disk, each
PC can provide several minutes buffer for MPEG-1
stream. In addition, our implementation results show 100
Mbps Ethernet can transmit at least 50 MPEG-1 stream.
Therefore, our tree-structured architecture is reasonable
and practical since the required link capacity of our
algorithm is at most two times of stream bandwidth.

In addition, we simulate our algorithm on complete



graph and the simulation parameters are assumed as
follows. There are 10 video programs and the request
frequency follows the Zipf’s distribution [10]. There are
100 requests and the arrival rate is a Poisson distribution
with mean 60 seconds. The simulation results are shown
in Fig. 9. Fig. 9a shows the impact of the node buffer size
on the number of the required multicast trees. Simulation
shows that more buffer provided in each node, less
multicast trees are needed. Notice that the required
multicast trees are much less than the requests. Fig. 9b
shows that most of the buffer resources are used by the
popular movies, and the requests for the unpopular
movies (the video program from 4 to 10) almost initiate a
multicast stream. Thus, the buffer utilization is efficient.
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Fig. 9. The simulation results.
5. Conclusion

In this paper, we present an innovative on-demand
multicast communication scheme and explore the benefit
in the on-demand multimedia applications. Using the
buffering technique, our scheme allows destinations
accessing the same multicast stream at various time.
Furthermore, applying our scheme on VOD systems, the
distributed customer’s buffer resource can be aggregated
and shared. If the underlined network is fully connected
(e.g., Ethernet switch), only one on-demand multicast
tree is needed for a 2 hours video program for all
customers at any time, when the total amount of
distributed buffers is larger than this video length. For
example, only 1 minute (about 12 M bytes for MPEG-1)
buffer is required on each customer sites if there are 120
users on this system. This tremendously reduces the load
on the video server and the transmission cost. In addition,
our greedy algorithms dynamically adjust the buffer
utilization in a quite efficient manner, that is, the buffer
will be shared only by popular movies.

In the on-demand multicast routing problem, one of the

major challenges is to design the routing algorithm on the
general network topology. We think this is a NP-
Complete problem. As future works, we plan to study the
complexity of this problem and propose efficient
algorithms on several particular graphs, such as tree,
interval graph, chordal graph, etc.
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