
Hyperplane Partitioning : An Approach to

Global Data Partitioning for Distributed Memory Machines

S. R. Prakash�and Y. N. Srikant

Department of CSA, Indian Institute of Science

Bangalore, India, 560 012

Abstract

Automatic Global Data Partitioning for Distributed
Memory Machines (DMMs) is a di�cult problem. In
this work, we present a partitioning strategy called 'Hy-
perplane Partitioning' which works well loops with non-
uniform dependences also. Several optimizations and
an implementation on IBM-SP2 are described.

1. Introduction

Data Partitioning (or Distribution) for Distributed
Memory Machines (DMMs) has been a di�cult prob-
lem. Signi�cant amount of work has been done in
getting more and more parallelism from the programs
[2]. However, without reducing communication over-
head in the programs, they cannot be expected to run
e�ciently. There has been e�orts in which the pro-
grammers are asked to give data allocation themselves
and compiler will generate code automatically [3]. This
might prove to be very di�cult for programmers es-
pecially when the loops contain numerous array ref-
erences. Reduction in communication overhead has
been studied by many researchers such as Ramanu-
jam and Sadayappan [6] where they tried to transform
the programs to get parallelism as well reduce com-
munication overhead. It has been seen, as in [7], that
for a loop whose access patterns cannot be statically
analyzed to get the best partitioning, compilers have
traditionally generated sequential code. Although this
pessimistic strategy is safe and simple, it essentially
precludes the automatic parallelization of entire class
of programs with irregular domains and/or dynami-
cally changing interactions. For such loops, the gen-
eral strategy adopted is to use inspector, scheduler and
executer codes [7]. However, such techniques are for
shared-memory machines, where there is no problem
of data partitioning.

�with Hewlett-Packard India Software Operation, Bangalore

In this paper, we propose a method by which we
can �nd a partition of a nested do-loops which reduces
communication when executed on distributed memory
machines. Our method di�ers from the other works in
the following ways: �rstly, no assumptions are made
regarding whether loops are doall or not, as assumed
in [1]. Secondly, the array references that are in the
loops can have any linear functions of induction vari-
ables, not just ~i+~c type of functions of loop indices as
assumed in [2] and others, where ~i is index vector and
~c is a constant vector. Such functions of loop indices
can lead to to non-uniform dependences. According
to an empirical study 44.34% of two dimensional ar-
ray references contain coupled-subscripts [8], and most
compiler run them sequentially due to di�culty in an-
alyzing such loops.

2. Hyperplane Partitioning

We �rst see the program model assumed in this work
and later we will see how to partition the iteration space
using Hyperplane Partitioning.

2.1. The Program Model

In general, scienti�c programs contain a large num-
ber of array references in nested loops. In such pro-
grams, nested loops are main source of parallelism and
are most time-consuming parts. A normalized n-nested
loop [2] is considered in this work.

The body of the loop, H [i1; i2; : : : ; in], contains
a set of assignment statements possibly contain-
ing array references. The array references con-
sidered in this work are of the form, X(a11i1 +
a12i2 + : : :+ a1nin + a01; : : : : : : ; am1i1 + : : :+ amnin +
a0n), which can be compactly written as X(A~{ +

~a0) where A =

2
664

a11 a12 � � � a1n
a21 a22 � � � a2n
: : :

am1 am2 � � � amn

3
775, ~a0

T =

�
a01 a02 � � � a0m

�
In this work, without any loss of generality, we as-

sume that m = n. This assumption will not reduce the
generality as we can add dummy dimensions, if m < n,
or we can add dummy loops which runs for 0 times if
n < m.

2.2. Iteration Space Partitioning

Consider the following example.
Example 1:

for i = 0 to N/2 do

for j = 0 to N/2 do

begin

A[i+2j,i+j] = A[i,j] + B[i,j]

B[i,j] = A[i,j]*2

end;

The dependence graph for the Example 1 is given
in Figure 1(a). The dependence graph shows how the
index points are dependent on each other.

The problem here is to �nd the iteration parti-
tion such that the communication that is incurred
in executing these partitions will be as less as possi-
ble. Finding the best possible partition, which is zero-
communication partition, will require, �nding the verti-
cal partition of the dependence graph [2] which, in gen-
eral, requires spanning the entire iteration space. This
will take enormous amount of time especially when the
number of loops are many and each running over a large
number of iterations.

2.3. Computing the Hyperplane of Partition

The method to compute the Hyperplane of Parti-
tion, in brief, is as follows.

� First, for every pair of references, the dependence
equation is computed.

� For each pair, the direction of dependence is com-
puted.

� From these directions of dependences, we compute
a hyperplane which is used to partition the itera-
tion space into as many number of partitions as
there are logical processors.

� These dependence directions induce data space
partitions in every array used in the loop.

� Each logical processor executes di�erent partition
in parallel keeping corresponding data partitions
locally, and synchronization and non-local accesses
are handled at runtime.

Consider a loop given in Example 1. There are two
arrays that are accessed in the loop in Example 1.We
see that the need for communication arise only when
there is dependence between iterations. On such situa-
tion di�erent processors are trying to access same data
which is owned by only one of them. If we localize such
dependences (i.e, run both the source iteration and the
target iteration on the same processor), and keep the
data accessed by the iteration locally then we have re-
moved the necessity to communicate for both synchro-
nizations between processors (to satisfy inter-iteration
dependences) non-local data, thus reducing the over-
all communication. For Example 1, the dependence
graph for N=16 is shown in Figure 1(a). As can be
seen, the dependence direction tend to align themselves
along a particular direction (in this case the direction
of (-0.67,1)), provided the conditions (given later) hold.
By partitioning the iteration space along that direction
and by placing the data accessed by these iterations lo-
cally, we can expect the communication to be reduced
signi�cantly. Further, since the dependence direction
tend to align along a particular direction eventually,
we expect the communication cost to reduce as the
size iteration space increases. In the Figure 1(b) we
see the e�ect for the Example 1 (The curve termed
'bm4.c'). Note also the same phenomenon does not
happen with some standard HPF partitions like block
distributions. Again referring to the Figure 1(b), the
curve termed 'bm4.sc' shows this e�ect. The direction
of convergence can be computed analytically for every
pair of references in a loop and the hyperplane which
"best �ts" these set of directions will be taken as the
hyperplane of partition for the iteration space. This hy-
perplane is induced into the di�erent data spaces that
are referenced in the loop to get the data partitions.

Theorem 2.1 (Dependence equation) : The gen-
eral dependence equation for the array references,
X [A~{ + a0] and X [B~{+ b0] is given by : ~d = C~i + c0,
where C = B�1(A � B), c0 = B�1(a0 � b0) and any
~j �~i depends on ~i if ~j =~i+ ~d. (See [4] for proof).

In the above theorem, it is assumed that the coe�-
cient matrices are non-singular, i.e, inverses exist. The
case of singular matrices are dealt in [4].

De�nition 2.1 (Trajectory of index points)
For a given pair of references, for a given loop with
lower bounds ~lb and upper bounds ~ub, we can build a
trajectory of index points by applying repeatedly the de-
pendence equation from an initial index point ~s which
takes us to the �nal index point ~f , where both ~s and ~f

lie between ~lb and ~ub.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

’dep.grp’

i

j

40

45

50

55

60

65

70

75

80

0 500 1000 1500 2000 2500

% Cost

N

’bm4.c’
’bm4.sc’

d3

d2
d1

r

A

l2

T

l3

l1

(a) Dependence Graph (b) The Nature of Dependences (c) Best fit line for given lines

Figure 1. (a) Dependence Graph (b) Nature of Dependences (c) Best-Fit line

De�nition 2.2 (Direction of Dependence) The
direction of dependence for a pair of reference, hav-
ing subscript functions, A~i+a0 and B~i+ b0, is de�ned
as the direction, ~dk such that ~dk+1 = � ~dk, where ~dk+1
and ~dk are dependence directions at two adjacent points
on the trajectory of index points for the given pair of
references and � is constant, provided such a constant
exists. Otherwise direction of dependence is said to be
oscillatory.

Theorem 2.2 (Direction of Dependence)
Suppose D = C + I (where C is the matrix of the de-
pendence equation). The direction of dependence for a
pair of references, having subscript functions, A~i + a0
and B~i+ b0, is the eigen vector of the matrix, D corre-
sponding to the dominant eigen value of that matrix, if
D has n linearly independent eigen vectors and D has
a dominant eigen value. (See See [4] for the proof.)

The theorem 2.2 also says that this need not happen
always the other case being when such eigen value does
not exist. Then, the trajectory either will revolve round
the origin spirally or diverge depending on whether
eigen values are not real or real respectively. For such
cases refer [4]. In this section, we will see how to get the
hyperplane which partitions the iteration space, into as
many tiles as the number of processors. These tiles can
be used to induce data partition in the data space, us-
ing a particular reference in the loop for every array
in the loop. These tiles and the corresponding data
partitions can be placed in the local memory of the re-
spective processor, and we can run those partitions in
parallel by introducing the synchronizing messages to
handle dependences. The hyperplane that minimizes
the deviations from the given directions will be the one
which minimizes the sum-squared of the sine of the an-
gle between the hyperplane and the directions. Refer
Figure 1(c). See [4] for details.

Theorem 2.3 (The best �t hyperplane) Given p

lines in n dimensions, with direction cosines, �xij ; 1 �
i � p; 1 � j � n, passing through the origin, the hy-
perplane,

Pn

j=1 ajxj = 0 which also passes through the

origin and is the best �t for the points at unit distance
from the origin has the coe�cients aj ; 1 � j � n, such
that Xa = b, where the matrix Xkj =

Pp

i=1�xik�xij ,
for n � 1 � j; k � 1 and bk = �

Pp

i=1�xik�xin, for
n� 1 � k � 1 and an = 1 (See [4] for proof).

Finally, we need to partition the array data space
from the iteration partition. The hyperplane that we
got from the above analysis can be induced into the
array data spaces also.

3. Compiler Optimizations

3.1. Space Optimization

We should use memory more e�ciently by keeping
just that amount of memory as is required by the parti-
tion to reside in the processor. Consider an array A in
a loop with distribution as shown in the Figure 2. Ev-
ery processor will use just the partition which it owns
in the memory. This will result in what are known as
holes in the memory. The locations which a processor
doesn't own is called a hole. In general for processor
p, the locations in sections Pk are holes for all k 6= p.
The holes are not used, i.e, they are neither read nor
written. The hyperplane which partitions the iteration

i

j

(a)

k

l

(b)

A B

C
D

A

B

C

DP

Q R

S

P0

P1

P2

P3

P0

P1

P2

P3

Figure 2. Illustrating holes in the memory

space and in turn which induces partition in the data
space, can be thought of as the plane with standard
basis vectors. Now, if we change the basis so that we

make the hyperplane parallel to one of the axes-planes,
then partitions would look very simple to compute.
Example 2: Consider Figure 2. For the sections in the
�gure (a) the corresponding sections after the change
of basis is shown in the �gure (b). The indexes have
been changed from (i; j) to (k; l) and the section would
be as shown in Figure (b). So, every processor will have
one-fourth of PQRS instead of complete array ABCD.
Still there are holes in the new sections as well, but
fewer than what were there before.

Similarly we can construct the basis which has (n�
1) vectors lying on the plane and one normal to the
plane, so that we get the new partition plane which is
parallel to this hyperplane which would be one of axes-
planes with the new basis (as shown in the Figure 2).
The Algorithm which constructs such basis is given in
[4]. We can also prove the linear independence of such
computed basis (see [4] for details).

3.2. Time Optimization or Uniform Scheduling

h1
h2

h1

A B

CD

E

F H

G

P

Q

R

S

θ

Y

X

0

1

i

h2
0

Np-1

a

a

bb

r strips

s strips

r strips

Figure 3. The Rectangular Iteration Space

Consider the rectangular iteration space ABCD as
shown in Figure 3. We have to partition the ABCD
with a hyperplane which makes an angle of � with the
X-Axis. The idea is to partition the iteration space
into as many equal parts (by area) as there are logi-
cal processors (Np). If these parts have (roughly) the
same area then they will have same number of itera-
tion points, thus scheduling will be uniform across pro-
cessors [1]. We partition the iteration space Np + 1
parts with the �rst and the last part owned by proces-
sor 0. With that we see that the middle strip covers
the origin and localizes many dependences (since the
dependences align themselves along the Eigen Vector
passing through the origin). We partition the strips
into three sets. The �rst and the last set with r strips
and the second with s strips, so that 2r + s = Np + 1.
The strip i are placed at a distance of hi from A (or

C). The algorithm to compute the strip sizes, hi, is
given in [4]. Essentially, we keep the strips at such dis-
tances to keep the area of each strip to be (roughly)
the same. Thus we achieve uniform scheduling. The
scheduling for non-rectangular iteration spaces and it-
eration spaces for higher dimensions with examples are
given in [4].

3.3. Message Optimizations

Since, sending a message is far more costlier than
a computation, e�orts have to be made to reduce the
number of messages, even if that amounts to delaying
few messages. We have implemented Message Vector-
ization and Message Aggregation by a single strategy
in our tool [4]. Whenever a processor p has to send
a message to another processor q, instead of sending
the message immediately, it just waits to see whether
there any more messages for the same destination, q.
But amount of time it can wait is critical, since indef-
inite waiting can cause deadlocks. So, the processor p
waits until either the bu�er where the processor p has
stored the pending messages, is full or, the processor
p has to wait for any processor s for some other mes-
sage which contains either the data or synchronization
signal. We have seen the message optimization has re-
duced upto 60% of the messages and thus has improved
performance to a signi�cant amount. See [4] for details.

4. Performance

The Hyperplane Partitioning technique explained
above, is for local optimization, i.e., for a loop. The
same technique can be applied to a sequence of loops
which ensures minimal communication for all the loops
taken together when run on a DMM. This needs a
good communication cost estimator, which estimates
the communication that would be incurred if the given
loop is run with given iteration and data partitions
[5]. The tool, Hyperplane Partitioner, which we have
developed will do the Global Data Partitioning. The
Hyperplane Partitioner was tested for performance on
some benchmark programs from NAS and some pro-
grams designed by us to show the merits of the tool.
The Benchmarks selected were ADI (Alternating Di-
rection Implicit) and SYR2K. We give the results for
ADI here. (Refer [4] for SYR2K results).

ADI program has 6 loops with both single-nested
and two-nested loops. Since the ADI loops are very
short, we unroll the loops a few times, and then run
them in parallel. The Global Data Partitioner had
found that the best way to run the program is by par-
titioning the loop sequence into two regions, �rst with
�rst three loops, and the second with last three loops,

0

1

2

3

4

5

6

7

100 200 300 400 500

S
p

e
e

d
-U

p

N

’bm3.2.1’
’bm3.2.2’
’bm3.4.1’
’bm3.4.2’
’bm3.8.1’
’bm3.8.2’

0

1

2

3

4

5

0 100 200 300 400 500

S
p

e
e

d
-U

p

N

’bm4.2.1’
’bm4.2.2’
’bm4.4.1’
’bm4.4.2’
’bm4.8.1’
’bm4.8.2’

0

1

2

3

4

5

0 50 100 150 200 250

S
p

e
e

d
-U

p

N

’bm1.2.1’
’bm1.2.2’
’bm1.4.1’
’bm1.4.2’
’bm1.8.1’
’bm1.8.2’

(b) The Speed-Ups for BM-2 (c) The Speed-Ups for ADI(a) The Speed-ups for BM-1

Figure 4. The Speed-Ups for different benchmarks

notationally it is ff123g,f456gg. The partition plane
for the �rst set had the coe�cients (1; 0) and for the
second set (0; 1), which is (BLOCK,*) and (*,BLOCK)
partitions respectively. Figure 4(c) shows the speed-
ups for this benchmark for di�erent sizes of arrays and
di�erent number of processors. In the �gure, 'bmx.n.y'
gives the performance for benchmark BM-x for 'n' pro-
cessors. The number of times the loops were unrolled
is given by 'y', which varies from benchmark to bench-
mark and which is found experimentally. In this case,
if 'y' is 1 means we have to unroll 100 times and if it is
2 means unrolling has to be done 1000 times.

The �rst of our programs (BM-1) has �ve loops with
three two-dimensional arrays. All the loops access the
arrays in a similar manner (has the same dependence
direction). This program is to show that the tool �nds
the static distribution if those are the best. Figure
4(a) shows the performance on IBM-SP2 for di�erent
sizes of arrays and di�erent number of processors. For
IBM-SP2, it has chosen to run all the loops with the
same partition of the data spaces, i.e, ff0-4gg with the
same hyperplane with coe�cients (1;�1). The second
program (BM-2) has six loops with no static partition.
There are three arrays accessed in di�erent ways in dif-
ferent loops. For IBM-SP2, it decides to partition the
loops as ff01gf2gf345gg. Figure 4(b) shows the per-
formance on IBM-SP2 for ff01gf2gf345gg. We also
saw by experiments that speed-ups for these programs
with both BLOCK and CYCLIC distributions were in-
ferior when compared to the partitions which our tool
has suggested. See [4] for more details.

5. Conclusions

We have seen that there are many cases where we
encounter loops which have coupled subscripts and we
want to e�ectively run them on DMMs. The implemen-
tation results shows good performance for our tool with
such non-uniform dependences. The tool also �nds
HPF-like distributions whenever such distributions are
good. Inter procedural data partitioning analysis and
a good scheme for global data partitioning for a general
program are lacking in the current implementation.

References

[1] Ananth Agarwal, David Kranz, and Venkat Natara-
jan. Automatic partitioning of parallel loops and
data distribution for distributed shared-memory
multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, 6(9):943{962, September
1995.

[2] Utpal Banerjee. Loop Transformations for Re-
structuring Compilers: The Foundations. Norwell,
Mass.: Kluwer Academic Publishers, 1993.

[3] Charles H. Koelbel and Piyush Mehrotra. Compil-
ing global name-space parallel loops for distributed
execution. IEEE Transactions on Parallel and Dis-
tributed Systems, 2(4):440{451, October 1991.

[4] Prakash S R. Hyperplane partitioning : An ap-
proach to global data partitioning for distributed
memory machines. Ph.d. dissertation, Submitted
to Dept. Computer Science and Automation, In-
dian Institute of Science, Bangalore, July 1998.

[5] Prakash S R and Y N Srikant. Communication
cost estimation and global data distribution for dis-
tributed memory machines. In International Con-
ference on High Performance Computing, Banga-
lore, India, December 1997.

[6] J. Ramanujam and P. Sadayappan. Compile-
time techniques for data distribution in distributed
memory machines. IEEE Transactions on Paral-
lel and Distributed Systems, 2(4):472{482, October
1991.

[7] Lawrence Rauchwerger, Nancy M. Amato, and
David A. Padua. A scalable method for run-time
loop parallelization. International Journal of Par-
allel Programming, 23(5):537{576, May 1995.

[8] Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An
empirical study of array subscripts and data de-
pendencies. In 1989 International Conference on
Parallel Processing, volume II, pages 145{152, St.
Charles, Ill., August 1989.

