
Average-Case Analysis of Isospeed Scalability
of Parallel Computations on Multiprocessors

Keqin Li�
Dept. of Mathematics and Computer Sci.

State University of New York
New Paltz, New York 12561-2499

Email: li@mcs.newpaltz.edu

Xian-He Suny
Department of Computer Science

Louisiana State University
Baton Rouge, Louisiana 70803-4020

Email: sun@bit.csc.lsu.edu

Abstract

We investigate the average-case speed and scalability of par-
allel algorithms executing on multiprocessors. Our performance
metrics are average-speed and isospeed scalability. By model-
ing parallel algorithms on multiprocessors using task precedence
graphs, we are mainly interested in the effects of synchronization
overhead and load imbalance on the performance of parallel com-
putations. Thus, we focus on the structures of parallel computa-
tions, whose inherent sequential parts are limitations to high per-
formance. For several typical classes of task graphs, including
iterative computations, search trees, partitioning algorithms, and
diamond dags, we derive the growth rate of the number of tasks as
well as isospeed scalability in keeping constant average-speed.

1 Introduction

The high computational power of a parallel computer may not
be realized in solving a given application, because the achiev-
able efficiency of a parallel computation can drop quickly as sys-
tem size increases. To evaluate the ability of maintaining perfor-
mance, scalability has been recognized as an important property of
algorithm-machine combinations. As parallel computing becomes
widely available, the issue of scalability of parallel computing sys-
tems has become increasingly important. Though scalability has
been defined in different ways for different applications and con-
siderations [2, 5, 9, 12, 14], the scalability of a parallel system
is essentially a measure of its capability to increase performance
in proportion to the number of processors, where a parallel sys-
tem consists of a parallel algorithm and a parallel machine that
supports the implementation of the algorithm. Loosely speaking,
scalability measures the overall effect of parallel processing over-
heads on performance when system and problem sizes scale up.
Scalability has found its important role in parallel algorithm and
architecture development in recent years [3, 6]. The importance of
scalability analysis is best reflected by the fact that one can pre-
dict the performance of a parallel system with a large number of
processors from the known performance of a system with a few
processors. The scalability of many algorithm-machine combi-
nations have been studied extensively, and a rich literature exists
[1, 4, 6, 7, 8, 10, 11].

It is well known that it is the overhead of parallel processing
that reduces the scalability of parallel systems. There are essen-

�Supported by National Aeronautics and Space Administration and
the Research Foundation of State University of New York through
NASA/University Joint Venture in Space Science Program under Grant
NAG8-1313.

ySupported in part by NSF under Grant ASC-9720215, by LSU 1998
COR award, and by Louisiana Education Quality Support Fund.

tially three sources of overhead in parallel computations, namely,
communication and synchronization time, load imbalance, and ex-
tra computation [6]. Such overheads come from inherent sequen-
tial parts of a problem, poor design of a parallel algorithm, archi-
tectural limitations of a parallel machine, and inefficient system
support. Scalability analysis and prediction provide a powerful
methodology to reveal the impact of these overheads on the per-
formance of parallel systems.

We observe that current studies of scalability have their limi-
tations. Most of current studies are focused on the scalability of
a given algorithm-machine combination [5], or on the peak per-
formance of a parallel system [9]. While both approaches have
their practical importance, the former tends to be unique for indi-
vidual algorithm or architecture development, and the latter tends
to be overly optimistic. Therefore, we take a different approach,
namely, conducting average-case analysis of the scalability of a
class of algorithm-machine combinations using a well defined and
general methodology.

2 Isospeed Scalability

A parallel computation can be specified by an algorithm-
machine combinationC = (A;M), i.e., a parallel algorithmA
implemented on a parallel computer systemM . Two main driving
forces for parallel processing are faster execution time and solving
larger problems. Performance analysis, in particular, scalability
analysis, is based on the parallel execution time and the problem
size. Though there is still no unified definition, theproblem sizeis
usually defined as the amount of basic operations (e.g., the number
of floating-point operations in a scientific computation) performed
in running algorithmA on machineM . This is actually a mea-
sure of the amount of useful work done to solve a problem, and
hence, is also called thework of a parallel computationC, de-
noted byW . We useT (W;P ) to represent theexecution timeof
algorithmA when the problem size isW and there areP proces-
sors in machineM . The parameterP is thesizeof the parallel
machineM . To combine the two considerations of problem size
and execution time together, thespeedof the parallel computa-
tion C is defined as the ratio of the problem sizeW divided by
the execution timeT (W;P ), i.e.,S(W;P ) = W=T (W;P ): The
average-speedis the above speed divided by the machine sizeP ,
i.e., �S(W;P ) = S(W;P )=P =W=(T (W;P )P ):

The parallel execution timeT (W;P ) can be divided into two
parts, namely, computation time and overhead of parallel process-
ing. That is, we can writeT (W;P ) = (W + To(W;P ))=P ;
whereTo(W;P ) is the overhead of implementing algorithmA
on machineM . The above equation gives rises to�S(W;P ) =
W=(W + To(W;P )): Usually, if the system sizeP is increased
while the problem sizeW is kept constant, the average-speed de-
creases because the overheadTo(W;P ) increases withP . On



the other hand, the average-speed increases withW if P is fixed,
because increasing the problem size typically reduces the over-
head/computation ratioTo(W;P )=W . Thus, it is possible to
maintain the average-speed�S(W;P ) at certain constant (or, to
keep speedS(W;P ) linearly proportional toP ) if W is allowed
to increase withP , and this is essentially what a scalable parallel
computation means.

The isospeed scalabilityof an algorithm-machine combination
C = (A;M) when the machine size is scaled fromP to P 0 and
the problem size is allowed to increase fromW toW 0 is defined
as [13] (P;P 0) = (W=P )=(W 0=P 0) = (P 0W )=(PW 0): Such
a ratio essentially measures how the amount of work per proces-
sor should be increased when the machine size is scaled from
P to P 0 so that the same average-speed is still achievable. The
way in which the problem sizeW grows with machine sizeP
so that the average-speed�S(W;P ) is maintained a constant is
determined by the nature of the algorithm-machine combination
C = (A;M), and is the center of scalability analysis. Such
analysis essentially is to find a functionW = f(P ) so that
�S(W;P ) = f(P )=(T (f(P ); P )P ) = �(1); or at least to find
the growth rate ofW = f(P ) required to keep a constant average-
speed asP increases. A small growth rate off(P ) implies high
scalability; while a large growth rate off(P ) implies poor scala-
bility.

3 A Probabilistic Model

A parallel algorithmA = (G; t) executing on a multiproces-
sor can be represented by a task precedence graphG and task ex-
ecution timest. G = (V;E) is a directed acyclic graph (dag)
where, nodes denote tasks, and arcs stand for precedence con-
straints among the tasks.V = fv1; v2; :::; vNg is a set of tasks.
Each task executes on one processor.E is a set of precedence
constraints such that if(vi; vj) 2 E, then taskvj cannot start its
execution until taskvi finishes. The task execution times are given
by a functiont : V ! (0;+1); wheret(vi) is the running
time of taskvi, 1 � i � N . It is clear that due to different in-
put data that cause different execution paths and competition and
contention for shared resources, task execution times are unlikely
to be deterministic. Assume thatt(v1), t(v2), ..., t(vN) are in-
dependent and identically distributed (i.i.d.) exponential random
variables with mean1=�. Let IE(�) denote the expectation of a
random variable. Then, the problem size has the following expec-
tation,IE(W ) = N=�:

A multiprocessor systemM consists ofP identical processors
M1, M2, ...,MP . Tasks executed on theP processors can com-
municate with one another via a shared memory. It is assumed
that task preemption and migration are disallowed, that is, once a
task is assigned to a processor, the task should be executed on that
processor from the beginning to the end. Scheduling overhead and
costs due to intertask communication and shared resource conflicts
are either negligible, or are included into the task execution times.

The framework of our analysis of the average-case perfor-
mance of parallel computations is as follows. LetTj be the ex-
ecution time of processorMj , 1 � j � P , andT (W;P ) =
max(T1; T2; :::; TP ) be the total execution time ofA onM . We
can represent the expected parallel execution timeIE(T (W;P ))
as

IE(T (W;P )) =
IE(W )

P

�
1 + �(N;P; :::)

�
; (1)

where�(N;P; :::) is a function ofN , P , and other parameters.
We define

~S(W;P ) =
IE(W )

IE(T (W;P ))P
=

1

1 + �(N;P; :::)
(2)

to be theaverage-case average-speed. SinceIE(W ) is a linear
function ofN , finding the growth rate ofIE(W ) = f(P ) is equiv-

f f f f f f f

Figure 1. Independent tasks (N = 7).

Table 1a:~S(W;P ) for independent tasks.

P 2 4 8 16 32 64
k = 2:0 0.6667 0.7869 0.8397 0.8705 0.8910 0.9058
k = 1:5 0.6667 0.7231 0.7515 0.7707 0.7852 0.7970
k = 1:0 0.6667 0.6486 0.6359 0.6269 0.6205 0.6158
k = 0:5 0.6667 0.5662 0.5021 0.4565 0.4223 0.3955
k = 0:0 0.6667 0.4800 0.3679 0.2958 0.2464 0.2108

Table 1b: ~ (P;P 0) for independent tasks.

P 0 2 4 8 16 32 64
P = 2 1.0000 0.4615 0.2911 0.2100 0.1635 0.1336
P = 4 – 1.0000 0.6306 0.4550 0.3542 0.2894
P = 8 – – 1.0000 0.7216 0.5617 0.4588
P = 16 – – – 1.0000 0.7784 0.6359
P = 32 – – – – 1.0000 0.8169
P = 64 – – – – – 1.0000

alent to finding the growth rate ofN = g(P ) such that�(N;P; :::)
is a constant. Also, we define

~ (P; P 0) =
P 0IE(W )

PIE(W 0)
=
P 0N

PN 0
=
P 0g(P )

Pg(P 0)
=

g(P )=P

g(P 0)=P 0
(3)

to be theaverage-case isospeed scalability.

4 Independent Tasks

We first consider a parallel computationA consisting ofN in-
dependent tasks, that is,E = ; (see Figure 1). The execution
timeT (W;P ) of A is determined by a schedule of theN tasks on
theP processors. We consider the following analytically tractable
scheduling strategy, calledlist scheduling. Initially, each processor
is given one task for execution. Whenever a processorMj com-
pletes a task,Mj is given a new task for execution. Such a process
is repeated until all theN tasks are finished. Since we are only in-
terested in the expectation of the parallel execution timeT (W;P ),
the order in which tasks are executed seems immaterial.

The following theorem givesIE(T (W;P )) for independent
tasks.

Theorem 1. The expectation of the parallel execution time ofN
independent tasks onP processors under a list schedule is

IE(T (W;P )) =

8><
>:
HN

�
; if N < P ;�

N

P
+HP � 1

�
1

�
; if N � P ;

where the task execution times are i.i.d. exponential random vari-
ables with mean1=�.

Notice that though there is no communication and synchro-
nization cost for independent tasks, there is still overhead for
parallel processing. In particular, whenN � P , the effect of
load imbalance on the parallel execution time is represented by
To(W;P ) = P (HP � 1)=�: Such overhead does affect the scal-
ability of parallel processing of independent tasks, even though
such parallelism is trivial. By Theorem 1 and the representa-
tions in Equations (1) and (2), we know that whenN � P , the
average-case average-speed is~S(W;P ) = (1 + �(N;P ))�1;
where�(N;P ) = P (HP � 1)=N: The above equation implies
that to keep a constant average-speed, it is required thatN =



g(P ) = �(P (HP � 1)) = �(P log P ). In Table 1a, we show
~S(W;P ) whereN is selected asP (log2 P )

k. Whenk > 1,
~S(W;P ) is an increasing function ofP ; whenk < 1, ~S(W;P )

is a decreasing function ofP . However, whenk = 1, ~S(W;P )

is quite stable, where the slight change of~S(W;P ) is due to the
inaccuracy of the�-notation. As a matter of fact, if we choose
N = cP (HP � 1) for some constantc > 0, then the average-
speed is maintained at the constantc=(c+ 1).

Using the definition in Equation (3), the average-case isospeed
scalability is simply ~ (P; P 0) = �(log P= log P 0), if we set
N = �(P log P ) to keep a constant average-speed. By choos-
ingN = P (HP � 1), we show in Table 1b the value~ (P; P 0) =
(P 0N)=(PN 0) = (HP � 1)=(HP 0 � 1): For instance, the value
~ (16; 1024) = 0:3657 means that compared with a system of size
16, the amount of work performed by a processor is roughly tripled
when the system size is scaled to 1024, if the same average-speed
is to be achieved.

5 Dependent Tasks

Tasks with no incoming arcs are called initial tasks, and tasks
with no outgoing arcs are called final tasks. A dagG = (V;E)
can be decomposed into levels, denoted byV1; V2; :::; VL, where
L is the number of levels, i.e., the length of the longest path from
an initial task to a final task. A taskvi belongs to levelVl if the
longest path from an initial task tovi is of length l, where the
length of a path is the number of nodes on that path. LetNl = jVlj
be the number of tasks inVl, where1 � l � L.

Note that tasks on the same level are independent of each other
and can be executed in parallel and in any order. Thus, one sim-
ple scheduling algorithm islevel-by-level, i.e., scheduling tasks in
the orderV1, V2, ...,VL, and scheduling tasks inVl using the list
scheduling strategy. The following theorem is straightforward.

Theorem 2. The level-by-level scheduling algorithm results in
IE(T (W;P )) =

PL

l=1
IE(T (Wl; P )); whereWl = Nl=� is the

amount of work on levell.

In the next few sections, we analyze several typical classes of
dags by using Theorems 1 and 2.

6 Iterative Computations

An iterative computation (see Figure 2) hasL = 2r� 1 levels.
There arer parallel phases interleaved withr � 1 serial phases.
A parallel phase consists ofm tasks, andN = mr + (r � 1) =
(m+1)r� 1. Under a level-by-level schedule, and assuming that
m � P , we obtain

IE(T (W;P )) =

�
N

P
+ rHP � P + r� 1

P

�
1

�
:

The average-case average-speed is~S(W;P ) = (1 +
�(N;P;m; r))�1; where

�(N;P;m; r) =
rPHP � (P + r� 1)

(m+ 1)r � 1
:

It is clear that if m is fixed, there will be no way to keep
�(N;P;m; r) as a constant by increasingrwithP . The parameter
m indicates the amount of parallelism of an iterative computation.
If we fix m and increaser, the problem size will increase; how-
ever, this does not make the computation scalable. This observa-
tion implies that while a parallel computation can be made scalable
by increasing the problem size together with the system size, it is

f

f f f f f

f

���9 ��� ?HHjXXXz
XXXzHHj?��� ���9f

f f f f f

f

���9 ��� ?HHjXXXz
XXXzHHj?��� ���9

f

f f f f f

f

���9 ��� ?HHjXXXz
XXXzHHj?��� ���9

p
p
p

Figure 2. An iterative computation (m = 5).

Table 2a:~S(W;P ) for iterative computations.

P 2 4 8 16 32 64
k = 2:0 0.6020 0.7023 0.7815 0.8308 0.8628 0.8850
k = 1:5 0.6020 0.6306 0.6759 0.7113 0.7380 0.7587
k = 1:0 0.6020 0.5548 0.5503 0.5537 0.5583 0.5625
k = 0:5 0.6020 0.4791 0.4206 0.3863 0.3628 0.3450
k = 0:0 0.6020 0.4080 0.3050 0.2446 0.2056 0.1782

Table 2b: ~ (P;P 0) for iterative computations.

P 0 2 4 8 16 32 64
P = 2 1.0000 0.6592 0.4729 0.3634 0.2933 0.2452
P = 4 – 1.0000 0.7174 0.5512 0.4449 0.3720
P = 8 – – 1.0000 0.7683 0.6201 0.5185
P = 16 – – – 1.0000 0.8071 0.6749
P = 32 – – – – 1.0000 0.8362
P = 64 – – – – – 1.0000

actually the amount of parallelism that should scale up with the
system size. For an iterative computation, it is clear that onlym
can scale againstP . No matter whetherr is fixed or not, we need
m = �(PHP ). Whenr is fixed, we haveN = �(P log P ), so
that a constant average-speed can be kept.

Table 2a gives the average-case average-speed~S(W;P ) for
iterative computations withm = P (log2 P )

k and r = 20.
When k > 1, ~S(W;P ) is an increasing function ofP ; when
k < 1, ~S(W;P ) is a decreasing function ofP . To keep a con-
stant average-speed, it is required thatm = �(P log P ), i.e.,
N = �(P log P ). Table 2b further demonstrates the average-
case isospeed scalability~ (P; P 0) for iterative computations with
m = P log2 P , that is,

~ (P; P 0) =
P 0N

PN 0
=

P 0((P log2 P + 1)r � 1)

P ((P 0 log2 P
0 + 1)r � 1)

= �

�
log P

log P 0

�
:

The values in Table 2b show that iterative computations have com-
parable scalability with independent tasks if the parallelismm in
parallel phases can be increased together withP .

7 Search Trees

Let us consider a completeb-ary search tree of heighth (see
Figure 3). This task precedence graph hasL = h+ 1 levels num-
bered with 0, 1, 2, ...,h. There areNl = bl tasks on levell, where
0 � l � h. The total number of tasks isN = (bh+1�1)=(b�1).
Let bp � P < bp+1 for some0 � p � h, i.e., p = blogb P c.



f

f f

f f f f

f f f f f f f f

ffffffffffffffff

���9 XXXz

��= ��=ZZ~ ZZ~



� 

� 

� 

�JĴ JĴ JĴ JĴ

�� �� �� �� �� �� �� ��BBN BBN BBN BBN BBN BBN BBN BBN

Figure 3. A complete binary search tree with heighth = 4.

Table 3a:~S(W;P ) for search trees.

P 2 4 8 16 32 64
k = 3:0 0.5000 0.6078 0.7216 0.7559 0.8044 0.8542
k = 2:5 0.5000 0.6078 0.6001 0.6361 0.6951 0.7620
k = 2:0 0.5000 0.4891 0.6001 0.5008 0.5611 0.6385
k = 1:5 0.5000 0.4891 0.4705 0.3702 0.4212 0.3575
k = 1:0 0.5000 0.3818 0.3517 0.2614 0.2967 0.2422

Table 3b: ~ (P;P 0) for search trees.

P 0 2 4 8 16 32 64
P = 2 1.0000 0.1333 0.0315 0.0314 0.0156 0.0078
P = 4 – 1.0000 0.2362 0.2353 0.1173 0.0586
P = 8 – – 1.0000 0.9961 0.4966 0.2481
P = 16 – – – 1.0000 0.4985 0.2491
P = 32 – – – – 1.0000 0.4996
P = 64 – – – – – 1.0000

Then, under a level-by-level schedule, we have

IE(T (W;P )) �
�
N

P
+

ln b

2
(logb P )

2 + logb
N

P
lnP

�
1

�
:

The last equation gives rises to the average-case average-speed
~S(W;P ) � (1 + �(N;P; b))�1; where

�(N;P; b) =
P

N

�
ln b

2
(logb P )

2 + logb
N

P
lnP

�
:

It is clear that to maintain a constant average-speed, we need
N = �(P (log P )2). In Table 3a, we show~S(W;P ) for com-
plete binary search trees (i.e.,b = 2) whenN = 2h+1 � 1 �
P (log2 P )

k. In general,~S(W;P ) is an increasing function ofP
whenk > 2, and ~S(W;P ) is a decreasing function ofP when
k < 2. However, whenk = 2, ~S(W;P ) is quite stable. The
slight fluctuation of~S(W;P ) is due to the inaccuracy of the�-
notation and the constraint thatN = 2h+1 � 1 for some integer
h � 0, which makes~S(W;P ) non-monotonous. To keep a con-
stant average-speed, it is required thatN = �(P (logP )2). By
fixing k = 2, Table 3b displays the average-case isospeed scala-
bility

~ (P; P 0) =
P 0N

PN 0
= �

�
log P

log P 0

�2

:

It is clear that search trees exhibit lower isospeed scalability than
independent tasks. For instance, the value~ (16; 1024) = 0:1245
means that compared with a system of size 16, the amount of work
performed by a processor is eight times more when the system size
is scaled to 1024, if the same average-speed is to be achieved.

f

f f

f f f f

f f f f f f f f

f f f f

f f

f

���9 XXXz

��= ��=ZZ~ ZZ~



� 

� 

� 

�JĴ JĴ JĴ JĴ

JĴ JĴ JĴ JĴ

� 

� 

� 

�

ZZ~ ZZ~��= ��=
XXXz ���9

Figure 4. A partitioning algorithm withb = 2 andh = 3.

f

f f

f f f

f f f f

f f f

f f

f

��� HHj
��� ���HHj HHj

��� ��� ���HHj HHj HHj
HHj HHj HHj��� ��� ���
HHj HHj��� ���
HHj ���

Figure 5. A diamond dag withd = 4.

8 Partitioning Algorithms

A partitioning algorithm (see Figure 4) with branching factor
b and heighth hasL = 2h + 1 levels numbered with 0, 1, 2, ...,
h�1, h, h+1, ...,2h. There arebl tasks on levell and2h� l, i.e.,
Nl = N2h�l = bl, where0 � l � h. The total number of tasks
is N = (bh+1 + bh � 2)=(b � 1): The analysis for partitioning
algorithms is similar to that of search trees. Letbp � P < bp+1

for some0 � p � h, i.e.,p = blogb P c. Then, under a level-by-
level schedule, we have

IE(T (W;P )) �
�
N

P
+ ln b(logb P )

2 + 2 logb
N

P
lnP

�
1

�
:

The last equation gives rises to the average-case average-speed
~S(W;P ) � (1 + �(N;P; b))�1; where

�(N;P; b) =
P

N

�
ln b

2
(logb P )

2 + logb
N2

P
lnP

�
;

which implies that to maintain a constant average-speed, we need
N = �(P (log P )2).

Table 4a gives numerical data of~S(W;P ) for partitioning al-
gorithms withb = 2 andN = 2h+1 + 2h � 2 � P (log2 P )

k.
Letting k = 2, we show in Table 4b the average-case isospeed
scalability

~ (P; P 0) = �

�
log P

log P 0

�2

:

Both the average-case average-speed and isospeed scalability of
partitioning algorithms exhibit similar properties to those of search
trees.

9 Diamond Dags

A diamond dag (see Figure 5) hasL = 2d � 1 levels and
N = d2 tasks, withNl = N2d�l = l, for 1 � l � d. The



Table 4a:~S(W;P ) for partitioning algorithms.

P 2 4 8 16 32 64
k = 3:0 0.5000 0.5633 0.6761 0.7113 0.7643 0.8211
k = 2:5 0.5000 0.4490 0.5499 0.5836 0.6438 0.5828
k = 2:0 0.5000 0.4490 0.4233 0.4482 0.5052 0.4394
k = 1:5 0.5000 0.3529 0.3139 0.3253 0.2559 0.3085
k = 1:0 0.5000 0.3529 0.2314 0.2282 0.1719 0.1335

Table 4b: ~ (P; P 0) for partitioning algorithms.

P 0 2 4 8 16 32 64
P = 2 1.0000 0.0909 0.0426 0.0209 0.0104 0.0104
P = 4 – 1.0000 0.4681 0.2304 0.1147 0.1147
P = 8 – – 1.0000 0.4921 0.2451 0.2450
P = 16 – – – 1.0000 0.4980 0.4977
P = 32 – – – – 1.0000 0.9993
P = 64 – – – – – 1.0000

Table 5a:~S(W;P ) for diamond dags.

P 2 4 8 16 32 64
k = 1:50 0.6957 0.7310 0.7550 0.7725 0.7863 0.7977
k = 1:25 0.6957 0.6972 0.7020 0.7069 0.7117 0.7163
k = 1:00 0.6957 0.6615 0.6434 0.6318 0.6238 0.6182
k = 0:75 0.6957 0.6243 0.5808 0.5503 0.5277 0.5100
k = 0:50 0.6957 0.5861 0.5163 0.4671 0.4303 0.4016

Table 5b: ~ (P;P 0) for diamond dags.

P 0 2 4 8 16 32 64
P = 2 1.0000 0.1250 0.0278 0.0078 0.0025 0.0009
P = 4 – 1.0000 0.2222 0.0625 0.0200 0.0069
P = 8 – – 1.0000 0.2812 0.0900 0.0312
P = 16 – – – 1.0000 0.3200 0.1111
P = 32 – – – – 1.0000 0.3472
P = 64 – – – – – 1.0000

expected parallel execution time is

IE(T (W;P )) �
�
N

P
+ 2dHP

�
1

�
; when d� P:

The average-case average-speed is~S(W;P ) � (1 +
�(N;P; d))�1; where

�(N;P; d) = �

�
P log P

d

�
= �

�
P log Pp

N

�
:

To keep a constant average-speed, we need to keepN =
�((P log P )2). This is illustrated in Table 5a, where we display
the average-case average-speed~S(W;P ) for diamond dags with
d = 2P (log2 P )

k andN = 4P 2(log2 P )
2k. Table 5b provides

the average-case isospeed scalability~ (P; P 0) for diamond dags
with d = P log2 P andN = P 2(log2 P )

2, that is,

~ (P; P 0) = �

�
P (log P )2

P 0(log P 0)2

�
:

It is clear that compared with the previous task precedence graphs,
diamond dags have much lower scalability. For example, the value
~ (16; 1024) = 0:0025 means that compared with a system of size
16, the amount of work performed by a processor is 400 times
more when the system size is scaled to 1024, if the same average-
speed is to be achieved.

Table 6: Summary of results.

Graph Growth Rate of Work Average-case Isospeed Scalability

IT N = �(P logP ) ~ (P;P 0) = �

�
logP

logP 0

�

IC N = �(P logP ) ~ (P;P 0) = �

�
logP

logP 0

�

ST N = �(P (logP )2) ~ (P;P 0) = �

��
logP

logP 0

�2�

PA N = �(P (logP )2) ~ (P;P 0) = �

��
logP

logP 0

�2�

DD N = �((P logP )2) ~ (P;P 0) = �

�
P (logP )2

P 0(log P 0)2

�

10 Summary

We have analyzed the average-case performance of paral-
lel computations on multiprocessor systems using a probabilistic
model. Our performance metrics are average-speed and isospeed
scalability. It is found that the scalability of a parallel computation
is determined by its task precedence graph, i.e., the structure of a
parallel algorithm. Table 6 summarizes our analytical results for
the task precedence graphs discussed in this paper.

References

[1] A.Y. Grama, A. Gupta, and V. Kumar, “Isoefficiency: measuring the
scalability of parallel algorithms and architectures,”IEEE Parallel
and Distributed Technology, vol.1, no.3, pp.12-21, 1993.

[2] J.L. Gustafson, “Reevaluating Amdahl’s Law,”Communications of
the ACM, vol.31, pp.532-533, 1988.

[3] K. Hwang and Z. Xu,Scalable Parallel Computing, McGraw-Hill
WCB, 1998.

[4] A.H. Karp and H. P. Flatt, “Measuring parallel processor perfor-
mance,”Communications of the ACM, vol.33, pp.539-543, 1990.

[5] V. Kumar and A. Gupta, “Analysis of scalability of parallel algo-
rithms and architectures: a survey,”Proc. International Conference
on Supercomputing, pp.396-405, 1991.

[6] V. Kumar, et al., Introduction to Parallel Computing, Benjam-
ing/Cummings, 1994.

[7] K. Li and Y. Pan, “On the impact of communication overhead on the
average-case scalability of random parallel programs on multicom-
puters,” Informatica – An International Journal of Computing and
Informatics, vol.21, pp.279-291, 1997.

[8] K. Li, Y. Pan, H. Shen, and S.-Q. Zheng, “A study of average-case
speedup and scalability of parallel computations on static networks,”
to appear inMathematical and Computer Modelling.

[9] D. Nussbaum and A. Agarwal, “Scalability of parallel machines,”
Communications of the ACM, vol.34, pp.57-61, 1991.

[10] S. Sahni and V. Thanvantri, “Performance metrics: keeping the focus
on runtime,”IEEE Parallel and Distributed Technology, vol.4, no.1,
pp.43-56, 1996.

[11] J.P. Singh, J. L. Hennessy, and A. Gupta, “Scaling parallel programs
for multiprocessors: methodology and examples,”Computer, vol.26,
pp.42-50, 1993.

[12] X.-H. Sun and L. Ni, “Scalable problems and memory-bounded
speedup,”Journal of Parallel and Distributed Computing, vol.19,
pp.27-37, 1993.

[13] X.-H. Sun and D. T. Rover, “Scalability of parallel algorithm-
machine combinations,”IEEE Transactions on Parallel and Dis-
tributed Systems, vol.5, no.6, pp.599-613, 1994.

[14] M. Willebeek-LeMair, A.P. Reeves, and C.H. Ning, “Characteriza-
tion of multicomputer systems: a transfer ration approach,”Pro-
ceedings of International Conference on Parallel Processing, vol.II,
pp.171-178, 1990.


