Average-Case Analysis of Isospeed Scalability
of Parallel Computations on Multiprocessors

Kegin Li* Xian-He Sur
Dept. of Mathematics and Computer Sci. Department of Computer Science
State University of New York Louisiana State University
New Paltz, New York 12561-2499 Baton Rouge, Louisiana 70803-4020
Email: li@mcs.newpaltz.edu Email: sun@bit.csc.lsu.edu
Abstract tially three sources of overhead in parallel computations, namely,

communication and synchronization time, load imbalance, and ex-

We investigate the average-case speed and scalability of par-{f& computation [6]. Such overheads come from inherent sequen-
allel algorithms executing on multiprocessors. Our performance L@l parts of a problem, poor design of a parallel algorithm, archi-
metrics are average-speed and isospeed scalability. By model-{€ctural limitations of a parallel machine, and inefficient system
ing parallel algorithms on multiprocessors using task precedence SUPPOrt. Scalability analysis and prediction provide a powerful
graphs, we are mainly interested in the effects of synchronization Méthodology to reveal the impact of these overheads on the per-
overhead and load imbalance on the performance of parallel com- formance of parallel systems. . _—
putations. Thus, we focus on the structures of parallel computa- . Ve observe that current studies of scalability have their limi-
tions, whose inherent sequential parts are limitations to high per- tations. Most of current studies are focused on the scalability of
formance. For several typical classes of task graphs, including @ given algorithm-machine combination [5], or on the peak per-
iterative computations, search trees, partitioning algorithms, and formance of a parallel system [9]. While both approaches have
diamond dags, we derive the growth rate of the number of tasks astheir practical importance, the former tends to be unique for indi-

well as isospeed scalability in keeping constant average-speed. vidual algorithm or architecture development, and the latter tends
to be overly optimistic. Therefore, we take a different approach,

namely, conducting average-case analysis of the scalability of a
class of algorithm-machine combinations using a well defined and

1 Introduction general methodology.

The high computational power of a parallel computer may not 2 Isospeed Scalability
be realized in solving a given application, because the achiev-
able efficiency of a parallel computation can drop quickly as sys- . o .
tem size increases. To evaluate the ability of maintaining perfor- A parallel computation can be specified by an algorithm-
mance, scalability has been recognized as an important property offachine combinatiod’ = (A, M), i.e., a parallel algorithnA
algorithm-machine combinations. As parallel computing becomes Implemented on a parallel computer systém Two main driving
widely available, the issue of scalability of parallel computing sys- forces for parallel processing are faster execution time and solving
tems has become increasingly important. Though scalability haslarger problems. Performance analysis, in particular, scalability
been defined in different ways for different applications and con- @nalysis, is based on the parallel execution time and the problem
siderations [2, 5, 9, 12, 14], the scalability of a parallel system Siz€. Though there is still no unified definition, tkblem sizes
is essentially a measure of its capability to increase performanceuSually defined as the amount of basic operations (e.g., the number
in proportion to the number of processors, where a parallel sys- Of floating-point operations in a scientific computation) performed
tem consists of a parallel algorithm and a parallel machine that in running algorithmA on machined. This is actually a mea-
supports the implementation of the algorithm. Loosely speaking, Suré of the amount of useful work done to solve a problem, and
scalability measures the overall effect of parallel processing over-ence, is also called theork of a parallel computatio’, de-
heads on performance when system and problem sizes scale ugoted byW. We usel'(W, P) to represent thexecution timef
Scalability has found its important role in parallel algorithm and a/gorithm A when the problem size i8” and there ar@ proces-
architecture development in recent years [3, 6]. The importance ofSOrS in machinel/. The parameter is the sizeof the parallel
scalability analysis is best reflected by the fact that one can pre-machineM. To combine the two considerations of problem size
dict the performance of a parallel system with a large number of @hd execution time together, tispeedof the parallel computa-
processors from the known performance of a system with a few fion C'is defined as the ratio of the problem sidé divided by
processors. The scalability of many algorithm-machine combi- the execution timd (W, P), i.e., S(W, P) = W/T (W, P). The
nations have been studied extensively, and a rich literature existsAverage-speet the above speed divided by the machine gtze
[1,4,6,7,8,10, 11]. ie,S(W,P)=S(W,P)/P=W/(T(W,P)P).

It is well known that it is the overhead of parallel processing The parallel execution tim& (W, P) can be divided into two
that reduces the scalability of parallel systems. There are essenparts, namely, computation time and overhead of parallel process-
ing. That is, we can writd (W, P) = (W + T,(W, P))/P,

" *%Upporteﬁ It;y N:étictJ_naI A]?fg?%Uti%S and _Spacfe ,\fdmiQiStlzattir?n anhd where T, (W, P) is the overhead of implementing algorithrh
e esearc oundation o ate niversi (0] ew Yor! rou : . : : &

NASA/University Joint Venture in Space Scie%e Program under Grant On machineM.. The above equation gives rises $¢W, P) =

NAGS8-1313. W/ (W 4 T,(W, P)). Usually, if the system siz& is increased

TSupported in part by NSF under Grant ASC-9720215, by LSU 1998 While the problem sizéV” is kept constant, the average-speed de-
COR award, and by Louisiana Education Quality Support Fund. creases because the overh@dW, P) increases withP. On

the other hand, the average-speed increasesWith P is fixed,

because increasing the problem size typically reduces the over- OO0O0O0O00O0
head/computation ratid, (W, P)/W. Thus, it is possible to Figure 1. Independent task&' (= 7).
maintain the average-speét{V, P) at certain constant (or, to

keep speed (W, P) linearly proportional taP) if W is allowed Table 1a:5(W, P) for independent tasks.

to increase withP, and this is essentially what a scalable parallel
computation means.

Theisospeed scalabilitpf an algorithm-machine combination
C = (A, M) when the machine size is scaled framto P’ and
the problem size is allowed to increase fréto W' is defined
as [13]y(P, P') = (W/P)/(W'/P') = (P'W)/(PW"). Such
a rati?] eslgegtia_lly measgresthV\{ rfhe amﬁ_unt of work perI p&o;:es-
sor should be increased when the machine size is scaled from o N for i
P to P’ so that the same average-speed is still achievable. The Table 1b:3s(P, P*) for independent tasks.

2] 8 16 32 64
0.6667 0.7869 0.8397 0.8705 0.8910 0.9058
0.6667 0.7231 0.7515 0.7707 0.7852 0.7970
0.6667 0.6486 0.6359 0.6269 0.6205 0.6158
0.6667 0.5662 0.5021 0.4565 0.4223 0.3955
0.6667 0.4800 0.3679 0.2958 0.2464 0.2108

I EN

o
CommN
oo o

way in which the problem siz&/ grows with machine sizeé® U > P 3 16 32 64

so that the average-speé{W, P) is maintained a constant is P =2 10000 04615 02911 02100 0.1635 0.1336
determined by the nature of the algorithm-machine combination gfg - 1.0000 100603(?06 6374251%) 8;651472 842588984
c I: (4, M), e_mltlj is the f(_:e(rjwter fof sqalablllty analysis. hSuch P16 B B - 10000 07784 0.6359
analysis essentially is to find a functid = f(P) so that P =32 _ - - _ 1.0000 0.8169
S(W,P) = f(P)/(T(f(P),P)P) = ©(1), or at least to find P =64 - - - - - 1.0000

the growth rate of¥ = f(P) required to keep a constant average-
speed as” increases. A small growth rate ¢{ P) implies high
scalability; while a large growth rate ¢gf(P) implies poor scala-

bility. alent to finding the growth rate &f = g(P) suchthatp(V, P, ...)

o is a constant. Also, we define
3 A Probabilistic Model _PEW) PN PgP)_ oP)/P

! ! ! ! !

A parglllel algorithmaélb: (G,rl,‘() exeCléting on %Itiprlgces- PEW’) PN Pg(Pr) — g(P)/P
sor can be represented by a task precedence @* task ex- ; ; i
ecution timest. G = (V, E) is a directed acyclic graph (dag) to be theaverage-case isospeed scalability
where, nodes denote tasks, and arcs stand for precedence con-
straints among the task§/ = {vi,vs,...,vn} is a set of tasks. 4 |ndependent Tasks
Each task executes on one processBris a set of precedence
constraints such that {fv;, v;) € E, then tasky; cannot start its)
execution until task; finishes. The task execution times are given We first consider a parallel computatiehconsisting ofV in-
by a functiont : V — (0,+00), wheret(v;) is the running dependent tasks, that i& = () (see Figure 1). The execution
time of taskv;, 1 < i < N. Itis clear that due to different in- time T (W, P) of A is determined by a schedule of thetasks on
put data that cause different execution paths and competition andhe P processors. We consider the following analytically tractable
contention for shared resources, task execution times are unlikelyscheduling strategy, calldidt scheduling Initially, each processor
to be deterministic. Assume thavy), ¢(v2), ..., t(vx) are in- is given one task for execution. Whenever a procedgprcom-
dependent and identically distributed (i.i.d.) exponential random pletes a task}; is given a new task for execution. Such a process
variables with meari /). Let IE(-) denote the expectation of a IS repeated until all théV tasks are finished. Since we are only in-
random variable. Then, the problem size has the following expec- terested in the expectation of the parallel execution flft#’, P),
tation,IE(W) = N/A. the order in which tasks are executed seems immaterial.

A multiprocessor systeri/ consists ofP identical processors The following theorem givesE(T'(W, P)) for independent
M, M>, ..., Mp. Tasks executed on the processors can com- tasks.
municate with one another via a shared memory. It is assumedrpaorem 1. The expectation of the parallel execution timeNof

that task preemption and migration are disallowed, that is, once a; ; ;
task is assigned to a processor, the task should be executed on thé@dEpendent tasks oft processors under a list schedule is

processor from the beginning to the end. Scheduling overhead and Hy

w(P,F)

®)

costs due to intertask communication and shared resource conflicts — if N < P;
are either negligible, or are included into the task execution times. E(T(W.P)) = A
The framework of our analysis of the average-case perfor- (T(W, P)) = N 1.
mance of parallel computations is as follows. Tgtbe the ex- 7t Hp—1 5% if N> P;
ecution time of processaif;, 1 < 5 < P, andT(W,P) =
max (711, T», ..., Tp) be the total execution time of on M. We where the task execution times are i.i.d. exponential random vari-
can represent the expected parallel execution #{& (W, P)) ables with mean /.
as

E(W) Notice that though there is no communication and synchro-
E(T(W,P)) = —p 1+ ¢(N,P,...)], 1) nization cost for independent tasks, there is still overhead for
parallel processing. In particular, whé¥i > P, the effect of
whereg(N, P, ...) is a function of N, P, and other parameters. l0ad imbalance on the parallel execution time is represented by
We define To(W, P) = P(Hp — 1)/\. Such overhead does affect the scal-
ability of parallel processing of independent tasks, even though
5 EW) 1 such parallelism is trivial. By Theorem 1 and the representa-
S(W,pP) = E(T(W,P)P 1+ ¢(N,P,.) @ tions in Equations (1) and (2), we know that whah> P, the
) _) average-case average-speedS$V,P) = (1 + ¢(N, P))™ 1,
to be theaverage-case average-spee8ince IE(W) is a linear where¢(N, P) = P(Hp —1)/N. The above equation implies
function of NV, finding the growth rate o2 (W) = f(P) is equiv- that to keep a constant average-speed, it is requiredXhat

g(P) = ©O(P(Hp — 1)) = O(Plog P). In Table 1a, we show
S(W, P) where N is selected as(log, P)*. Whenk > 1,
S(W, P) is an increasing function aP; whenk < 1, S(W, P)
is a decreasing function d?. However, wherk = 1, S‘(W, pP)

is quite stable, where the slight changeXfiv, P) is due to the
inaccuracy of thed-notation. As a matter of fact, if we choose
N = ¢P(Hp — 1) for some constant > 0, then the average-
speed is maintained at the constaftc + 1).

Using the definition in Equation (3), the average-case isospeed

scalability is simplys (P, P') O(log P/ log P'), if we set

N = O(Plog P) to keep a constant average-speed. By choos-
ing N = P(Hp — 1), we show in Table 1b the valug(P, P') =
(P'N)/(PN') = (Hp — 1)/(Hp: — 1). For instance, the value

1(16,1024) = 0.3657 means that compared with a system of size
16, the amount of work performed by a processor is roughly tripled

Figure 2. An iterative computationr{ = 5).

when the system size is scaled to 1024, if the same average-speed

is to be achieved.

5 Dependent Tasks

Tasks with no incoming arcs are called initial tasks, and tasks
with no outgoing arcs are called final tasks. A dag= (V, E)
can be decomposed into levels, denoted/byVs, ..., Vi, where
L is the number of levels, i.e., the length of the longest path from
an initial task to a final task. A task belongs to leveV; if the
longest path from an initial task to; is of lengthl, where the
length of a path is the number of nodes on that path.Nzet |V} |
be the number of tasks ¥, wherel <[< L.

Note that tasks on the same level are independent of each other
and can be executed in parallel and in any order. Thus, one sim-

ple scheduling algorithm ievel-by-leveli.e., scheduling tasks in
the orderV, Vs, ..., Vi, and scheduling tasks ¥ using the list
scheduling strategy. The following theorem is straightforward.

Theorem 2. The level-by-level scheduling algorithm results in
E(T(W,P)) =Y. E(T(Wy, P)), whereW; = N;/X is the
amount of work on levél

In the next few sections, we analyze several typical classes of
dags by using Theorems 1 and 2.

6 Iterative Computations

An iterative computation (see Figure 2) has= 2r — 1 levels.
There arer parallel phases interleaved with— 1 serial phases.
A parallel phase consists of tasks, andV = mr + (r — 1) =
(m+1)r — 1. Under a level-by-level schedule, and assuming that
m > P, we obtain

P+r-—1
P

1

N
= +rHp - 3

E(T(W,P)) = (P

The average-case average-speed Jé6W, P)
#(N,P,m,r))"", where

(1 +

It is clear that if m is fixed, there will be no way to keep
¢(N, P, m,r) as a constant by increasingvith P. The parameter

m indicates the amount of parallelism of an iterative computation.
If we fix m and increase, the problem size will increase; how-
ever, this does not make the computation scalable. This observa
tion implies that while a parallel computation can be made scalable
by increasing the problem size together with the system size, it is

Table 2a:5(W, P) for iterative computations.

2 4 8 16 32 64
k=15 06020 0.6306 0.6759 0.7113 0.7380 0.7587
k=10 06020 0.5548 0.5503 0.5537 0.5583 0.5625
k=05 06020 0.4791 0.4206 0.3863 0.3628 0.3450
k=00 0.6020 0.4080 0.3050 0.2446 0.2056 0.1782

Table 2b:) (P, P') for iterative computations.

P’ 2 4 8 16 32 64
P=2 1.0000 0.6592 0.4729 03634 0.2933 0.2452
P=4 - 1.0000 0.7174 0.5512 0.4449 0.3720
P=38 - - 1.0000 0.7683 0.6201 0.5185
P =16 - - - 1.0000 0.8071 0.6749
P =32 - - - - 1.0000 0.8362
P =64 - - - - - 1.0000

actually the amount of parallelism that should scale up with the
system size. For an iterative computation, it is clear that amly
can scale againge. No matter whether is fixed or not, we need
m = @(PHp). Whenr is fixed, we haveV = ©(Plog P), so
that a constant average-speed can be kept. ~

Table 2a gives the average-case average-spééid P) for
iterative computations withn P(log, P)* andr = 20.
Whenk > 1, S(W,P) is an increasing function of’; when
k < 1, S(W, P) is a decreasing function d?. To keep a con-
stant average-speed, it is required that= ©(Plog P), i.e.,
N = O(Plog P). Table 2b further demonstrates the average-
case isospeed scalabilify(P, P') for iterative computations with
m = Plog, P, thatis,

@<)

The values in Table 2b show that iterative computations have com-
parable scalability with independent tasks if the paralleliasnm
parallel phases can be increased together Rith

_ PN _ P((Plog,P+1)r—1) _

" PN’ P((P'log, P'+1)r —1) —

log P
log P’

W(P,P)

7 Search Trees

Let us consider a completeary search tree of heiglit (see
Figure 3). This task precedence graph has h + 1 levels num-

bered with 0, 1, 2, ... There areV, = b' tasks on level, where
0 <1< h. The total number of tasks i¥ = (b"** —1)/(b—1).
Letb? < P < bP*! for some0 < p < h, ie.,p = |log, P|.

Figure 3. A complete binary search tree with heifght 4.

Table 3a:5 (W, P) for search trees.

P Vi i g 15 K7 57 Figure 4. A partitioning algorithm with = 2 andh = 3.
=3.0 8542
k=25 05000 0.6078 0.6001 0.6361 0.6951 0.7620
k=2.0 05000 04891 0.6001 0.5008 0.5611 0.6385
k=15 05000 0.4891 0.4705 0.3702 0.4212 0.3575
k=1.0 05000 0.3818 0.3517 0.2614 0.2967 0.2422
Table 3b:¢)(P, P') for search trees.
P’ 2 4 8 16 32 64
= . K . . .0078
P=4 — 1.0000 0.2362 0.2353 0.1173 0.0586
P=38 — — 1.0000 0.09(%301 (5).45866 00.224981
P =16 - - - 1. .4985 .2491 - : .
P—39 B B _ - 1.0000 0.4996 Figure 5. A diamond dag witld = 4.
P =64 — — - - — 1.0000
8 Partitioning Algorithms
A partitioning algorithm (see Figure 4) with branching factor
Then, under a level-by-level schedule, we have b and heighth hasL = 2h + 1 levels numbered with 0, 1, 2, ...,
h—1,h,h+1,...,2h. There aré' tasks on level and2h —1, i.e.,
N Inb 2 N 1 N; = Nop_; = b', where0 < [< h. The total number of tasks
E(T(W,P)~ | =+ —(P 1 —InP|—. . ’ - = . o
(T(W, P)) (P T3 (log, P)" + log,, P > A isN = (0" 4+ b" — 2)/(b — 1). The analysis for partitioning

algorithms is similar to that of search trees. b&t< P < bPT!
gr some0 < p < h, i.e.,p = |log, P]|. Then, under a level-by-

The last equation gives rises to the average-case average-spe
q 9 9 9e-sp evel schedule, we have

S(W,P) = (1+ ¢(N,P,b))~1, where
N 9 N 1
P/ lnb N E(T(W,P)) ~ F+lnb(long) +2longlnP %
O(N,P.b) = & <n7(logb P)’ +log, 5 In P).
The last equation gives rises to the average-case average-speed
S(W,P) = (1+ ¢(N,P,b))"*, where
It is clear that to maintain a constant average-speed, we need R
N = Q(P(log P)?). In Table 3a, we shovs (W, P;Hor com- S(N, P.b) p M(logb P)? + log, NoLp 7
plete binary search trees (i.6.,= 2) when N = 2 -1= P

2
k. =~
P(log, P)". In geqeraI,S(W, P)isan In_creasmg.functlon ap which implies that to maintain a constant average-speed, we need
whenk > 2, andS(W, P) is a decreasing function a? when N = O(P(log P)?).

k < 2. However, wherk = 2, S(W, P) is quite stable. The Table 4a gives numerical data §{W, P) for partitioning al-
slight fluctuation ofS(W, P) is due to the inaccuracy of the- gorithms withb = 2 and N = 2"+! 4+ 2" — 2 ~ P(log, P)*.
notation and the constraint that = 2"+ — 1 for some integer Letting & = 2, we show in Table 4b the average-case isospeed
h > 0, which makesS(WW, P) non-monotonous. To keep a con- Scalability

N

stant average-speed, it is required that= ©(P(log P)?). By WP.P) =60 log P\~
fixing k = 2, Table 3b displays the average-case isospeed scala- (P P) = logP' |~
bilit
Y , s Both the average-case average-speed and isospeed scalability of
(P, P') = P'N _ (10gP> partitioning algorithms exhibit similar properties to those of search
’ - PN’ logP') * trees.

It is clear that search trees exhibit lower isospeed scalability than

independent tasks. For instance, the vahli#6, 1024) = 0.1245

means that compared with a system of size 16, the amount of work . .
performed by a processor is eight times more when the system size A diamond dag (see Figure 5) hds = 2d — 1 levels and
Is scaled to 1024, if the same average-speed is to be achieved. N = d? tasks, WithN; = Nog_; = [, for1 < [< d. The

9 Diamond Dags

Table 4a:S(W, P) for partitioning algorithms.

Table 6: Summary of results.

P > 7 3 16 Ky 57 Graph Growih Rate of Work Average-case Isospeed Scalability
k=3.0 05000 05633 06761 0.7113 0.7643 0.8211 log P
k=25 05000 04490 0.5499 0.5836 0.6438 0.5828 IT N =6(Plog P) V(P P') < & ;
k=20 05000 04490 04233 04482 05052 0.4394 log P
k=15 05000 0.3529 0.3139 0.3253 0.2559 0.3085 log P
k=10 05000 0.3529 0.2314 0.2282 0.1719 0.1335 |IC N = ©O(Plog P) Y(P,P) =60 Ton 7
0og
Table 4b:zﬁ(P, P’) for partitioning algorithms. ST N =06(P(logP)?) (P,P)=06 < <110g1133’> >
og
P’ 2 4 8 16 32 64 log P 2
P=4 - 10000 04681 02304 01147 01147 N=06(PlgP)*) $(PP)=0 < <10g P'> >
P=3 - - 1.0000 0.4921 0.2451 0.2450 P(log P)?
P =16 - - - 1.0000 0.4980 0.4977 _ 2 N og
P=3 - - - ~ 10000 09993 PP N=0((PlgP)?) u(PP) =6 <p,(10g P,)Q,)
P =64 - - - - - 1.0000
Table 5a:5 (W, P) for diamond dags. 10 Summary
P 2 ! 8 16 32 64
= 1.50 77 - -
£S1a 067 02 070 Oroe 0711 0716 vic have anazed he average case performance of pare
k=100 06957 06615 06434 06318 06238 0.6182 P proce Y g a probe
k=075 06957 06243 05808 05503 05277 0.5100 Model. Our performance metrics are average-speed and isospeed
k=050 06957 05861 05163 04671 04303 0.4016 Scalability. Itis found that the scalability of a parallel computation
is determined by its task precedence graph, i.e., the structure of a
. _ parallel algorithm. Table 6 summarizes our analytical results for
Table 5b:e(P, P') for diamond dags. the task precedence graphs discussed in this paper.
P’ 4 8 16 32
—P—fﬁm_ﬂm 2 09 References
P=4 - 1.0000 0.2222 0.0625 0.0200 0.0069
P=38 - - 1.0000 0.2812 0.0900 0.0312
P =16 — — - 1.0000 0.3200 0.1111 [1] A.Y.Grama, A. Gupta, and V. Kumar, “Isoefficiency: measuring the
P =32 — — - - 1.0000 0.3472 scalability of parallel algorlthms and architecturelEEE Parallel
P =64 - - - - - 1.0000 and Distributed Technologyol.1, no.3, pp.12-21, 1993.
[2] J.L. Gustafson, “Reevaluating Amdahl’'s Lavgommunications of
the ACM vol. 31 pp.532-533, 1988.
[3] K. Hwang and Z. Xu,Scalable Parallel ComputingVcGraw-Hill
WCB, 1998.

expected parallel execution time is [4] A.H. Karp and H. P. Flatt, “Measuring parallel processor perfor-

mance,”"Communications of the ACMol.33, pp.539-543, 1990.
N 1 [5] V. Kumar and A. Gupta, “Analysis of scalability of parallel algo-
E(T(W,P)) =~ <F + 2de> % when d > P. rithms and architectures: a survepfoc. International Gonference
on Supercomputingp.396-405, 1991.
5 [6] V. Kumar, et al, Introduction to Parallel Computing Benjam-

The average-case average-speed 96W,P) =~ (1 + ing/Cummings, 1994.

(N, P, d))*l, where [7] K.LiandY. Pan, “On the impact of communication overhead on the
average-case scalability of random parallel programs on multicom-
puters,”Informatica — An International Journal of Computing and

NPd =6 PlogP\ o Plog P Informatics vol.21, pp.279-291, 1997.
(N, P,d) = d - VN ’ [8] K.Li, Y. Pan, H. Shen, and S.-Q. Zheng, “A study of average-case

To keep a constant average-speed, we need to Réep=
O((Plog P)*). This is illustrated in Table 5a, where we display

the average-case average-spé‘eéW, P) for diamond dags with
d = 2P(log, P)* andN = 4P*(log, P)**. Table 5b provides
the average-case isospeed scalability’, P’) for diamond dags

Bl
[10]

(11]

with d = Plog, P andN = P?(log, P)?, that s,
~ "o P(log P)? (12]
V(B P _9<P’(logP’)2 '

[13]
Itis clear that compared with the previous task precedence graphs,
diamond dags have much lower scalability. For example, the value

(16, 1024) = 0.0025 means that compared with a system of size [14]
16, the amount of work performed by a processor is 400 times
more when the system size is scaled to 1024, if the same average-
speed is to be achieved.

speedup and scalability of parallel computations on static networks,”
to appear irMathematical and Computer Modelling

D. Nussbaum and A. Agarwal, “Scalability of parallel machines,”
Communications of the ACMol.34, pp.57-61, 1991.

S. Sahni and V. Thanvantri, “Performance metrics: keeping the focus
on runtime,”|EEE Parallel and Distributed Technologyol.4, no.1,
pp.43-56, 1996.

J.P. Singh, J. L. Hennessy, and A. Gupta, “Scaling parallel programs
for multiprocessors: methodology and exampl€xfputervol.26,
pp.42-50, 1993.

X.-H. Sun and L. Ni, “Scalable problems and memory-bounded
speedup,”Journal of Parallel and Distributed Computingol.19,
pp.27-37, 1993.

X.-H. Sun and D. T. Rover, “Scalability of parallel algorithm-
machine combinations,fJEEE Transactions on Parallel and Dis-
tributed Systems/ol.5, no.6, pp.599-613, 1994.

M. Willebeek-LeMair, A.P. Reeves, and C.H. Ning, “Characteriza-
tion of multicomputer systems: a transfer ration approaéhig-
ceedings of International Conference on Parallel Processiog I,
pp.171-178, 1990.

