
A Systolic Algorithm to Process Compressed Binary Images

Fikret Ercal, Mark Allen, and Hao Feng
University of Missouri – Rolla

Department of Computer Science and Intelligent Systems Center
Rolla, MO 65401

ercal@umr.edu, mallen@umr.edu, and feng@umr.edu

Abstract

A new systolic algorithm which computes image differ-
ences in run-length encoded (RLE) format is described.
The binary image difference operation is commonly used in
many image processing applications including automated
inspection systems, character recognition, fingerprint anal-
ysis, and motion detection. The efficiency of these opera-
tions can be improved significantly with the availability of
a fast systolic system that computes the image difference as
described in this paper. It is shown that for images with a
high similarity measure, the time complexity of the systolic
algorithm is small and in some cases constant with respect
to the image size. The time for the systolic algorithm is pro-
portional to the difference between the number of runs in
the two images, while the time for the sequential algorithm
is proportional to the total number of runs in the two images
together. A formal proof of correctness for the algorithm is
also given.

1. Introduction

Binary image processing is used in many areas includ-
ing robot vision and industrial inspection [1, 2], charac-
ter recognition, fingerprint analysis, motion detection for
safety and security [3, 4], feature extraction [5], map anal-
ysis [6], etc. It is a common practice to build special pur-
pose hardware to process binary images in real-time. There
are numerous proposals and implementations of such op-
erations in hardware including convolution [7], template
matching, component labeling [8], morphological opera-
tions, min/max filtering [9], thinning [10], etc. To speedup
the process, most hardware approaches utilize pipelining
[1], array processors, or systolic architectures [7, 8, 9, 10].

While there are software approaches to processing bi-
nary images in compressed form (e.g. run-length encoding
(RLE)) to save time and space, hardware approaches rarely
operate in compressed mode. To the best of our knowledge,

there are no hardware implementations of fundamental im-
age operations which process images in compressed mode
without decompressing them. Combined with the power of
the hardware, this approach is expected to result in signifi-
cant performance increases. In this study we describe a sys-
tolic architecture to process binary images in compressed
form.

One of the areas such a system would have significant
impact is the inspection of printed circuit boards (PCBs).
This work is mainly motivated by the need to speed up the
PCB inspection process [2]. On-line automatic inspection
of PCBs requires acquisition and processing of gigabytes
of binary image data in a matter of seconds. Most PCB
inspection systems use a reference based approach which
requires comparison of the board image against the original
CAD design. Therefore the binary image difference opera-
tion is a fundamental step in the inspection process and the
system performance critically depends on the speed of this
operation. To increase the performance further, run-length
encoding (RLE) is used for storage and operations.

Systolic systems use cellular iterative computations and
perform global tasks through exchange of local data in a
pipelined fashion [11]. Since most of the image process-
ing operations exhibit high local dependencies among data
elements, systolic machines are widely used in image pro-
cessing applications such as morphological operations, bi-
nary template matching [9], thinning [10], convolution [7],
etc. The straightforward parallel method for computing
these iterative-convergent operators is through a globally
synchronous updating mode: all variables are updated at
once, based on the values calculated during the previous
step, before another iteration step is initiated. Since sys-
tolic machines are designed to exploit spatial information
and most of the spatial locality information is lost in com-
pressed domain, most systolic image processing algorithms
proposed so far are based on operations on pixel data. It
is extremely difficult to design systolic algorithms which
operate on compressed image data. Fortunately, some com-
pression techniques such as RLE preserve part of the infor-

mation pertaining to spatial locality allowing us to design a
systolic system that finds the difference between two binary
images represented in RLE.

In the next section, we elaborate on the RLE-based im-
age difference algorithm. The following sections describe
the parallel systolic system which computes the difference
between the corresponding rows of two images represented
in compressed form, i.e. RLE. (see Figure 1). In section 4,
a formal proof of correctness for the systolic algorithm is
provided. The last section gives simulation results for the
systolic system which demonstrate that, for images with a
high similarity measure, time complexity of the systolic al-
gorithm is small and in some cases constant with respect
to the image size. More specifically, for similar images the
time for the systolic algorithm is proportional to the differ-
ence between the number of runs in the two images, while
the time for the sequential algorithm is proportional to the
total number of runs in the two images together.

2. Image difference

In this section we provide a definition of the image dif-
ference problem and discuss a sequential algorithm to solve
the problem on run-length encoded bitstrings.

Regardless of what encoding method is used, the inputs
in the image difference problem both represent strings of
binary data of the same lengthb. Let img1 and img2 be
arrays representing these unencoded bitstrings of lengthb.
Thus for each locationi in the range1 to b, img1[i] has
a value of one or zero based on whether image one has a
foreground or background-colored pixel in theith location
respectively, andimg2 is equivalently defined.

The output of the operation also represents a string of bi-
nary data of lengthb. The encoding of the output will mat-
ter later, but not in the definition of the difference operation.
Let difference be an array representing the unencoded
output.

The desired output after an image difference operation is
defined as follows:

Definition of Image Difference: For eachi in the range
1 to b, difference[i] = img1[i] � img2[i] , where
� represents the exclusive-or operation.

An example image difference operation is shown in fig-
ure 1.

When using run-length encoding, the two inputs and the
output are represented as arrays of 2-tuples of integers. In
each tuple the first element is the start of the run and the
second element is the run’s length. Each array of tuples
must use a strictly increasing sequence of first elements of
the tuples. By definition none of the intervals represented
by the tuples for a single bitstring may overlap. In the input
it is permissible, in general, for two intervals in a single bit-
string to be directly adjacent to each other, and in the output

it is possible for this to occur as well, however an additional
pass can be made at the end to ensure the encoding is com-
pletely compressed. Note that only the foreground pixels
are represented in the encoding.

The sequential algorithm for finding the image differ-
ence of two RLE encoded bitstrings is a single pass through
the two arrays simultaneously which merges them together
into a single RLE encoded bitstring. We start at the begin-
ning of the two arrays, and for each iteration we determine
the XOR of the top run of both bitstrings, take the smaller
of the resulting runs, and leave the remainder in the array it
came from. This algorithm clearly has a time complexity of
O(k) wherek is the number of runs in the two images. Also
it should be noted that this time complexity is the same for
the best, worst, and average case.

3. RLE based systolic image difference algo-
rithm

If we let k be an upper bound on the number of runs in a
single input bitstring then the XOR operation can clearly not
produce more than2 � k runs, thus our systolic architecture
will use 2 � k cells. Each cell will have two registers each
capable of storing two integers to represent a run, as shown
in figure 2. Initially the first register of each cell will be used
to store the array of runs representing the first image, and
the second register of each cell will store the array of runs
for the second image. After the algorithm has terminated,
the first register of the cells will represent the result of the
XOR operation and the second register of all cells will be
empty.

For notation we will call the first register RegSmall and
the second register RegBig. Also we will refer to runs
by their starting and ending points rather than the starting
points and lengths which are actually stored. Thus if cell
i contains two runs where the first one starts at location 10
and has length 5 and the second one starts at location 12 and
has length 8, our notation will indicate this as

cell[i].RegBig.start = 10
cell[i].RegBig.end = 14

cell[i].RegSmall.start = 12
cell[i].RegSmall.end = 19

Now we will describe the main steps of the algorithm
which will be put into a loop to form the final algorithm.
These steps will be executed by each cell individually, and
are written below to be executed by an arbitrary celli.

Steps used in main algorithm:

1.) The purpose of this step is to put the ”smaller” run into
RegSmall and the ”bigger” run into RegBig.

 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 4

Difference (XOR)

Row of Image 2

Row of Image 1 10, 3 16, 2 23, 2 27, 3

3, 4 8, 5 15, 5 23, 2 27, 4

3, 4 8, 2 15,1 18, 2 30,1

Figure 1. Example of the image difference operation

Cell 1 Cell 2kCell 2 Cell k

out

F

I in I

I I
C

1 2

RegSmall

RegBig

Out

Figure 2. Architecture of a cell, and array of cells forming the systolic system

if (cell[i] has a run in both of its registers) then
if ((cell[i].RegSmall.start> cell[i].RegBig.start) or

((cell[i].RegSmall.start= cell[i].RegBig.start) and
(cell[i].RegSmall.end> cell[i].RegBig.end)))

then
swap the contents of RegSmall and RegBig

endif
else if (cell[i] has a run in only RegBig) then

move the contents of RegBig to RegSmall and set
RegBig to empty

endif

2.) Perform the XOR operation in celli (independently
from all other cells containing other runs). And to avoid
any ambiguity as to where the resulting runs are stored
in the cell, we can describe the XOR more explicitly.
Each cell executes the following:

oldSmallend= RegSmall.end
RegSmall.end= min(RegSmall.end, RegBig.start�1)
RegBig.start= min(RegBig.end+1,

max(oldSmallend+1, RegBig.start))
RegBig.end= max(oldSmallend, RegBig.end)

3.) Shift the data in RegBig to the right, and receive data
from the left into RegBig.

Finally, we can put these three steps together into a loop
to form the complete algorithm which is executed by each
cell i.

Algorithm for cell i:

while (not receiving the termination signal along input F)
do step 1, step2, and step3
if (there is no data in RegBig) then

send the termination signal along output C
endif

endwhile

Externally when all cells are sending the termination sig-
nal along output C, then the termination signal is sent along
input F so that all the cells stop processing.

At this point the runs stored along RegSmall in the cells
form an array of runs which are ordered, do not overlap, and
correctly represent the XOR of the original two bitstrings.
A formal proof for this assertion is outlined in the next sec-
tion. Note that it is possible for there to exist empty cells
between these runs, however. Figure 3 illustrates the steps
of a systolic run using the input from Figure 1.

4. Proof of correctness

There are three pieces to prove in this section. First we
must show that the algorithm does halt after a certain num-
ber of steps. Second we must show that the resulting array
of runs when the algorithm terminates is ordered and that
none of the resulting sequences overlap. And third we must
show that the resulting array of runs does indeed represent
the XOR of the original two bitstrings.

For brevity, all theorems and corollaries will be stated,
but the complete proofs will be omitted. They can be found
in the technical report [12].

Step Cell0 Cell1 Cell2 Cell3 Cell4 Cell5

Initial (10,3) (16,2) (23,2) (27,3)
(3,4) (8,5) (15,5) (23,2) (27,4)

1.1 (3,4) (8,5) (15,5) (23,2) (27,4)
(10,3) (16,2) (23,2) (27,3)

1.2 (3,4) (8,5) (15,5) (23,2) (27,4)
(10,3) (16,2) (23,2) (27,3)

1.3 (3,4) (8,5) (15,5) (23,2) (27,4)
(10,3) (16,2) (23,2) (27,3)

2.1 (3,4) (8,5) (15,5) (23,2) (27,3)
(10,3) (16,2) (23,2) (27,4)

2.2 (3,4) (8,2) (15,1)
(18,2) (30,1)

2.3 (3,4) (8,2) (15,1)
(18,2) (30,1)

3.1 (3,4) (8,2) (15,1) (18,2) (30,1)

And steps 2 and 3 of iteration 3 make no further changes.

Figure 3. Execution of the systolic algorithm on the in-
puts from figure 1.

4.1. Proof for termination

The first part is quite trivial to show by induction. We
will use the following two corollaries which lead directly to
our first theorem.

� Corollary 1.1: At the end of iterationi, the firsti cells
do not have any runs stored in RegBig [12].

� Corollary 1.2: At no point in the algorithm will there
exist a non-empty cell beyond locationk1 + k2 where
k1 is the number of runs in the first image andk2 is
the number of runs in the second image [12].

Theorem 1 The systolic XOR algorithm terminates after at
mostk1 + k2 steps.

Proof of termination: By corollary 1.1, after iterationk1+
k2, the firstk1+k2 cells have no runs stored in RegBig. By
corollary 1.2 there are no non-empty cells beyond location
k1 + k2. Thus by iterationk1 + k2 the only non-empty
cells are ones which have no runs stored in RegBig, which
means that the termination condition is satisfied by iteration
k1 + k2. 2

4.2. Proof for proper ordering

In this section we prove that the resulting array of runs
when the algorithm terminates is ordered and that none of
the resulting sequences overlap. This part takes somewhat
longer to prove than the termination, however the basic idea
is only a slight refinement over brute force. First we will

introduce some more notation to more easily refer qualita-
tively to all the various possible states a cell can be in. These
states are shown in figure 4.

The first two columns of figure 4 show all the possible
cell states, and the third column shows the result of per-
forming steps 1 and 2 on each of these cells. The reason for
the pairings between columns 1 and 2 is that the “a” states
and the “b” states are related in the sense that any “b” state
will turn into the corresponding “a” state after step 1 is per-
formed, and any “a” state will be unchanged by a step 1.

We wish to prove that the runs stored along RegSmall
and RegBig of the cells are always ordered. More specifi-
cally, we show the following.

Theorem 2 At the end of every iteration, for every celli,
and everyj to its right (j > i),

1. if both cellsi andj contain runs in RegSmall, then
cell[i].RegSmall.end< cell[j].RegSmall.start, and

2. if both cellsi andj contain runs in RegBig, then
cell[i].RegBig.end< cell[j].RegBig.start.

We can write the theorem in a format more conducive
to proof as follows. Since each iteration of the algorithm
consists of three steps and the third is so simple, we fo-
cus the corollary below on the first two steps. For nota-
tion we refer to the state of celli before an iteration be-
gins as cell[i].before, and the state of the cell after the first,
second, and third steps as cell[i].after1, cell[i].after2, and
cell[i].after3 respectively. Note that the current iteration
is not included because it would unduly clutter the nota-
tion. Thus the iteration being considered must be made
clear from context.

Corollary 2.1: At any iteration, for every celli, and for
every cellj to its right(j > i),

1. if both cellsi and j contain runs in RegSmall after
step 2, then cell[i].after2.RegSmall.end is less than
cell[j].after2.RegSmall.start,

2. if both cells i and j contain runs in RegBig af-
ter step 2, then cell[i].after2.RegBig.end is less than
cell[j].after2.RegBig.start,

3. if cell i has a run in RegSmall and in RegBig af-
ter step 2, then cell[i].after2.RegSmall.end is less than
cell[i].after2.RegBig.start,

4. if cell i has a run in RegSmall and cellj has one in
RegBig after step 2, then cell[i].after2.RegSmall.end
is less than cell[j].after2.RegBig.start, and

5. If after step 3 some cellk between cellsi and j

(including i itself) has no run in RegSmall, and if
cell i has a run in RegBig and cellj has a run in
RegSmall, then cell[i].after3.RegBig.end is less than
cell[j].after3.RegSmall.start.

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
.

.
. . .

. . .

.
. . .

. . .

.
. . .State 7

State 2a

State 4a

State 5a

State 6a

State 9

State 8a

State 3a

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

State 1a

. . .

.
. . .

State 1b

State 2b

State 3b

State 4b

State 5b

State 6b

State 8b

Result 1

Result 5

Result 9

Result 8

Result 7 . . .
.

. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

. . .

.
. . .

Result 2

Result 3

Result 4

Result 6

Qualitatively Different Cell States XOR Results

Figure 4. List of qualitatively different cell states.

Note that parts three, four and five of the above corol-
lary are included only because they are useful in proving
the induction step. The proof of corollary 2.1 is by induc-
tion on the number of iterations and can be found in our
technical report [12]. The first four parts are reasonably in-
tuitive, however the fifth part may not be. In the proof given
in the technical report, the first four parts follow rather di-
rectly from some simple inequalities which involve break-
ing a brute force approach into several cases in which all the
possibilities fall, while the fifth part requires more reason-
ing.

Once corollary 2.1 is proven, it is fairly easy to show
theorem 2:

Proof of theorem 2: Execution of step 3 of the algo-
rithm does not have any effect on the truth of the first part of
corollary 2.1. Thus if the first inequality from corollary 2.1
is shown to be true between cellsi andj after steps 1 and 2
are performed, then the first part of theorem 2 is true too. If
part two of the corollary is shown to be true between cellsi

andj after steps 1 and 2, then part one of the theorem is true
for all cellsi+1 andj+1, which covers all pairings which
do not use the first cell. And since RegBig of this first cell
is empty, the pairings involving it are vacuously true.2

4.3. Correctness proof for the resulting RLE string

To conclude the formal proof of correctness for our sys-
tolic algorithm, we need to show that the resulting array of

runs does indeed represent the XOR of the original two bit-
strings. This part is rather easy compared to the previous
section. The idea is to view the runs of the two bitstrings as
a set of many distinct smaller bitstrings and observe that the
only changes made to this set involve XORs among these
bitstrings. This combined with the fact that XOR is asso-
ciative imply that the final state is the correct XOR of the
original two bitstrings.

In more detail, the definition of the image difference
problem was given as difference[i] = img1[i] � img2[i], for
eachi in the range1 to b, where� represents the exclusive-
or operation, and whereb is the number of pixels in the
image.

We can easily extend this to apply to a set of bitstrings
instead of merely two bitstrings. We could write this as

difference[i] =

8>>>><
>>>>:

0 if an evennumber of

bitstrings from the set have a

one in bit i; or

1 if an odd number of bitstrings

from the set have a one in bit i:

For two bitstrings these are clearly equivalent definitions
of the difference. For any set of bitstrings, we will view the
difference of the entire set according to the definition above.

To make this definition useful we must make the obser-
vations that

� Corollary 3.1: if the runs of a bitstring are viewed as
a set of smaller bitstrings, then the XOR of this set is
the original bitstring [12], and

� Corollary 3.2: letting xor(A) represent the result of
XORing the bitstrings contained in the set A, we have
for arbitrary sets of bitstrings A and B that xor(A[B)
= xor(fxor(A), xor(B)g) [12].

Now we wish to use these corollaries to prove that the
image difference produced by the algorithm is correct.

Theorem 3 The image difference produced by the systolic
algorithm is the same as the correct XOR defined in section
2.

Proof of correctness: We can let A be the set of runs
contained in the first image, and let B be the set of runs
in the second image. Thus based on our first observation,
xor(A) is the first image and xor(B) is the second image,
so the final result we seek is xor(xor(A), xor(B)), which ac-
cording to our second observation is equal to xor(A[B).

Now that we have expressed the desired result as an XOR
over the set of all runs contained in the two images, we must
show that although the set of runs being considered changes
at each step of the algorithm, the resulting XOR is still the
same after each iteration.

Clearly steps 1 and 3 of a given iteration do not change
the set of runs under consideration. Only the second step
causes any changes. And since XOR is an associative oper-
ation, we can say that xor(A[B) is xor(A[xor(B)) by an
argument very similar to the one used in our second obser-
vation above. Letting B be a pair of runs XORed in a cell
during step 2, we see that the XOR of the set of runs before
step 2 is the same as the XOR of the new set of runs after
step 2. Thus we have now shown that at any point in the
algorithm, if C is the set of runs contained in the systolic
system, then xor(C) is the correct XOR (i.e. xor(xor(A),
xor(B))). And due to theorems 1 & 2, when the iterations are
over, the final result will be stored in RegSmall in a sorted
and non-overlapping manner, thus making xor(C) equal to
the bitstring represented directly by the runs of C. That is,
the bitstring stored in the end is indeed the correct XOR.

5. Algorithm performance

In this section we present experimental results to show
that the systolic algorithm obtains the final result very
quickly when the bitstrings being XORed are highly sim-
ilar. More specifically, the time for the systolic algorithm is
proportional to the difference between the number of runs in
the two images for similar images. In contrast the time for
the sequential algorithm is proportional to the total number
of runs in the two images together.

First another upper bound can be put on the number of
steps the algorithm will take. When we proved termination
above, we showed it would stop in at mostk1 + k2 steps
wherek1 is the number of runs in the first bitstring, and
k2 is the number of runs in the second bitstring. We also
believe that it is bounded by the number of runs in the image
difference, although we have not yet proven this.

Observation: If the runs of the two input bitstrings are
encoded such that none of the runs are adjacent (in other
words if the bitstring is compressed as much as possible),
then the systolic XOR algorithm terminates after at most
k3 + 1 steps, wherek3 is the number of runs in the output
from the systolic algorithm (note the output from the sys-
tolic algorithm will not always be compressed as much as
possible).

If we let the similarity of two images be measured by the
number of runs in the final result, then the above observa-
tion implies that the systolic algorithm has the potential to
run faster the more similar two bitstrings are.

A simulation program was written to test the algorithm
on a large number of randomly generated input cases. The
size for the image rows was varied from 128 to 2048 pixels.
The “on” pixels in the first image were chosen in runs of
length 4 to 20, and the second image was obtained by flip-
ping some of the bits of the first image in either direction (1
to 0, and 0 to 1). Here these changes are called “errors” and
they were created in runs of length 2 to 6. The percentage of
“on” pixels in the first image and of the errors in the second
image was varied by changing the average distance between
the runs.

The empirical testing shows that for medium amounts
of error (when the number of pixels changed was less than
30% of the total image) the dominating factor was the dif-
ference between the number of runs in the two images. This
was true irrespective of the sizes of the images and varied
only slightly over different densities.

This is demonstrated in figure 5, which shows the aver-
age number of iterations taken by the algorithm as a func-
tion of the percentage of pixels with errors. The other two
sets of data show the average difference in the number of
runs in the two images, which correlate very closely with
the number of iterations up through 30–40%, and the num-
ber of runs in the XOR produced by the algorithm which is
the upper bound we have not proven yet.

In the figure below the image size is 10,000 pixels with
approximately 250 runs in the original image, which trans-
lates to a density of 30%. The pattern is similar for smaller
images, but the variation is higher.

In explanation of the high correlation between the num-
ber of iterations taken and the difference in the number of
runs in the two images, we notice that after the first itera-
tion the larger number of runs will be stored along RegS-
mall. Then if the shift-right procedure in step 3 causes a

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70
Percent of pixels that are different between the two images

Number of iterations
Difference in number of runs in the two images

Number of runs in the XOR

Figure 5. Number of iterations as a function of the percent of pixels with errors plotted along side two of the dominating factors
in the algorithms running time.

run to be pushed into this group of runs along the end, then
all the runs at the end will need to be pushed to the right a
cell. And clearly the number of steps taken by this chain
reaction will be the length of this group of runs at the end,
which is the difference between the number of runs in the
two images.

When the number of pixels changed is much greater than
30% of the total image, a different factor begins to domi-
nate. For the smaller amounts of difference there will be
lots of empty cells left behind throughout the array, thus
the only significant data movement will be at the end as
discussed in the previous paragraph. But as the number of
differences increases and thus the number of empty cells
decreases, more and more data movement will be required
thus pushing the algorithm closer to the upper bound.

The previous figure demonstrates the correlation be-
tween the number of iterations taken by the algorithm and
the difference in the number of runs in the two images and
it demonstrates an upper bound as the number of runs in the
XOR after the algorithm finishes, however it does not give a
good impression of the algorithms speed. This can be seen
in the next table which focuses on smaller amounts of error.

Table 1 shows the average number of iterations taken by
both the sequential and the systolic algorithm on an image
of size ranging from 128 to 2048 pixels. In the first case,
the errors are kept at approximately 3.5% of the image, thus
causing both the systolic and the sequential versions to take

linearly more time as the image size increases. In the second
case however, the number of errors is fixed at 6 runs each of
size 4 pixels, thus while the sequential algorithm still takes
large amounts of time, the systolic algorithm averages just
over 5 iterations regardless of how large the image gets.

Algorithm Errors Iterations versus image size
128 256 512 1024 2048

Systolic 3.5% 1.8 2.8 4.7 8.6 16.6
Sequential 3.5% 4.9 9.5 18.8 37.8 75.9

Systolic 6 runs 5.3 5.4 5.5 5.7 5.8
Sequential 6 runs 8.3 12.3 19.7 34.9 65.1

Table 1. Average systolic iterations versus sequential iter-
ations for small amounts of errors (where the length of runs
in images is 4–20, and the length of error runs is 2–6).

6. Conclusions and future research

This paper has shown that a systolic array can perform an
image difference operation on RLE encoded images very
quickly if the two images are highly similar. Indeed, the
number of iterations taken is bounded above by the number
of runs left in the XOR, and for similar images the number

of iterations is tightly correlated with the difference between
the number of runs in the two images.

Although a parallel solution of the image difference
problem can easily be performed on uncompressed data in
constant time if the number of processors available is pro-
portional to the number of pixels in the images, there is no
known parallel algorithm which performs the same opera-
tion in compressed mode. To the best of our knowledge this
paper demonstrates the first effective parallel solution which
operates on compressed data directly. This method has the
advantage of using a smaller number of processors, and it
does not require the time to convert the image between RLE
format and bitmap mode.

In both the case of highly similar and highly different
images, the number of iterations taken seems to be domi-
nated by the frequent need to push a whole set of runs to
the right to make room for a new entry. If a broadcast bus
existed which could run at the same frequency as the rest
of the systolic system, it might be possible to perform these
shifts more efficiently thus significantly decreasing the run-
ning time. Thus one area of future research should be mod-
ifying the algorithm to run more quickly on a model with a
fast broadcast bus, such as a reconfigurable mesh [13]. Ad-
ditionally, the task of combining the adjacent runs in differ-
ent cells at the end of the algorithm is left as future research.
This task also is not fast on a pure systolic system, but could
be performed quickly with the help of a broadcast bus.

References

[1] P. P. Jonker and E. R. Komen, “A scalable real-
time image processing pipeline,”Proceedings. 11th
IAPR International Conference on Pattern Recogni-
tion, 1992, Vol. IV. Conference D: Architectures for
Vision and Pattern Recognition, p. xvii+243, 142-6.

[2] F. Ercal et al., “A fast modular RLE-Based inspection
scheme for PCBs,”Proc. of SPIE - Architectures, Net-
works, and Intelligent Systems for Manufacturing In-
tegration, Pittsburgh, Oct. 1997, Vol. 3203, pp. 49-59.

[3] S. Gil, R. Milanese, and T. Pun, “Comparing features
for target tracking in traffic scenes,”Pattern Recogni-
tion, 1996, vol.29, no.8, p. 1285-96

[4] H. Kawasumi, H. Sekii, N. Enomoto, H. Ohata, and A.
Okazaki, “Detecting intruders using time-series data
by projection pattern of silhouette,”Electrical Engi-
neering in Japan, 1997, vol.119, no.1, p. 62-73

[5] G. M. Emelyanov, N. V. Kurmyshev, and O. Y. Yu-
vzhik, “Procedures and algorithms for detecting and
determining the orientation of objects in binary im-
ages,”Pattern Recognition and Image Analysis, 1997,
vol.7, no.3, p. 373-8

[6] G. Agam, J. Frydman, O. Amiram, and I. Dinstein,
“Efficient morphological processing of maps and line-
drawings based on directional interval coding,”Pro-
ceedings of the SPIE - The International Society for
Optical Engineering, 1997, vol.3168, p. 41-51.

[7] N. K. Ratha, A. K. Jain, and D. T. Rover, “Convolu-
tion on Splash 2,”Proc. Of IEE Symposium on FPGAs
for Custom Computing Machines, Napa Valley, CA,
April, 1995.

[8] A. Rasquinha and N. Ranganathan, “C3L: A Chip for
Connected Component Labelling,”IEEE 10th Inter-
national Conf. on VLSI Design, January 1997, pp.446-
51.

[9] M. Djunatan and T. Mengko, “A programmable real-
time systolic processor architecture for image mor-
phological operations, binary template matching and
min/max filtering,” 1991 IEEE International Sympo-
sium on Circuits and Systems, p. 5 vol. xlviii+3177,
65-8 vol.1, 1991.

[10] N. Ranganathan, and K. B. Doreswamy, “A Sys-
tolic Algorithm and Architecture for Image Thinning,”
Proc. Of Fifth Great Lakes Symoisium on VLSI, Buf-
falo, NY, Mar. 1995

[11] Vipin Kumar et al.,Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms,The Ben-
jamin/Cummings Publishing Company Inc. 1994.

[12] F. Ercal, M. Allen, and H. Feng, Proof of Cor-
rectness and Performance Analysis of a Systolic
Image Difference Algorithm for RLE-Compressed
Images Technical Report CSc 99-01, Univer-
sity of Missouri – Rolla, 1998. [Also available at
http://www.cs.umr.edu/˜mallen/research/csc99-01.ps]

[13] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A.
Schuster, “The power of reconfiguration,”J. Parallel
Distributed Computing, vol.13, pp. 139-153, 1991.

