A Systolic Algorithm to Process Compressed Binary Images

Fikret Ercal, Mark Allen, and Hao Feng
University of Missouri — Rolla
Department of Computer Science and Intelligent Systems Center
Rolla, MO 65401
ercal@umr.edu, mallen@umr.edu, and feng@umr.edu

Abstract there are no hardware implementations of fundamental im-
age operations which process images in compressed mode
A new systolic algorithm which computes image differ- without decompressing them. Combined with the power of
ences in run-length encoded (RLE) format is described.the hardware, this approach is expected to result in signifi-
The binary image difference operation is commonly used in cant performance increases. In this study we describe a sys-
many image processing applications including automated tolic architecture to process binary images in compressed
inspection systems, character recognition, fingerprint anal- form.

ysis, and motion detection. The efficiency of these opera- One of the areas such a system would have significant
tions can be improved significantly with the availability of jmpact is the inspection of printed circuit boards (PCBS).
a fast systolic system that computes the image difference ashis work is mainly motivated by the need to speed up the
described in this paper. It is shown that for images with a PCB inspection process [2]. On-line automatic inspection
high similarity measure, the time complexity of the systolic of PCBs requires acquisition and processing of gigabytes
algorithm is small and in some cases constant with respectof binary image data in a matter of seconds. Most PCB
to the image size. The time for the systolic algorithm is pro- inspection systems use a reference based approach which
portional to the difference between the number of runs in requires comparison of the board image against the original
the two images, while the time for the sequential algorithm CAD design. Therefore the binary image difference opera-
is proportional to the total number of runs in the two images tjon is a fundamental step in the inspection process and the
together. A formal proof of correctness for the algorithm is system performance Critica”y depends on the Speed of this
also given. operation. To increase the performance further, run-length
encoding (RLE) is used for storage and operations.

Systolic systems use cellular iterative computations and
1. Introduction perform global tasks through exchange of local data in a
pipelined fashion [11]. Since most of the image process-
Binary image processing is used in many areas includ-ing operations exhibit high local dependencies among data
ing robot vision and industrial inspection [1, 2], charac- elements, systolic machines are widely used in image pro-
ter recognition, fingerprint analysis, motion detection for cessing applications such as morphological operations, bi-
safety and security [3, 4], feature extraction [5], map anal- nary template matching [9], thinning [10], convolution [7],
ysis [6], etc. It is a common practice to build special pur- etc. The straightforward parallel method for computing
pose hardware to process binary images in real-time. Therghese iterative-convergent operators is through a globally
are numerous proposals and implementations of such opsynchronous updating mode: all variables are updated at
erations in hardware including convolution [7], template once, based on the values calculated during the previous
matching, component labeling [8], morphological opera- step, before another iteration step is initiated. Since sys-
tions, min/max filtering [9], thinning [10], etc. To speedup tolic machines are designed to exploit spatial information
the process, most hardware approaches utilize pipeliningand most of the spatial locality information is lost in com-
[1], array processors, or systolic architectures [7, 8, 9, 10]. pressed domain, most systolic image processing algorithms
While there are software approaches to processing bi-proposed so far are based on operations on pixel data. It
nary images in compressed form (e.g. run-length encodingis extremely difficult to design systolic algorithms which
(RLE)) to save time and space, hardware approaches rarelpperate on compressed image data. Fortunately, some com-
operate in compressed mode. To the best of our knowledgepression techniques such as RLE preserve part of the infor-

mation pertaining to spatial locality allowing us to design a it is possible for this to occur as well, however an additional
systolic system that finds the difference between two binary pass can be made at the end to ensure the encoding is com-
images represented in RLE. pletely compressed. Note that only the foreground pixels
In the next section, we elaborate on the RLE-based im-are represented in the encoding.
age difference algorithm. The following sections describe The sequential algorithm for finding the image differ-
the parallel systolic system which computes the differenceence of two RLE encoded bitstrings is a single pass through
between the corresponding rows of two images representedhe two arrays simultaneously which merges them together
in compressed form, i.e. RLE. (see Figure 1). In section 4, into a single RLE encoded bitstring. We start at the begin-
a formal proof of correctness for the systolic algorithm is ning of the two arrays, and for each iteration we determine
provided. The last section gives simulation results for the the XOR of the top run of both bitstrings, take the smaller
systolic system which demonstrate that, for images with a of the resulting runs, and leave the remainder in the array it
high similarity measure, time complexity of the systolic al- came from. This algorithm clearly has a time complexity of
gorithm is small and in some cases constant with respectO(k) wherek is the number of runs in the two images. Also
to the image size. More specifically, for similar images the it should be noted that this time complexity is the same for
time for the systolic algorithm is proportional to the differ- the best, worst, and average case.
ence between the number of runs in the two images, while

the time for the sequential algorithm is proportional to the 3 RLE based systolic image difference algo-
total number of runs in the two images together. rithm

2. Image difference If we let k be an upper bound on the number of runs in a

single input bitstring then the XOR operation can clearly not
In this section we provide a definition of the image dif- produce more tha® « k runs, thus our systolic architecture
ference problem and discuss a sequential algorithm to solvewill use 2 * k cells. Each cell will have two registers each
the problem on run-length encoded bitstrings. capable of storing two integers to represent a run, as shown
Regardless of what encoding method is used, the inputsin figure 2. Initially the first register of each cell will be used
in the image difference problem both represent strings of to store the array of runs representing the first image, and
binary data of the same length Letimgl andimg2 be the second register of each cell will store the array of runs
arrays representing these unencoded bitstrings of léngth for the second image. After the algorithm has terminated,
Thus for each location in the rangel to b, imgl[i] has the first register of the cells will represent the result of the
a value of one or zero based on whether image one has &OR operation and the second register of all cells will be
foreground or background-colored pixel in tiHé location empty.
respectively, aniing2 is equivalently defined. For notation we will call the first register RegSmall and
The output of the operation also represents a string of bi-the second register RegBig. Also we will refer to runs
nary data of lengtlh. The encoding of the output will mat- by their starting and ending points rather than the starting
ter later, but not in the definition of the difference operation. points and lengths which are actually stored. Thus if cell
Letdifference be an array representing the unencoded ; contains two runs where the first one starts at location 10
output. and has length 5 and the second one starts at location 12 and
The desired output after an image difference operation ishas length 8, our notation will indicate this as
defined as follows:
Definition of Image Difference: For eachi in the range cellli].RegBig.start = 10
1to b, difference]] =imgl[i] @ img2[i] , where celll].RegBig.end = 14
@ represents the exclusive-or operation.
An example image difference operation is shown in fig-
ure 1.

When using run-length encoding, the two inputs and the Ny we will describe the main steps of the algorithm

output are represented as arrays of 2-tuples of integers. Iy hich will be put into a loop to form the final algorithm.

each tuple the first elemen,t is the start of the run and therpege steps will be executed by each cell individually, and
second element is the run’s length. Each array of tuples, a \written below to be executed by an arbitrary ell
must use a strictly increasing sequence of first elements of Steps used in main algorithm:

the tuples. By definition none of the intervals represented

by the tuples for a single bitstring may overlap. In the input 1.) The purpose of this step is to put the "smaller” run into
itis permissible, in general, for two intervals in a single bit- RegSmall and the "bigger” run into RegBig.

string to be directly adjacent to each other, and in the output

cell[i].RegSmall.start = 12
cellil.RegSmall.end = 19

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

rowofimager L | | | [[[[| [EE N - HEEE |
Row of Image 2 BN - - | BB BN || |
pifferencexory || XA EEM [[[[EE [EXN [[[[[[[[[B¥ []

Figure 1. Example of the image difference operation

Il I2
F C
Cell 1 Cell 2 Cell k Cell 2k

| | AR ' '

— | | RegBig —

Y ou ¢ N

Figure 2. Architecture of a cell, and array of cells forming the systolic system

if (cell[{] has a run in both of its registers) then while (not receiving the termination signal along input F)
if ((cell[:].RegSmall.start> cell[i]. RegBig.start) or do step 1, step2, and step3
((cell[7].RegSmall.start cell[7].RegBig.start) and if (there is no data in RegBig) then
(cell[z].RegSmall.end> cell[].RegBig.end))) send the termination signal along output C
then endif
swap the contents of RegSmall and RegBig endwhile
endif
else if (cellf] has a run in only RegBig) then) o)
move the contents of RegBig to RegSmall and set Externally when all cells are sgndmg thg termlnatlon Sig-
RegBig to empty nal along output C, then the termination signal is sent along
endif input F so that all the cells stop processing.
At this point the runs stored along RegSmall in the cells
2.) Perform the XOR operation in cél(independently form an array of runs which are ordered, do not overlap, and

from all other cells containing other runs). And to avoid CO'Tectly represent the XOR of the original two bitstrings.
any ambiguity as to where the resulting runs are stored A formal proof for this assertion is outlined in the next sec-

in the cell, we can describe the XOR more explicitly. tion. Note that it is possible for there to exist empty cells
Each cell ,executes the following: between these runs, however. Figure 3 illustrates the steps

oldSmallend= RegSmall.end of a systolic run using the input from Figure 1.
RegSmall.end= min(RegSmall.end, RegBig.stai1)
RegBig.start= min(RegBig.end+1, 4. Proof of correctness
max(oldSmallengt 1, RegBig.start))
RegBig.end= max(oldSmallend, RegBig.end) There are three pieces to prove in this section. First we

must show that the algorithm does halt after a certain num-
3.) Shift the data in RegBig to the right, and receive data per of steps. Second we must show that the resulting array
from the left into RegBig. of runs when the algorithm terminates is ordered and that
none of the resulting sequences overlap. And third we must
show that the resulting array of runs does indeed represent
Finally, we can put these three steps together into a loopthe XOR of the original two bitstrings.
to form the complete algorithm which is executed by each For brevity, all theorems and corollaries will be stated,
cells. but the complete proofs will be omitted. They can be found
Algorithm for cell i: in the technical report [12].

| Step [Cell0 Celll Cell2 Cell3 Cell4 Cell5]
Initial | (10,3) (16,2) (23,2) (27,3)
(3,4 (85 (155) (23,2) (27,4)
11 (3,4 (85 (155 (23,20 (27,4
(10,3) (16,2) (23,2) (27,3)
12 (3,4 (85 (155 (23,20 (27,4
(10,3) (16,2) (23,2) (27,3)
13 (3,4 (85 (155 (23,20 (27,4
(10,3) (16,2) (23,2) (27,3)
2.1 (3,4 (85 (155) (23,2) (27,3)
(10,3) (16,2) (23,2) (27,4)
2.2 (34) (8,2 (151
(18,2) (30,1)
23 (34) (8,2 (151
(18,2) (30,1)
3.1 (34 (82 (151) (18,2 (30,1
And steps 2 and 3 of iteration 3 make no further changes.

Figure 3. Execution of the systolic algorithm on the in-
puts from figure 1.

4 .1. Proof for termination

The first part is quite trivial to show by induction. We
will use the following two corollaries which lead directly to
our first theorem.

e Corollary 1.1: At the end of iteration, the firsti; cells
do not have any runs stored in RegBig [12].

e Corollary 1.2: At no point in the algorithm will there
exist a non-empty cell beyond locatié + k2 where
k1 is the number of runs in the first image ah#l is
the number of runs in the second image [12].

Theorem 1 The systolic XOR algorithm terminates after at
mostk1 + k2 steps.

Proof of termination: By corollary 1.1, after iteratiok1 +

k2, the firstk1 + k2 cells have no runs stored in RegBig. By
corollary 1.2 there are no non-empty cells beyond location
k1 + k2. Thus by iterationk1 + k2 the only non-empty
cells are ones which have no runs stored in RegBig, which
means that the termination condition is satisfied by iteration
kl1+ k2.0

4.2. Proof for proper ordering

In this section we prove that the resulting array of runs
when the algorithm terminates is ordered and that none of
the resulting sequences overlap. This part takes somewhat
longer to prove than the termination, however the basic idea
is only a slight refinement over brute force. First we will

introduce some more notation to more easily refer qualita-
tively to all the various possible states a cell can be in. These
states are shown in figure 4.

The first two columns of figure 4 show all the possible
cell states, and the third column shows the result of per-
forming steps 1 and 2 on each of these cells. The reason for
the pairings between columns 1 and 2 is that the “a” states
and the “b” states are related in the sense that any “b” state
will turn into the corresponding “a” state after step 1 is per-
formed, and any “a” state will be unchanged by a step 1.

We wish to prove that the runs stored along RegSmall
and RegBig of the cells are always ordered. More specifi-
cally, we show the following.

Theorem 2 At the end of every iteration, for every céll
and everyj to its right (j > i),

1. if both cellsi andj contain runs in RegSmall, then

cell[<].RegSmall.en&: cell[j].RegSmall.start, and

if both cellsi andj contain runs in RegBig, then
cell[].RegBig.enc cell[j].RegBig.start.

We can write the theorem in a format more conducive
to proof as follows. Since each iteration of the algorithm
consists of three steps and the third is so simple, we fo-
cus the corollary below on the first two steps. For nota-
tion we refer to the state of cellbefore an iteration be-
gins as cellf].before, and the state of the cell after the first,
second, and third steps as cglijfterl, cellf].after2, and
cell[7].after3 respectively. Note that the current iteration
is not included because it would unduly clutter the nota-
tion. Thus the iteration being considered must be made
clear from context.

Corollary 2.1: At any iteration, for every cell, and for
every cellj to its right(j > i),

1. if both cellsi and j contain runs in RegSmall after
step 2, then cell].after2.RegSmall.end is less than
cell[j].after2.RegSmall.start,

. if both cellsi and j contain runs in RegBig af-
ter step 2, then celll.after2.RegBig.end is less than
cell[j].after2.RegBig.start,

3. if cell ¢ has a run in RegSmall and in RegBig af-
ter step 2, then celll.after2.RegSmall.end is less than

cell[7].after2.RegBig.start,

. if cell i has a run in RegSmall and cellhas one in
RegBig after step 2, then celljafter2.RegSmall.end
is less than cellf].after2.RegBig.start, and

5. If after step 3 some celt between cellsi and j

(including i itself) has no run in RegSmall, and if
cell 4 has a run in RegBig and cejl has a run in
RegSmall, then celi].after3.RegBig.end is less than
cell[j].after3.RegSmall.start.

Qualitatively Different Cell States XOR Results
I e & Saels g WM Reat
Sweza Saed g | Remitz e
N Saed e | Remita
R — Saedp v | Rewit
Saesa - LW | saesy o | Reats o ML
e — SCD] | Remite
sae Reslt7 e
I S g | Reaitg
I Resito " e

Figure 4. List of qualitatively different cell states.

Note that parts three, four and five of the above corol- runs does indeed represent the XOR of the original two bit-
lary are included only because they are useful in proving strings. This part is rather easy compared to the previous
the induction step. The proof of corollary 2.1 is by induc- section. The idea is to view the runs of the two bitstrings as
tion on the number of iterations and can be found in our a set of many distinct smaller bitstrings and observe that the
technical report [12]. The first four parts are reasonably in- only changes made to this set involve XORs among these
tuitive, however the fifth part may not be. In the proof given bitstrings. This combined with the fact that XOR is asso-
in the technical report, the first four parts follow rather di- ciative imply that the final state is the correct XOR of the
rectly from some simple inequalities which involve break- original two bitstrings.
ing a brute force approach into several cases inwhich allthe | more detail, the definition of the image difference
possibilities fall, while the fifth part requires maore reason- prob|em was given as differen@'];[: |mgl[z] P |mgz[7/], for

ing. _ o eachi in the rangd to b, whered represents the exclusive-
Once corollary 2.1 is proven, it is fairly easy to show or gperation, and wherk is the number of pixels in the
theorem 2: image.

Proof of theorem 2: Execution of step 3 of the algo-
rithm does not have any effect on the truth of the first part of
corollary 2.1. Thus if the first inequality from corollary 2.1
is shown to be true between celland; after steps 1 and 2 .
are performed, then the first part of theorem 2 is true too. If 0 ¢f an even number of
part two of the corollary is shown to be true between cells . , bitstrings from the set have a
andj after steps 1 and 2, then part one of the theorem is truedif ference[i] = one in bit i, or o
for all cellsi + 1 andj + 1, which covers all pairings which 1 if an oddnumber of bitstrings
do not use the first cell. And since RegBig of this first cell from the set have a one in bits.
is empty, the pairings involving it are vacuously trie.

We can easily extend this to apply to a set of bitstrings
instead of merely two bitstrings. We could write this as

For two bitstrings these are clearly equivalent definitions
4.3. Correctness proof for the resulting RLE string of the difference. For any set of bitstrings, we will view the
difference of the entire set according to the definition above.
To conclude the formal proof of correctness for our sys- To make this definition useful we must make the obser-
tolic algorithm, we need to show that the resulting array of vations that

e Corollary 3.1: if the runs of a bitstring are viewed as First another upper bound can be put on the number of
a set of smaller bitstrings, then the XOR of this set is steps the algorithm will take. When we proved termination
the original bitstring [12], and above, we showed it would stop in at mddt + k2 steps

) wherek1 is the number of runs in the first bitstring, and

o Corollary 3.2: letting xor(A) represent the result of 19 is the number of runs in the second bitstring. We also
XORing the bitstrings contained in the set A, we have pgjigye that it is bounded by the number of runs in the image
for arbitrary sets of bitstrings A and B that xor(AB) difference, although we have not yet proven this.
= xor({xor(A), xor(B)}) [12]. Observation: If the runs of the two input bitstrings are

Now we wish to use these corollaries to prove that the encoded such that none of the runs are adjacent (in other

image difference produced by the algorithm is correct. words if the bitstring is compressed as much as possible),
then the systolic XOR algorithm terminates after at most

Theorem 3 The image difference produced by the systolic k3 + 1 steps, wheré3 is the number of runs in the output

algorithm is the same as the correct XOR defined in sectionfrom the systolic algorithm (note the output from the sys-
2. tolic algorithm will not always be compressed as much as

possible).

Proof of correctness: We can let A be the set of runs If we let the similarity of two images be measured by the
contained in the first image, and let B be the set of runs number of runs in the final result, then the above observa-
in the second image. Thus based on our first observationtion implies that the systolic algorithm has the potential to
xor(A) is the first image and xor(B) is the second image, run faster the more similar two bitstrings are.
so the final result we seek is xor(xor(A), xor(B)), which ac- A simulation program was written to test the algorithm
cording to our second observation is equal to xay(R). on a large number of randomly generated input cases. The

Now that we have expressed the desired result as an XORsjze for the image rows was varied from 128 to 2048 pixels.
over the set of all runs contained in the two images, we mustThe “on” pixels in the first image were chosen in runs of
show that although the set of runs being considered changegength 4 t0 20, and the second image was obtained by flip-
at each step of the algorithm, the resulting XOR is still the ping some of the bits of the first image in either direction (1
same after each iteration. to 0, and 0 to 1). Here these changes are called “errors” and

Clearly steps 1 and 3 of a given iteration do not change they were created in runs of length 2 to 6. The percentage of
the set of runs under consideration. Only the second stepon” pixels in the first image and of the errors in the second
causes any changes. And since XOR is an associative opelimage was varied by changing the average distance between
ation, we can say that xor(& B) is xor(A U xor(B)) by an the runs.
argument very sim.ilar to the one used in our second obser- Tnhe empirical testing shows that for medium amounts
vation above. Letting B be a pair of runs XORed in a cell of error (when the number of pixels changed was less than
during step 2, we see that the XOR of the set of runs beforezno, of the total image) the dominating factor was the dif-
step 2 is the same as the XOR of the new set of runs afteference between the number of runs in the two images. This

step 2. Thus we have now shown that at any point in the was true irrespective of the sizes of the images and varied
algorithm, if C is the set of runs contained in the systolic oy slightly over different densities.

system, then xor(C) is the correct XOR (i.e. xor(xor(A), Thjs js demonstrated in figure 5, which shows the aver-
xor(B))). And due to theorems 1 & 2, when the iterations are 50 nymper of iterations taken by the algorithm as a func-
over, the final resglt will be stored in RegSmaII in a sorted ion of the percentage of pixels with errors. The other two
and non-overlapping manner, thus making xor(C) equal t0 getq of data show the average difference in the number of
the bitstring represented directly by the runs of C. That is, runs in the two images, which correlate very closely with

the bitstring stored in the end is indeed the correct XOR. the number of iterations up through 30-40%, and the num-
ber of runs in the XOR produced by the algorithm which is
5. Algorithm performance the upper bound we have not proven yet.
In the figure below the image size is 10,000 pixels with
In this section we present experimental results to showapproximately 250 runs in the original image, which trans-
that the systolic algorithm obtains the final result very lates to a density of 30%. The pattern is similar for smaller
quickly when the bitstrings being XORed are highly sim- images, but the variation is higher.
ilar. More specifically, the time for the systolic algorithm is In explanation of the high correlation between the num-
proportional to the difference between the number of runs in ber of iterations taken and the difference in the number of
the two images for similar images. In contrast the time for runs in the two images, we notice that after the first itera-
the sequential algorithm is proportional to the total number tion the larger number of runs will be stored along RegS-
of runs in the two images together. mall. Then if the shift-right procedure in step 3 causes a

2500 T T T T T T
Number of iterations <
Difference in number of runs in the two images +
Number of runs in the XOR O
2000 4
el
o]
[ole]
foL]
[l
- a -
1500 e .
o}
@Q@ ++ tr
=} ++
[l +++
DD@0 4
DDDD S
1000 el o<><>++++ E
DDD o$$++
go” g9t
ml *®
o oo®
| ¢
500 | 0P e .
o Le®®
EIDD@Q}Q}
0% e
DD$$®
DD®$
gee?
=
0 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Percent of pixels that are different between the two images

Figure 5. Number of iterations as a function of the percent of pixels with errors plotted along side two of the dominating factors
in the algorithms running time.

run to be pushed into this group of runs along the end, thenlinearly more time as the image size increases. In the second
all the runs at the end will need to be pushed to the right acase however, the number of errors is fixed at 6 runs each of
cell. And clearly the number of steps taken by this chain size 4 pixels, thus while the sequential algorithm still takes
reaction will be the length of this group of runs at the end, large amounts of time, the systolic algorithm averages just
which is the difference between the number of runs in the over 5 iterations regardless of how large the image gets.
two images.

When the number of pixels changed is much greater than
30% of the total image, a different factor begins to domi-
nate. For the smaller amounts of difference there will be
lots of empty cells left behind throughout the array, thus
the only significant data movement will be at the end as
discussed in the previous paragraph. But as the number o
differences increases and thus the number of empty cell
decreases, more and more data movement will be required
thus pushing the algorithm closer to the upper bound. Table 1. Average systolic iterations versus sequential iter-

The previous figure demonstrates the correlation be- ations for small amounts of errors (where the length of runs
tween the number of iterations taken by the algorithm and inimages is 4-20, and the length of error runs is 2-6).
the difference in the number of runs in the two images and
it demonstrates an upper bound as the number of runs in the
XOR after the algorithm finishes, however it does not give a
good impression of the algorithms speed. This can be seer6. Conclusions and future research
in the next table which focuses on smaller amounts of error.

Table 1 shows the average number of iterations taken by This paper has shown that a systolic array can perform an
both the sequential and the systolic algorithm on an imageimage difference operation on RLE encoded images very
of size ranging from 128 to 2048 pixels. In the first case, quickly if the two images are highly similar. Indeed, the
the errors are kept at approximately 3.5% of the image, thusnumber of iterations taken is bounded above by the number
causing both the systolic and the sequential versions to takeof runs left in the XOR, and for similar images the number

Algorithm | Errors Iterations versus image size
128 256 512 1024 2048
Systolic 35% (18 28 47 86 16.6
Sequential| 3.5% | 49 95 188 37.8 75.9

Systolic 6runs| 53 5.4 55 5.7 5.8
Sequential| 6runs | 8.3 12.3 19.7 349 65.1

of iterations is tightly correlated with the difference between [6] G. Agam, J. Frydman, O. Amiram, and |. Dinstein,
the number of runs in the two images.

Although a parallel solution of the image difference
problem can easily be performed on uncompressed data in

constant time if the number of processors available is pro-
portional to the number of pixels in the images, there is no
known parallel algorithm which performs the same opera-
tion in compressed mode. To the best of our knowledge this
paper demonstrates the first effective parallel solution which

“Efficient morphological processing of maps and line-
drawings based on directional interval codingfo-
ceedings of the SPIE - The International Society for
Optical Engineering1997, vol.3168, p. 41-51.

7] N. K. Ratha, A. K. Jain, and D. T. Rover, “Convolu-

operates on compressed data directly. This method has the
advantage of using a smaller number of processors, and it [8] A. Rasquinha and N. Ranganathan, “C3L: A Chip for

does not require the time to convert the image between RLE

format and bitmap mode.

In both the case of highly similar and highly different
images, the number of iterations taken seems to be domi-
nated by the frequent need to push a whole set of runs to [9]

the right to make room for a new entry. If a broadcast bus

existed which could run at the same frequency as the rest

of the systolic system, it might be possible to perform these

shifts more efficiently thus significantly decreasing the run-
ning time. Thus one area of future research should be mod-
ifying the algorithm to run more quickly on a model with a
fast broadcast bus, such as a reconfigurable mesh [13]. Adl10]
ditionally, the task of combining the adjacent runs in differ-

ent cells at the end of the algorithm is left as future research.
This task also is not fast on a pure systolic system, but could

be performed quickly with the help of a broadcast bus.

References

[11]

[1] P. P. Jonker and E. R. Komen, “A scalable real- [12]

(2]

(3]

(4]

(5]

time image processing pipelineProceedings. 11th
IAPR International Conference on Pattern Recogni-
tion, 1992, Vol. IV. Conference D: Architectures for
Vision and Pattern Recognition, p. xvii+243, 142-6.

F. Ercal et al., “A fast modular RLE-Based inspection
scheme for PCBsProc. of SPIE - Architectures, Net-

works, and Intelligent Systems for Manufacturing In-
tegration Pittsburgh, Oct. 1997, Vol. 3203, pp. 49-59.

S. Gil, R. Milanese, and T. Pun, “Comparing features
for target tracking in traffic scenesattern Recogni-
tion, 1996, vol.29, no.8, p. 1285-96

H. Kawasumi, H. Sekii, N. Enomoto, H. Ohata, and A.
Okazaki, “Detecting intruders using time-series data
by projection pattern of silhouetteElectrical Engi-
neering in Japan1997, vol.119, no.1, p. 62-73

G. M. Emelyanov, N. V. Kurmyshev, and O. Y. Yu-
vzhik, “Procedures and algorithms for detecting and
determining the orientation of objects in binary im-
ages,"Pattern Recognition and Image Analysi®97,
vol.7, no.3, p. 373-8

[13]

tion on Splash 2,Proc. Of IEE Symposium on FPGAs
for Custom Computing MachingBlapa Valley, CA,
April, 1995.

Connected Component LabellindEEE 10th Inter-
national Conf. on VLSI Desigdanuary 1997, pp.446-
51.

M. Djunatan and T. Mengko, “A programmable real-
time systolic processor architecture for image mor-
phological operations, binary template matching and
min/max filtering,” 1991 IEEE International Sympo-
sium on Circuits and Systemg. 5 vol. xIviii+3177,
65-8 vol.1, 1991.

N. Ranganathan, and K. B. Doreswamy, “A Sys-
tolic Algorithm and Architecture for Image Thinning,”
Proc. Of Fifth Great Lakes Symoisium on V|Buf-
falo, NY, Mar. 1995

Vipin Kumar et al.,Introduction to Parallel Comput-
ing: Design and Analysis of AlgorithmJhe Ben-
jamin/Cummings Publishing Company Inc. 1994.

F. Ercal, M. Allen, and H. Feng, Proof of Cor-
rectness and Performance Analysis of a Systolic
Image Difference Algorithm for RLE-Compressed
Images Technical Report CSc 99-01, Univer-
sity of Missouri — Rolla 1998. [Also available at
http://www.cs.umr.edu/"mallen/research/csc99-01.ps]

Y. Ben-Asher, D. Peleg, R. Ramaswami, and A.
Schuster, “The power of reconfiguratiod,” Parallel
Distributed Computingvol.13, pp. 139-153, 1991.

