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Abstract. A new approach to parallelizing harmonic balance simula-
tion is presented. The technique leverages circuit substructure to ex-
pose potential parallelism in the form of a directed, acyclic graph (dag)
of computations. This dag is then allocated and scheduled using vari-
ous linear clustering techniques. The result is a highly scalable and ef-
ficient approach to harmonic balance simulation. Two large examples,
one from the integrated circuit regime and another from the communi-
cation regime, executed on three different parallel computers are used to
demonstrate the efficacy of the approach.

1 Introduction

The harmonic balance simulation method is widely used in the arena of large-
signal, steady-state analysis of nonlinear circuits. It is often times applied to high
frequency electronics since it directly accommodates frequency domain models
[9, 10, 4]. Direct support for frequency domain models allow harmonic balance to
be preferable in situations where distributed elements or frequency-dependent
effects are important, for example, where accurate dispersive transmission line
analysis (e.g. due to skin-effects, dielectric properties) is necessary. Such condi-
tions are typical in radio-frequency (rf) and microwave circuits and increasingly
arise in high-speed, deep sub-micron integrated circuits (IC) as well.

Nonlinear circuit simulations, of any type, are computationally intensive and
therefore there have been several efforts to speed them via the use of parallel com-
putation. Since linear matrix operations lie at the foundation of many nonlinear
circuit simulation techniques, including harmonic balance, it is important to con-
sider a variety of previous circuit simulation parallelization efforts. For example,
several non-harmonic balance analog circuit simulators have been speed-up by
parallelization of their inherent linear matrix operations [12, 3, 8]. A paralleliza-
tion of the (linear part of the) harmonic balance method has been demonstrated
[14]. While this effort provided 97% processor efficiency this approach—as well
as the others cited—all display limited scalability.

Scalability is a measure of the ability of the parallelization technique to effi-
ciently make use of an increasing number of available processing elements (PEs).



In the ideal, speed-up scales linearly with an increasing number of PEs since po-
tential computational power is increasing linearly. Thus, a method which main-
tains close to linear speed-up over a wide range of available PEs is called scalable.
Since we are interested in an efficient technique for today’s parallel processors
which contain tens to hundreds of PEs, scalability is an important concern.

The method in [14] parallelized the entire analysis of the linear portion of
the harmonic balance method on a per-frequency basis, and thus the scalability
of this approach is completely limited by the number of frequencies required in
the analysis—adding PEs beyond the number of frequencies for the particular
input file causes no additional speed up. Alternatively, methods which parallelize
the underlying mathematics as it arises in circuit simulation have not, as of yet,
achieved reasonable scalabilty. For example, the results in [12, 3] show efficiencies
that are rapidly falling off even for ten PE computing systems. A peak efficiency
of about 38% for 8 processors (about 3x) has been shown, but speed up then
decreases beyond 8 processors [8].

A different parallel approach which leverages circuit substructure, as we do
here, was demonstrated for nonlinear transient domain analysis using the wave-
form relaxation technique [17]. This approach yielded somewhat better results
(efficiencies) than the mathematically oriented approaches but also shows signs
of scalability limitations. For example, efficiencies of about 30-60% are shown
for ten processors (about 6x speed up), while the method here achieves about
40% efficiency on 64 processors (i.e. 25x speed-up) and about 25% efficiency for
128 processors (32x speed-up). This is for the harmonic balance technique, of
course, and not waveform relaxation as in [17].

2 Harmonic Balance Technique

While an overview of the harmonic balance method is given with the aid of
Figure 1, please see the references for a full treatment of the technique [9, 10, 4].
The harmonic balance technique divides the circuit or system description into
two portions: linear and nonlinear, interconnected at the interface (a set of circuit
nodes). The ‘balance’ then entails iterative adjustment (using an optimization
procedure) of the harmonic voltages at the interface until the harmonic currents
as given by the linear and nonlinear sides ‘agree’. This is done for a fixed set
of frequency points, or harmonics, as dictated by the input parameters (the
term frequency will be used henceforth for consistency). Sometimes only a few
frequency points are used, say for nonlinear amplifier studies, while in other cases
hundreds to thousands of frequency points are used, e.g. when complete time
domain information is important. The ‘analysis’ on each side of the interface is
quite different, but in each case we are interested in computing the frequency-
domain currents at the interface given the frequency-domain voltages.

During the balancing iterations, each of the linear- and nonlinear-sides must
compute frequency-domain currents given frequency-domain voltages at the in-
terface and at external ports. For the linear-side, this is computed as a matrix
multiplication (at each frequency) of the frequency-domain voltages with the
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Fig. 1. Visualization of the harmonic balance method

equivalent (‘reduced’) admittance matriz of the linear portion of the circuit.
Thus, the linear portion of the circuit may be reduced to its equivalent admit-
tance matrix at each frequency point once and then subsequent ‘analyses’ during
the balance process are merely matrix multiplications.

In order to compute the equivalent admittance matrix (at each frequency)
of the linear side, circuit nodes that are internal to the linear side and not
connected to either of the interface or external ports must be reduced. As it
turns out from Kirchoff’s currect/voltage laws (KCL and KVL respectively),
Gaussian elimination becomes the basic step of such an equivalent reduction.
Assuming the typical matrix notation [9,10,4], an internal node, k, may be
equivalently reduced in the admittance matrix using the expression:
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where Y7 is the admittance matrix for a single frequency point f. Assuming
that the reduction is to a constant number of nodes, this reduction can be seen
to be of cubic order; i.e., as linear circuit nodes are added, computational time
for the reduction to a fixed-sized admittance matrix increases in a cubic fashion.

On the nonlinear-side, each nonlinear model appears connected individ-
ually at the interface. Figure 1 only shows example models which have three
nodes (as typical of transistors), but any number greater than or equal to two is
possible. As is the case for the linear side, nonlinear model evaluation requires
computation of frequency-domain currents given the frequency-domain voltages;
these models typically make use of Fourier domain transform techniques to allow
time-domain modeling.

The overall current at each interface node (at each frequency) is the sum
of current contributions from both the linear and nonlinear sides. In accordance
with KCL, this current should be zero. Thus an appropriate error function widely
used in harmonic balance uses the L2 norm:
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where I is the sum of all currents entering the interface node indexed j at
frequency k. Finally, a conjugate-gradient optimization routine adapted from
MINPACK [1] performs the ‘balance’ by iteratively adjusting the frequency-
domain voltages until an acceptably small current error is reached. Of course,
at each frequency-domain voltage revision, the linear and nonlinear evaluations
described must be used.

3 A Scalable Parallelization Technique
The harmonic balance algorithm, irrespective of parallelization, is then:

Form linear matrix and reduce to nodes of external ports and nonlinear models
Guess harmonic voltages at interface
forever
Compute harmonic currents from linear side (matrix multiplication)
Compute harmonic currents from nonlinear side (model evaluation)
Evaluate error (Eq. 2)
if error is acceptably small then done
Update harmonic voltage guess (via conjugate-gradient optimization)

Within this analysis framework, several parallelization techniques are possible.
In general, since only a few components are interconnected in typical circuits,
even as the circuit itself becomes large, the admittance matrices—or other ex-
pressions of circuit equations—tend to be sparse [15]. Even with this sparseness
characteristic, parallelization of the matrix solutions in other circuit simulators
has met with limited scalability [12,3]. On the linear side only, parallelization
of the entire process of model evaluations, matrix fill and reduction was shown
effective, but that approach has scalability limited to the number of frequencies
to be analyzed [14].

At first, it might appear that the harmonic balance iterations will dominate
computation time as these are looped. However, as mentioned earlier the linear
portion of the computation, represented entirely on the first line of the algorithm,
actually dominates many harmonic balance calculations. As the circuit grows,
linear fill and reduction tend towards cubic order, while the balance remains close
to linear. This isn’t always true of course, but many rf/microwave circuits do
not exhibit strong interaction among nonlinear elements (unlike digital switching
circuits)—although there are certainly exceptions. Thus, in many cases the linear
part of the analysis dominates.

Obviously, a critical element for any parallelization technique is that sufficient
parallelism be ezposed, with a granularity that is not too small. Granularity
may be loosely defined as the ratio of useful computation to inter-PE communi-
cation time. It is therefore a function of the particular multi-processor computing
resource, even for a fixed problem—thus a technique is needed which both ex-
poses a good deal of parallelism with a granularity useful for the computing
resource at hand. The method here is just such a technique, leveraging circuit
substructure to expose medium grain parallelism.



An introductory example will help clarify the general technique; first consider
the linear part of harmonic balance by the example circuit, composed using
subcircuits, as shown in Figure 2. In Figure 2.A, the circuit A has an instance
of circuit Bl and B2 in it. In turn, B1 has instances of C'1, C2 and C3 in it
while B2 contains C'4 and C5. The dark circles are circuit nodes, shown with
their node labels.
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Fig. 2. (A) Linear subcircuit structure; (B) computational structure resulting from the
method, where arrows represent data-dependencies

A typical analysis method would fully elaborate the circuit, forming a very
large, sparse matrix [15] for the entire circuit description including all circuit
nodes in all subcircuits. Alternatively, each subcircuit’s internal nodes can be
reduced prior to fill into the next level; with this technique, a full elaboration
never exists. In this sense, such a method takes advantage of the sparsity present
in circuit descriptions but without use of explicit sparse matrix techniques. Fig-
ure 2.B shows the computational flow of this approach for the example in Fig-
ure 2.A. The computation represented by each box is: (i) matrix fill in which
requires admittance matrix evaluation of local circuit element models and use
of subcircuit admittance matrices in the fill, and (ii) matrix reduction which
then reduces internal circuit nodes to allow presentation of the reduced admit-
tance matrix to the next level. Note that the boxes in Figure 2.B represent the
computation required for this subcircuit and the arc represents the passing of
admittance information to the next hierarchical level. Arcs are labeled using the
node names for the equivalent, reduced subcircuit as it must appear at the higher
level. Since subcircuit matrix information is required prior to computation, this
approach gives rise to a directed, acyclic graph (dag), actually a special form
called an in-tree, of computations.

Note that the linear matrix reduction computation shown in Figure 2.B is
for a single frequency, each frequency point in the analysis requires an indepen-
dent computation, so the whole linear computation becomes a forest of in-trees.
Inclusion of nonlinear models within the hierarchy is handled by ‘carrying’ the



nodes attached to any nonlinear model ‘up’ the hierarchy. Such a procedure
results in exactly the form Figure 1 while leaving internal linear-only node re-
duction in hierarchical form as in Figure 2.

For nontrivial circuits, this method exposes a good deal of parallelism, which
exists across siblings for the in-tree at each frequency and across the trees them-
selves. The method in [14] can be viewed as a subset of this approach in that
it parallelizes across entire frequency trees only. Since all communicated results
are only needed by one consumer (the graph is an in-tree), a message-passing
approach is appropriate. The current implementation is message-passing based
and uses the Message Passing Interface (MPI) standard [7, 16].

Even though linear computation is the dominant and more interesting part
of the overall technique, next consider opportunities for parallelization in the
balance portion of the method. First, the (‘forever’) loops themselves are seri-
ally dependent—i.e. for some iteration i, the frequency-domain voltage update
is done in loop i — 1, while the update itself cannot be done until the i*" error is
computed. Thus, only parallelization within a single step is possible (assuming
that the basic algorithm itself is not changed). Within this loop the nonlinear
current computations dominate—the linear current computations are small ma-
trix multiplications (at each frequency), and the error evaluation and frequency-
domain voltage updates are also small calculations. The optimization update,
a non-sparse, second-order, conjugate-gradient matrix computation is also not
readily parallelizable and also is of small size. This matrix size is exactly

2 x number-frequencies X number-nodes-in-interface (3)

where the factor of 2 arises because the frequency-domain voltages are complex-
valued numbers. More importantly, this calculation does not usually tend to be
a significant contributor to the iteration computation time.

Fortunately, the nonlinear current computation is readily parallelizable, by
parallelizing the evaluation of each nonlinear device, as can be visualized in
Figure 1. Thus, the non-linear analysis becomes a straightforward parallelization
of the nonlinear model evaluations; the next section describes the background
and specific technique for parallelizing the forest of in-trees that arises from the
linear computation.

4 Allocation and Scheduling

For the linear part of the method, the forest of in-trees must be allocated and
scheduled on the number of PEs to be used—this resource constrained schedul-
ing problem is readily recognized as NP-hard/complete [5]. A further complica-
tion is that computation times (runtimes) are not known. Therefore an alloca-
tion/scheduling approach which does not require graph node runtimes is used.
It is interesting to note that node computation times for realistic inputs do in
fact vary widely—by two to three orders of magnitude—giving rise to a very
‘irregular’ scheduling problem.



Alternatively, approaches which require runtimes could be considered: (i) a
quick runtime estimation function could be developed, or (ii) since runtimes are
usually not highly dependent on frequency, the in-trees could be ‘re-scheduled’
after the first frequency point. Of course, any scheduling time must be included
in the net parallel efficiency achieved—meaning that only ‘low-order’ methods
are potential candidates. Since good results have been acheived without the use
of runtimes, as discussed next, and since the scheduling time for even low-order
schedulers would have significant impact, these approaches were rejected.

The method makes use of a linear clustering [6] applied to the in-tree
structure. Linear clusters are just single dependency chains of the in-tree, each
of these is then statically allocated to a PE by assigning each in order to a PE,
modulo the number of PEs—this allocation is a wrap allocation of linear clusters.
Within this static allocation, local scheduling of each PE is dynamic, each PE
loops first from the lowest to highest frequency and then from lowest (tree) level
to highest looking for a ‘ready’ computation.

The first results obtained using this method revealed that load-balancing re-
mained problematic. Obviously there is no assurance that a balanced allocation
will result from this, and in fact without node runtimes or at least estimates,
no allocation method could make such a guarantee. To remedy this situation,
rotated allocation across ‘frequency’ in-trees is used. That is, a single in-tree is
clustered and wrap allocated, but then this static assignment is ‘rotated’ across
frequencies (modulo the number of PEs). The culmination of these approaches
is the final allocation/scheduling technique and that for which results are subse-
quently shown. Note that communication overheads observed in execution traces
(not shown for space reasons) are consistent with other investigations [18,2, 11].

5 Examples and Results

In order to validate and demonstrate the approach, three different large-scale,
parallel processors were used, with up to 128 PEs, an order of magnitude higher
than presented in previous circuit simulators [3,17]. These are: Cray’s T3E,
IBM’s SP2, SGI’s Origin-2000. Vendor supplied MPI routines were used in each
case. Every effort has been made to ensure that the runtimes presented are ac-
curate, however, there are a few factors that cannot be controlled. Since these
machines are multi-user, various types of interference are possible including pro-
cessor multi-tasking on some machines and communication contention. Never-
theless, multiple executions were done on ‘quiet’ machines and the data presented
is felt to be correct. Two examples are executed on each of the processors with
varying numbers of PEs.

The first example comes from the monolithic, microwave integrated circuit
(MMIC) domain. It is a linear circuit hierarchically composed with 7 parametric
circuit descriptions which, when elaborated, contains 169 subcircuit instances. It
is analyzed at 20 frequency points, this gives 3,380 computational nodes total in
the in-tree forest when elaborated across both circuit hierarchy and frequency.
Figure 3 shows the results when using wrap clustering, (frequency index) rotating



allocation, and dynamic local scheduling for the Cray T3E for up to 128 PEs. As
can be seen, runtime is consistently improving all the way up to 128 PEs and,
importantly, shows reaching 32x speed up (Figure 3.B). This appears to be
the highest reported speed up for any type of circuit simulation. Figure 4.A
and Figure 4.B show similar results for the IBM SP2 for up to 64 PEs and the
SGI Origin-2000 for up to 32 PEs. All graphs are plotted in log-log form since
the ideal runtime curve becomes linear with a slope of —1, i.e. ideal runtime is
x/number-of -PEs where z is a single PE runtime.

Runtime - T3E Relative Speed Up - T3E
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Fig. 3. Ideal and actual runtimes (A) and resulting relative speed-up (B) for the mmic
circuit on the Cray T3E
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Fig. 4. Runtime data for mmic circuit for the IBM SP2 (A) and SGI Origin 2000 (B)

The second example file represents a set of 8 radios arranged in a circular fash-
ion; each radio has a nonlinear transmitter and receiver, as well as filtering cir-



cuitry and an antenna model. A simple dispersive (loss dependent on frequency)
model for the atmosphere is included. When elaborated, the circuit contains 16
nonlinear elements—a set of 6 frequency (harmonically related) points are an-
alyzed. Figure 5.A shows the results for the linear part of the method only for
this input. The parallelization here is not as good as for mmic on the T3E as
shown in Figure 3 but consistent improvement up to 32 PEs is shown. Figure 5.B
shows the results for the whole analysis. By examining the runtime difference
for a single PE in Figures 5.A and 5.B, it can be seen that the nonlinear balance
time is about 15 seconds of the 100 seconds run (this clearly illustrates the ear-
lier statement that linear analysis time tends to dominate a harmonic balance
simulation). As can be seen in Figure 5.B, overall parallel efficiency is not as
good, but this is partly because the circuit only has 16 nonlinear elements, hence
for any number of PEs over this amount the nonlinear portion of the method
cannot be sped up.

Runtime - T3E Runtime - T3E
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Fig. 5. Ideal and actual runtimes for linear portion only (A) and full analysis (B) for
the cosite file executed on the Cray T3E

6 Concluding Remarks

A novel approach to the scalable parallelization of a circuit simulation problem
has been developed. This includes a new approach to exposing parallelism as well
as application-domain specific methods for allocation and scheduling. Measured
speed-ups for three different parallel computers demonstrate the efficacy of the
approach.

The authors would like to thank Professor Shirley Browne of the University
of Tennessee Knoxville for assistance in obtaining execution trace results using
the VAMPIR tool [13], the DoD High Performance Computing Modernization
Office’s CEN Computational Technology Area and ARPA under Order Number
F425 (via ONR, contract N6600197C8534) for partial project support.
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