Towards an Effective Task Clustering Heuristic
for LogP Machines

Cristina Boeres, Aline Nascimento* and Vinod E. F. Rebello

Instituto de Computacao, Universidade Federal Fluminense (UFF)
Niteréi, RJ, Brazil

e-mail: {boeres,aline,vefr}@pgcc.uff.br

Abstract. This paper describes a task scheduling algorithm, based on a
LogP-type model, for allocating arbitrary task graphs to fully connected
networks of processors. This problem is known to be NP-complete even
under the delay model (a special case under the LogP model). The strat-
egy exploits the replication and clustering of tasks to minimise the ill
effects of communication overhead on the makespan. The quality of the
schedules produced by this LogP-based algorithm, initially under delay
model conditions, is compared with that of other good delay model-based
approaches.

1 Introduction

The effective scheduling of a parallel program onto the processors of a paral-
lel machine is crucial for achieving high performance. One common program
representation is a directed acyclic graph (DAG) whose nodes denote tasks and
whose edges denote data dependencies (and hence communication, if the tasks
are mapped to distinct processors). These program communication costs can be
reduced by clustering or grouping tasks together to share processors. Until re-
cently, the standard communication model in the scheduling community has been
the delay model, where the sole architectural parameter for the communication
system is the latency or delay, i.e. the transit time for each message [15].

Clearly, the majority of scheduling algorithms perform some sort of clustering
(i.e. grouping two or more tasks onto the same processor). However in this paper,
the term cluster algorithms refer specifically to the class of algorithms which
initially consider each task as a cluster (allocated to a unique processor) and
then merge clusters (tasks) if the makespan can be reduced.

DSC [17] is a clustering algorithm that finds optimal 1-linear schedules
(without replicating tasks) for DAGs with granularity v which are within a
factor of 1 4+ L of the true optimal schedule. Under this delay model heuristic,
an optimal schedule can be found in polynomial time for fork, join, and coarse-
grained (inverted) tree DAGs. Note that Jung et al. concluded that the best
schedule produced by an algorithm that ignores replication may be worse than

* The author is supported by a postgraduate scholarship from CAPES, Ministério de
Educagao e Cultura (MEC), Brazil.

the true optimal schedule by a multiplicative factor which is a function of the
communication delay [10].

If recomputation is allowed, there are cases where coarse-grained DAGs can
be scheduled (truly) optimally in polynomial time [13, 14]. Palis et al. [14] pro-
posed a clustering algorithm PLW which produces a schedule with a makespan
at most (1+¢) times the makespan of the true optimal, where the granularity of
the DAG is at least 1=<. Therefore, for any granularity of graph, PLW produces

g
a schedule whose makespan is at most twice the optimal.

Unfortunately, research has shown that the delay model is not that realistic
since it assumes certain properties (e.g. the ability to multicast, i.e. to send a
number of different messages to different destinations simultaneously; and that
communication can completely overlap with computation of tasks) that may not
hold in practice — the CPU generally has to manage or at least initiate each com-
munication [6]. The dominant cost of communication in today’s architectures is
that of crossing the network boundary. This is a cost which cannot be modelled
as a latency and thus implies that new classes of scheduling heuristics are re-
quired to generate efficient schedules for realistic abstractions of today’s parallel
computers [4].

These architectural characteristics have motivated new (and now widely ac-
cepted) parallel programming models such as LogP [6] and BSP [16]. The LogP
model, for example, is an MIMD message-passing model with four architectural
parameters: the latency, L; the overhead, o, the CPU penalty incurred by a
communication action; the gap, g, a lower bound on the interval between two
successive communications; and the number of processors, P. Although the BSP
model takes a less prescriptive view of communication actions, it has been shown
that the two models are similar particularly terms of communication [4, 16].

In comparison with the delay model, identifying scheduling strategies that
specify such LogP-type characteristics in their communication models is diffi-
cult. Only recently have a few scheduling algorithms appeared in the literature.
Zimmerman et al. extended the work of [11, 17] to propose a clustering algorithm
which produces optimal k-linear schedules for tree-like graphs when o > g [18].
Boeres et al. [2, 3, 4] proposed a task replication strategy for scheduling arbitrary
UET-UDC (unit execution task/unit data communication) DAGs on machines
with a bounded number of processors under both the LogP and BSP models.
A novel feature being the use of task replication and tight clustering to support
the bundling of messages as a technique to reduce communication costs.

The purpose of this work is to continue to study the problem of scheduling
arbitrary task graphs under LogP-type models, by building on the results of ex-
isting delay model-based task replication clustering algorithms. In the following
section, we present a replication-based task clustering algorithm for scheduling
general or arbitrary DAGs on LogP-type machines (although an unbounded
number of processors is assumed). The specific architectural parameters consid-
ered have been adopted from the Cost and Latency Augmented DAG (CLAUD)
model [5] (developed independently of LogP). In the CLAUD model, an appli-
cation is represented by a DAG G and the set of m identical processors by P.

The overheads associated with the sending and receiving of a message are de-
noted by As and A,., respectively, and the communication latency or delay by .
The cLAUD model very naturally models LogP, given the following parameter
relationships: L =7, 0 = %, g=Xs and P =m.

The delay model is a special case in under a LogP-type model where the over-
heads are zero. Therefore, any proposed LogP-type scheduling algorithm still
has to produce good schedules under delay model conditions. This is the focus
of this paper and Section 3 compares the makespans produced by the new algo-
rithm under delay model conditions against two other well known delay model
clustering algorithms — DSC and PLW. Section 4 draws some conclusions and
outlines future work regarding scheduling for Log P-type machines. (Throughout
this paper, the term delay model conditions is used to refer to situation where
the overheads are zero and the term LogP conditions used when the overheads
are nonzero.)

2 A New Heuristic

A parallel application is represented by a DAG G = (V, E,e,w), where V is the
set of tasks, F is the precedence relation among them, £(v;) is the execution cost
of task v; € V and w(v;,v;) is the weight associated to the edge (v;,v;) € E
representing the amount of data units transmitted from task v; to v;.

For the duration of each communication overhead the processor is effectively
blocked unable to execute other tasks in V' or even to send or receive other mes-
sages. Consequently, any scheduling algorithm must, in some sense, view these
sending and receiving overheads also as “tasks” to be executed by processors.

The new clustering heuristic (BN R) attempts to minimise the makespan by
trying to construct a cluster for each task v; so that v; starts executing at the
earliest possible time. Cluster v; will contain the owner task v; and, determined
by a cost function, copies of some of its ancestors (i.e. BN R employs task repli-
cation). Like most clustering algorithms, BN R consists of two phases: the first
determines which tasks should be included and their order within a cluster; the
second, identifies the clusters required to implement the input DAG G and maps
each necessary cluster to a unique processor. Even though an unbounded number
of processors is assumed, BN R does try to minimise the number of processors
required as long as the makespan is not adversely affected.

2.1 Properties for LogP scheduling

In order to schedule tasks under a LogP-type model, BN R applies a couple of
new general scheduling restrictions with regard to properties of clusters (one in
each phase). In the first phase, only the owner task of a cluster may send data to
a task in another cluster. This restriction does not adversely affect any makespan
since, by definition, an owner task will not start execution later than any copy
of itself. Also, if a non-owner task v in cluster C'(v;) were to communicate with
a task in another cluster, the processor to which C(v;) is allocated would incur a

send overhead after the execution of v which in turn might force task v; to start at
a time later than its earliest possible. The second phase uses the restriction that
each cluster can have only one successor. If two or more clusters share the same
predecessor cluster, then this phase will assign a unique copy of the predecessor
cluster to each successor irrespective of whether or not the data being sent to
each successor is identical. This removes the need to incur the multiple send
overheads at the end of the predecessor cluster which unnecessarily delay the
execution of successor clusters.

These general restrictions are new in the sense that they do not need to be
applied by scheduling strategies which are used exclusively for delay model con-
ditions (because of the assumptions made under the delay model). The purpose
of these restrictions is to aid in the minimisation of the makespan, however they
do incur the penalty of increasing the number of clusters required and thus the
number of processors needed. Where the number of processors used is viewed
as a reflection on the cost of implementing the schedule, a post-pass optimisa-
tion can be applied to relax the above restrictions and remove clusters which
now become redundant (i.e. those clusters whose removal will not increase the
makespan). Note that Lowe et al. [7] suggests that the problem of determining
the optimal amount of replication is effectively NP-complete for the LogP model.

2.2 The first phase

For each task v; € V (where i is assigned topologically), BN R constructs a
cluster C(v;) (with v; being its owner) from the ancestors of v;. The term
iancs(C(v;)) defines the set of immediate ancestors of tasks already in C'(v;)
which themselves are not in C'(v;), i.e. iancs(C(v;)) = {u; | (uj,t) € EAuj ¢
C(vs)Atr € C(v;)}. A task u; € iancs(C(v;)) is incorporated into cluster C'(v;) if
v;’s start time can be reduced. Thus, BN R includes u; in C'(v;) based on compar-
ing the start time of v; under the following two situations: (a) when u; & C(v;);
and (b) when u; € C(v;).

The pseudocode for BNR can be seen in Algorithm 3. The strategy visits
each task v; € G, constructing cluster C'(v;) and calculating v;’s earliest schedule
time es(v;) (which is defined as the start time of v; in its own cluster C(v;))
as described in the manner below. Note that we assume the definition of the
earliest start time of task v; to mean the optimal or earliest possible start time
of v; [15]. Our objective is to attempt to find a schedule for each v; € V' such
that eg(v;) = e(v;).

Let C(v;) = (t1,-..,t;,-.-tk,v;) be tasks of cluster v; in execution order.
These tasks are not listed in non-decreasing order of their earliest start time nor
earliest schedule time but rather in an order determined by the sequence in which
tasks were included in the cluster and the position of their immediate successor
task at the time of their inclusion. The critical cluster path cost, m(C(v;)), is
the earliest time that v; can start due to the ancestor tasks of v; in C'(v;). This
is calculated simply by ignoring the communications of all tasks € iancs(C(v;))
to C'(v;), as shown in lines 2 and 3 of Algorithm 1. et(¢p, v;) is the end time of
this copy of task ¢, in C'(v;) and which is effectively never scheduled earlier than

the original (owner) task ¢, in C(t,)(line 3). The end time of ¢;, the first task,
(et(t1,v;) = es(t1) +€(t1)) is based on its earliest schedule time even though its
ancestors (when it has some) are not (yet) in the cluster. The reason for this is
that BN R, in some sense, bases this value on the likely cost in future iterations,
i.e. best, of course, being limited by the task’s earliest schedule time.

Algorithm 1 : critical-cluster-path (C(v;));

let C(vi) = (t1,ta,...,tk); et(ti,vi) = es(t1) +e(t1);
2 forp=2,...,k do

3 et(ty,vi) = max{et(tp_1,v:),es(tp)} + (tp);

4 m(C(v;)) = et(ty,vi);

[y

Algorithm 2 : critical-ancs-path (v, C(v;))

1 mawxc := 0; define iancs(C(v;)); let C(vi) = (t1,t2,...,tk);
2 if (iancs(C(vi)) # 0) then

3 for all u; € iancs(C(v;)) do

4 for each (uj,t;) € E such that t; € C'(v;) do
5 c(uj, ti,vi) = es(uj) +e(u;) + As + L X w(u;, tr) + Ar;
6 forp=1,...,k do
c(uj, tr,v;) = max{c(uj,t;,vi),es(tp)} +e(tp);

end for each
7 if (mazc < c(uj,t;,v;)) then
8 mazc = c(uj,t;,v;); mtask = uy;

end if

end for all

Task wu; is a possible candidate to be incorporated into cluster C(v;) if
u; € iancs(C(v;)). Under situation (a), for each task uj, BNR calculates the
earliest time that v; can start due solely to the chosen task u; (known as the
critical ancestor path cost c(uj,t;,v;)) to be the sum of: the execution of wu;
(es(u;) +&e(uj)); the sending overhead (As) (due to the LogP general scheduling
restrictions, there is no need to determine the number of overheads and gaps
g incurred, since BN R only permits a cluster to send one message at the ex-
pense of needing multiple copies of the same cluster); the communication delay
(L x w(uj,t)); the receiving overhead (Ar); and the computation time of tasks
tr to tg (i-e. the critical cluster path cost for task ¢ to ¢x). The task u; whose
c(uj,t;,v;) is the largest is the immediate ancestor of cluster C(v;) who most
delays task v;. This function can be seen in Algorithm 2 which assigns mtasks
and mazxc to the critical immediate ancestor and its critical ancestor path cost,
respectively (line 8).

If maxc is greater than the critical cluster path cost, m(C(v;)), than task
mtask becomes the chosen candidate for inclusion into cluster C'(v;). If this is
not the case, the process stops and cluster C'(v;) is now complete. This forms

the condition of the main loop in the construct-cluster function as shown in
lines 5 to 11 of Algorithm 3. Before committing mtask to C(v;), it is necessary
to compare the cost mazc with situation (b) — the critical cluster path cost of
the cluster C(v;) U {mtask}. If mazc is less than this new cost, task mtask is
not included (line 11) and the formation of cluster C(v;) is finished. Otherwise,
task mtask is included, critical ancestor path costs are calculated for the new
set, of tasks in iancs(C(v;)) (line 9), the start time of v; is updated (line 10) and
the loop is repeated. Note that it is not necessary for all of the ancestors of v;
to be visited when constructing the cluster C'(v;).

Algorithm 3 : construct-cluster (v)
1 if pred(v) =0 then es(v) :=0;

2 else
3 (maxc, mtask) := critical-ancs-path(v, C(v));

4 m(C(v)) = 0; es(v) := max{m(C(v)), mazc};
5 while (m(C(v)) < mazc);
6 C(v) == C(v) U {mtask}; m'(C(v)) := m(C(v));
7 ((v)) = critical-cluster-path(C(v));
8 f (m(C(v)) < mazc) then
9 (maxc, mtask) := critical-ancs-path(mtask, C(v));
10 es(v) := max{m(C(v)), mazc};
else
11 es(v) = max{m'(C(v)),mazc}; C(v) := C(v) — {mtask};
end while

end if

2.3 The second phase

The second phase of the approach is to determine which of the generated clusters
are needed to implement the schedule. This can be achieved by simply tracing the
cluster dependencies starting with the sinks. Note that multiple copies of clus-
ters may be required. These schedule clusters are then allocated to processors,
at worst one cluster per processor. In some cases, there is scope for optimisa-
tion: clusters whose execution times do not overlap can be mapped to a single
processor; depending on the communication parameters, the number of copies
of a cluster could be reduced without affecting the makespan, e.g. clusters have
the ability to multicast under the delay model.

2.4 Algorithm analysis

At first glance, BN R appears to be similar to that of the PLW algorithm of Palis
et al. [14] ignoring the differences for LogP scheduling. Both of these algorithms
consist of two phases, utilise task replication to form clusters (one for each task
in G), even growing them by adding a single task at a time. However, the key
difference is the use of the earliest schedule time to determine the start time of

owner tasks (i.e. only for the original tasks in G and not their copies) rather than
the earliest start time for all tasks including their copies. (Note that the earliest
start time is a bound [14] since it may be impossible to actually schedule a task
at this time [15]). A second difference is the execution order of tasks within a
cluster. Note that PLW orders tasks in nondecreasing order of their earliest start
time. The effect of these differences are highlighted by the results presented in
the next section.

The complexity of PLW is O(n?logn + ne), where n =| V | and e =| E |.
For BNR, the critical-cluster-path function is clearly O(n). Examining function
critical-ancs-path, O(e) edges could emanate from tasks in iancs(v;). Given k,
the number of tasks currently in cluster C(v;), there are at most (n — k) tasks in
iancs(C(v;)). Consequently for the worst case number of edges, as the number
of tasks in C(v;) grows, so the number of edges emanating from iancs(C(v;))
diminishes. The complexity of critical-ancs-path is then O(ek) and the whole
strategy O(n’ek).

3 Results

The results produced by BN R have been compared with the clustering heuristic
PLW [14] and DSC [17] using a benchmark suite of DAGs which includes out-
trees (OT), in-trees (IT), diamond DAGs (D), a set of randomly generated
DAGSs (R) and irregular DAGSs (I) taken from the literature.

A few of the experimental results obtained are shown in Tables 1, 2 and 3.
The subscript of the DAGs represent the number of tasks in the respective
graphs. Each heuristic produced a schedule with a (predicted) makespan M and
an actual makespan S (only one value appears in the column if M and S are
the same). The time for the actual makespan of the schedule was derived from
a parallel machine simulator [4]. The required number of processors is P.

The first set of experiments focus on the delay model and fine-grained DAGs
for the following reasons. The best scheduling algorithms are based on the delay
model since it is the standard scheduling model. The delay model is in fact
a special case under the LogP model (9 = o = 0) where tasks can exploit
the property of multicasting. Although the scheduling restrictions cause LogP
strategies, such as the one proposed in this work, to appear greedy with respect
to the number of processors required, it is important to show that the makespans
produced and processors used are comparable to those of delay model approaches
under their model. Scheduling approaches such as DSC and PLW have already
been shown to generate good results (optimal or near-optimal) for various types
of DAGs. For this experimental analysis, the graphs were assigned unit execution
and unit communication costs and the latency L was set to 1, 2, 5 and 10 units
for different tests.

In the 196 experiments carried out in the first set, the schedules produced
by BN R were never worse than those of DSC or PLW. BN R was better than
DSC in 164 cases and equal in 32, and in 166 and 30 cases, respectively, against
PLW . The performances of both DSC and PLW progressively worsen in com-

[| Communication Cost = 1 [Communication Cost =2]
DSC PLW BNR DSC PLW BNR

DAG _|M/S[P [M/S[P [M/S[P |[M/S][P |M/S] P |[M/S[P
OTg3 11 | 32 8 46| 6 |32 11 21 8 36| 6 |32
OTs511 17 [256]|11/12{344| 9 [256] 17 [171]| 13 [308] 9 [256

ITs3 11 |32 11 |21 |11 (16| 11 |[21| 13 |21] 11 |21
IT511 17 [256] 17 [341| 17 [256] 17 [171]19/21|341] 17 [171
Degy 22 | 8 [23/28{32| 22 | 6 30 5 [28/37| 26| 28 | 8

Daioo | 58 | 20 |59/76]200| 58 | 14| 78 |11 |70/97|164| 76 | 14
Ty [11]] 16 [13| 16 |22 15 |10| 21 | 9 |18/22[20| 17 |13
Ris 8 5] 9 | 7] 7 |5] 9 |3] 9 |7 8|4
Ri2a 8 |67] 8/9 |76] 7 |64] 10 |62 11 |73]| 9 |65
R310 18 [110]21/22[189] 16 |105]|24/25|106|26/29[173| 20 |121
Rs10 20 |170(23/25]327| 17 |184| 25 |155|31/34[295| 21 |214

Table 1. Results for communication latency (L) equal to 1 and 2 units.

[| Communication Cost =5 | Communication Cost = 10 |
DSC PLW BNR DSC PLW BNR
DAG |M/S[P | M/S [P |M/S[P | M/S [P | M/S [P |M/S[P
OTg3 19 13 6 32| 6 [32] 29/32 |16 6 32| 6 |32
OTs511 [31/33[121 14 [260] 9 [256| 50/53 [115 9 256 9 |256

ITs3 19 |13 19 21| 17 |12 29 16 24 9 22|11
IT511 31 [121]29/31 [169| 30 [108]| 50/49 [115 41 73| 36 |88
Dgy 55 6 [39/56 [20| 36 | 11| 61/60 | 3 | 54/62 |17 | 45 | 9

Dyop | 163 | 18 |95/160] 97 | 104 | 35 [230/225] 15 |[137/229] 66 | 135 | 52
T4 [11]] 31 | 5 |28/26 19| 23 | 8 52 | 4 | 34/32 | 8 | 29 | 8
Ris 3 [1| 12 |5 |11] 3 13 1 12 2 [12 | 2
Risa |14/16] 54 | 16/17 |61 | 11 | 60| 23 |53 | 20/21 |53 | 15 | 56
Raio |43/45] 98| 41 [131] 29 [140] 73/75 | 95| 75/79 |111] 42 [138
Rs10 |46/44|128| 51/55 [226] 32 [229] 80 |116| 71/82 |185| 47 |244

Table 2. Results for communication latency (L) equal to 5 and 10.

parison with BN R as the DAGS effectively become more fine-grained due to the
increasing latency value. DSC produces schedules which are, on average, 12.2%,
16%, 32.1% and 39.1% worse than those of BN R for each of the respective la-
tency costs. For PLW these values are 20.6%, 23.9%, 25% and 25.3%. DSC
generally utilises the fewest processors since it does not replicate tasks. BN R,
on the whole, uses fewer processors than PLW (especially for small latencies),
but where this is not true the compensation is the better makespan.

A second set of experimental results is presented in Table 3. This table con-
tains a comparison of makespans produced by the three strategies for a group of
documented irregular, non-unit cost graphs used by various researchers. BN R
continues to perform well.

DSC PLW BNR

DAG M/S [P M/S [P|M/S] P
Tz, [8] 9 2] 8 5] 8 3
T7y, [9] 8 3] 11/12 [5| 8 3
Tio [14]] 30 |3]| 27 |3] 26 3
Ti3 [1] 301 |7| 275 |8 246 8
T1g [12][530%/550]5|490/480[8] 370 9

t Note that Reference [12] reports a schedule time of 460 on 6 processors.

Table 3. Results for non-unit (task and edge) cost irregular DAGs (L = 1).

4 Conclusions and future work

Based on the results obtained so far, BN R compares favourably against tradi-
tional clustering-based scheduling heuristic such as DSC and PLW which are
dedicated exclusively to the delay model. Clearly, results of further experiments
using graphs with a more varied range of granularities and connectivities are
needed to complete the practical evaluation of the algorithm. The main objective
is, however, to analyse the heuristic’s behaviour under LogP conditions, com-
paring results under these conditions with other LogP scheduling algorithms.
In particular, we wish to investigate MSA [2] to ascertain the benefits of its
technique of bundling messages in a LogP environment. In terms of obtaining
theoretical bounds on makespan optimality under LogP conditions, further work
needs to be done although we suspect that under the delay model the bound is
no worse than that of PLW.

Acknowledgments

The authors would like thank Tao Yang and Jing-Chiou Liou for providing the
DSC and PLW algorithms, respectively, and for their help and advice.

References

1. I. Ahmad and Y-K Kwok. A new approach to scheduling parallel programs us-
ing task duplication. In K.C. Tai, editor, International Conference on Parallel
Processing, volume 2, pages 47-51, Aug 1994.

2. C. Boeres and V. E. F. Rebello. A versatile cost modelling approach for multi-
computer task scheduling. Parallel Computing, 1999. (to appear).

3. C. Boeres and V.E.F. Rebello. Versatile task scheduling of binary trees for realis-
tic machines. In C. Lengauer, M. Griebl, and S. Gorlatch, editors, The Proceed-
ings of the Third International Euro-Par Conference on Parallel Processing (Euro-
Par’97), LNCS 1300, pages 913-921, Passau, Germany, August 1997. Springer-
Verlag.

4. C. Boeres, V.E.F. Rebello, and D. Skillicorn. Static scheduling using task repli-
cation for LogP and BSP models. In D. Pritchard and J. Reeve, editors, The

10.

11.

12.

13.

14.

15.

16.

17.

18.

Proceedings of the Fourth International Euro-Par Conference on Parallel Process-
ing (Euro-Par’98), LNCS 1470, pages 337-346, Southampton, September 1998.
Springer-Verlag.

G. Chochia, C. Boeres, M. Norman, and P. Thanisch. Analysis of multicomputer
schedules in a cost and latency model of communication. In Proceedings of the 3rd
Workshop on Abstract Machine Models for Parallel and Distributed Computing,
Leeds, UK., April 1996. IOS press.

D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: Towards a realistic model
of parallel computation. In Proceedings of the 4th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, San Diego, CA, May 1993.

J. Eisenbiergler, W. Lowe, and A. Wehrenpfennig. On the optimization by redun-
dancy using an extended LogP model. In Proceeding of the International Con-
ference on Advances in Parallel and Distributed Computing (APDC’97), pages
149-155. IEEE Comp. Soc. Press, 1997.

A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling
directed acyclic graphs on multiprocessors. Journal of Parallel and Distributed
Computing, 16:276-291, 1992.

J-J. Hwang, Y-C. Chow, F.D. Anger, and C-Y. Lee. Scheduling precedence graphs
in systems with interprocessor communication times. SIAM J. Comput., 18(2):244—
257, 1989.

H. Jung, L. Kirousis, and P. Spirakis. Lower bounds and efficient algorithms for
multiprocessor scheduling of DAGs with communication delays. In Proc. ACM
Symposium on Parallel Algorithms and Architectures, pages 254—264, 1989.

S.J. Kim and J.C. Browne. A general approach to mapping of parallel computa-
tions upon multiprocessor architectures. In Proceedings of the 3rd International
Conference on Parallel Processing, pages 1-8, 1988.

Y. K. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective tech-
nique for allocating tasks graphs to multiprocessors. IEEE Transactions on Par-
allel and Distributed Systems, 7(5):505-521, May 1996.

W. Lowe and W. Zimmermann. On finding optimal clusterings of task graphs. In
Aizu International Symposium on Parallel Algorithm and Architecture Synthesis,
pages 241-247. IEEE Computer Society Press, 1995.

M.A. Palis, J.-C Liou, and D.S.L. Wei. Task clustering and scheduling for dis-
tributed memory parallel architectures. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(1):46-55, January 1996.

C.H. Papadimitriou and M. Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. STAM J. Comput., 19:322-328, 1990.

D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Question and answers about
BSP. Scientific Computing, May 1997.

T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems,
5(9):951-967, 1994.

W. Zimmermann, M. Middendorf, and W. Lowe. On optimal k-linear scheduling
of tree-like task graph on LogP-machines. In D. Pritchard and J. Reeve, editors,
The Proceedings of the Fourth International Euro-Par Conference on Parallel Pro-
cessing (Euro-Par’98), LNCS 1470, pages 328-336, Southampton, September 1998.
Springer-Verlag.

