
Implementing a Non-strict Functional

Programming Language

on a Threaded Architecture

Shigeru Kusakabey, Kentaro Inenagay, Makoto Amamiyay,
Xinan Tangz, Andres Marquezz, and Guang R. Gaoz

yDept. of Intelligent Systems, Kyushu University,
zEE & CE Dept. University of Delaware
E-mail: kusakabe@is.kyushu-u.ac.jp

Abstract. The combination of a language with �ne-grain implicit paral-
lelism and a data
ow evaluation scheme is suitable for high-level program-
ming on massively parallel architectures. We are developing a compiler of
V, a non-strict functional programming language, for EARTH(E�cient Ar-
chitecture for Running THreads). Our compiler generates codes in Threaded-
C, which is a lower-level programming language for EARTH. We have de-
veloped translation rules, and integrated them into the compiler. Since
overhead caused by �ne-grain processing may degrade performance for
programs with little parallelism, we have adopted a thread merging rule.
The preliminary performance results are encouraging. Although further im-
provement is required for non-strict data-structures, some codes generated
from V programs by our compiler achieved comparable performance with
the performance of hand-written Threaded-C codes.

1 Introduction

Many �ne-grain multithreaded architectures have been proposed as promising mul-
tiprocessor architectures because of their ability to tolerate communication and
synchronization latencies inherent in massively parallel machines[1][3][9][12][14][18].
By providing a lot of threads and supporting fast switches among threads, mul-
tithreaded architectures can hide communication and synchronization latencies.
Control of execution is switched to a new thread when a long-latency operation
is encountered. Many explicit parallel languages have been proposed for �ne-grain
multithreaded programming[7][8][17][19]. Overlapping computation and commu-
nication is programmer's task when using this kind of explicit languages. Writing
explicit parallel programs on parallel machines is still a skilled job.

We are developing a high-level parallel programming language, called \V,"
which would minimize the di�culties in writing massively parallel programs[15].
In order to provide a high-level abstraction, the language is a non-strict functional
programming language with implicit parallelism. There is no anti-dependence in V
programs and it is easy to extract parallelism at various levels including �ne-grain
parallelism from V programs. The underlying computation model is an optimized
data
ow computation model, Datarol[4]. The combination of a functional language

with implicit parallelism and a �ne-grain multithread evaluation scheme is suitable
for massively parallel computation. The languages abstracts the timing problems
in writing massively parallel programs, while �ne-grain multithread evaluation
supports e�cient execution of a large number of �ne-grain processes for implicit
parallel functional programs in a highly concurrent way.

This approach can exploit irregular and dynamic parallelism, thus support
e�cient execution of \non-optimal" codes. Since our language does not support
explicit descriptions for parallel execution and data-mapping, it is necessary for
the compiler to automatically extract parallel codes of optimal grain size, partition
data-structures and map them to each processing node. However, this is not an easy
task, and the compiler may generate non-optimal codes of non-uniform grain size
and ill-mapped data-structures. The multithreaded architectures with the ability
to tolerate computation and synchronization latencies alleviate the problems of
non-optimal code.

In this paper, we discuss implementation issues of V on a multithreaded archi-
tecture EARTH (E�cient Architecture for Running THreads). In order to show
the feasibility of our language, we have implemented our language on commercially
available machines such as Sequent Symmetry and Fujitsu AP1000[16]. However,
since our basic execution model is a multithreaded execution model extended from
Datarol model, multithreaded architectures which have special support for �ne-
grain parallel processing are preferable for our language. EARTH realizes e�cient
multithreading with o�-the-shell microprocessor-based processing nodes[12]. We
are implementing V on EARTH, while there are two explicit parallel languages for
EARTH, EARTH-C[11] as a higher-level language and Threaded-C[21] as a lower-
level language. The goal of this work is to show adequate compiler support makes
our implicit parallel language as e�cient as the explicit parallel languages on the
multithreaded architecture. Our �nal aim is to realize a high-level programming
environment on a high performance architecture.

In compilation, we use a virtual machine code, DVMC (Datarol Virtual Ma-
chine Code), as an intermediate code, and Threaded-C as a target code. Threaded-
C is an explicit multi-threaded language, targeted for the EARTH model. We have
developed translation rules, and integrated them into the compiler. Since overhead
caused by �ne-grain processing may degrade performance for programs with little
parallelism, we have adopted a thread merging rule. The preliminary performance
results on EARTH-MANNA[12][10] are encouraging. Although further improve-
ment is required for non-strict data-structures, some codes generated from V pro-
grams by our compiler achieved comparable performance with the performance of
hand-written Threaded-C codes.

This paper is organized as follows: section 2 and section 3 introduce our lan-
guage V and EARTH respectively. Section 4 explains our compilation method.
Section 5 discusses implementation issues of �ne-grain data-structures on EARTH.
Section 6 makes concluding remarks.

2 Language V

2.1 Language feature

Originally, V is a functional programming language Valid[2], developed at NTT
ECL for colored token data
ow architectures as a part of the Data
ow Project.
The fundamental design policies are:

{ Recursive functional programming was adopted as the basic structure.
{ A static binding rule was applied to variables.
{ A static type system was adopted.
{ Call-by-value was adopted as the fundamental computation rule.

Valid provided facilities for highly parallel list processing, and demonstrated the
feasibility of functional programming and data
ow computation.

A program consists of a set of user-de�ned functions, and their invocations. A
function instance is invoked using a function de�nition. The following is a form of
function de�nition:

function hfunction de�nition namei (hformal parametersi)
return (htypes of return valuesi)
= hbody expressioni ;

Notation hfunction de�nition namei is an identi�er for the function. Notation
hformal parametersi speci�es the names and types of formal parameters, and
htypes of return valuesi the types of return values. As an example, we consider
the following program which calculates the summation from low to high:

function summ(low,high:integer) return(integer)

= if low=high then low

else flet mid:integer=(low+high)/2 in summ(low,mid)+summ(mid+1,high)g;

This function has two integer inputs low and high, and one integer return value.
Within the function body, two recursive calls may be invoked.

2.2 Intermediate code

There is no anti-dependence in V programs and it is easy to extract parallelism
at various levels including �ne-grain parallelism from V programs. Parallelism is
two-fold: function applications and subexpressions. Subexpressions executable in
parallel are compiled to independent threads.

As an intermediate code, our compiler uses DVMC, which is a data
ow vir-
tual machine code based on the Datarol model. The idea of Datarol is to remove
redundant data
ow by introducing registers and a by-reference data access mech-
anism. A Datarol program (DVMC) is a multithread control-
ow program, which
re
ects the data
ow inherent in the source program. While Datarol re
ects the
underlying data-
ow structure in the given program, it eliminates the redundant
data-
ow operations such as switch and gate controls, and also eliminates the

operand matching overhead. In Datarol, a function (procedure) consists of multi-
ple threads, and an instance frame (virtual register �le) is allocated in function
invocation. The threads within the function share the context on the frame. While
a data-driven mechanism is used to activate threads, result data and operand data
are not passed as explicit data tokens, but managed on the instance frame.

Lenient evaluation (non-strict and eager data
ow evaluation) can maximally
exploit �ne-grain parallelism and realize
exible execution order. Argument ex-
pressions for a function invocation can be evaluated in parallel, and the callee
computation can proceed if either of argument value is prepared. the \call f r"
creates an instance of the function f , and stores the pointer to the instance in r .
The \rins" releases the current instance. The \link r v slot" sends the value of v
as the slot-th parameter data to the callee instance speci�ed by r. The \rlink r
cont slot" sends the continuation, cont for the returned value and the continuation
threads in the callee instance, as the slot-th parameter data to the callee instance
speci�ed by r . The \receive slot v" receives the data transferred from the caller
instance through the slot-th slot, and stores the data into v . The \ return rp v"
triggers the continuation threads speci�ed by the rlink operation after setting the
value of v to the content of rp.

Fig.1 shows DVMC for the summation program, generated by a straightforward
compilation method. In DVMC, execution control among threads proceeds along
continuation points. In the �gure, a solid box represents a thread, an arrow a
continuation arc, and a wavy arrow an implicit dependence.

In the �gure, three RECEIVEs at the top are nodes to receive input parameters,
two integers low and high, and one continuation point to return the result value.
Within the function body, two shaded parts correspond to two recursive calls. A
LINK is a node to send parameter value, and an RLINK to send a continuation point
to receive a result value.

3 EARTH

EARTH architecture is a multiprocessor architecture designed for the e�cient par-
allel execution of both numerical and non-numerical programs. The basic EARTH
design begins with a conventional processor, and adds the minimal external hard-
ware necessary for e�cient support of multithreaded programs.

In the EARTH model, a multiprocessor consists of multiple EARTH nodes and
an interconnection network. The EARTH node architecture is derived from the
McGill Data Flow Architecture, which was based on the idea that synchronization
of operations and the execution of the operations themselves could be performed
more e�ciently in separate units rather than in the same processor. Each EARTH
node consists of an Execution Unit (EU) and a Synchronization Unit (SU), linked
together by bu�ers. The SU and EU share a local memory, which is part of a dis-
tributed shared memory architecture in which the aggregate of the local memories
of all the nodes represents a global memory address space.

The EU processes instructions in an active thread, where an active thread is
initiated for execution when the EU fetches its thread id from the ready queue.

RECEIVE 1 i6;

NOP;NOP;

EQI i6 i7 i9;

SW i9;

RECEIVE 2 i7; RECEIVE 3 p8;

MOVE i13 i10;

ADDI i6 i7 i11; SETI 2 i12;

DIVI i11 i12 i13;

SETP SUMM p14;

CALL p14 p15;

LINK p15 i6 1;

LINK p15 i10 2;

SETI 1 i17;

RLINK p15 i16 3;

RECEIVE nil i16;

ADDI i10 i17 i18;

SETP SUMM p19;

LINK p20 i18 1;

LINK p20 i7 2;

CALL p19 p20;

ADDI i16 i21 i22;

RECEIVE nil i21;

RLINK p20 i21 3;

NOP;

MOVE i22 i23;

MERGE;

MOVE i6 i23;

RINS;

RETURN p8 i23;

Fig. 1. Fine-grain abstract machine code of summ.

Network

Local Memory

EU SU

Local Memory

EU SU
.

NodeNode Ready Queue

Event Queue

Fig. 2. EARTH architecture

The EU executes a thread to completion before moving to another thread. It
interacts with the SU and the network by placing messages in the event queue.
The SU fetches these messages, plus messages coming from remote processors via
the network. The SU responds to remote synchronization commands and requests
for data, and also determines which threads are to be run and adds their thread
ids to the ready queue.

The EARTH programming model is implemented as an extension to the C lan-
guage. The resulting C dialect, EARTH Threaded-C, is an explicitly parallel lan-
guage that allows the programmer to directly specify the partitioning into threads
and the EARTH operations[21]. The higher-level C dialect for EARTH is EARTH-
C[11], which has simple extensions to express control parallelism, data locality, and
collective communication. The EARTH-C compiler generates the Threaded-C code
as output.

For preliminary performance evaluation, we use an implementation of EARTH
on MANNA (EARTH-MANNA). The MANNA (Massively parallel Architecture
for Non-numerical and Numerical Applications) architecture was developed at
GMD FIRST in Berlin, Germany. Each node of a MANNA multiprocessor consists
of two Intel i860 XP RISC processors clocked at 50 MHz, 32 MB of dynamic RAM
and a bidirectional network interface. The link interface is capable of transferring
50 MB/s in each direction simultaneously, for a total bandwidth of 100 MB/s per
node. The network is based on 16 x 16 crossbar chips which support the full 50
MB/s link speed.

4 Compilation

In this section, we explain thread level compilation rules, and discuss e�ectiveness
of static thread scheduling.

4.1 Abstract machine

Fig.3 shows the schematic view of our abstract runtime model. We employ a two-
level scheduling: instance frame level scheduling, and thread level scheduling within
an instance frame. Instance frames hold the local variables and synchronization
variables. Threads within a function share the context on an instance frame for the
function. A thread is a schedulable unit, and each thread has a synchronization
counter variable whose initial value is determined at compile time. When a thread
is triggered, the counter is decremented. If it reaches zero, the thread becomes
ready and enqueued into the thread queue. Operations with unpredictably long
latency are realized as a split-phase transaction, in which one thread initiates the
operation, while the operation that uses the returned value is in another thread
and triggered by the returned value.

The thread queue is provided in order to dynamically schedule intra-instance
threads. If the execution of the current thread terminates, the next ready thread
is dequeued from the thread queue for the next execution. If the thread queue
is exhausted before the instance terminates, the instance becomes a \suspended

instance" and is stored into the idle pool before the execution switches to an-
other frame. If the instance terminates, the runtime system releases the instance
frame. The runtime system manages runnable instance frames by using the in-
stance queue. The runtime system picks up one of the runnable frames and passes
the execution control to the corresponding code to activate the instance frame.
When a frame in the idle pool (a suspended instance frame) receives data from

{

}

while(thread Q is not empty)

switch(X) {

.....
}

X=dequeue(thread Q);

case 1:
case 2:

...

local variable slot

...

thread Q

next frame

Current Frame

thread2

Code

thread1

sync. variable slot

while()
{ X=dequeue(instance Q);

exec(X);
if

then
else }

instance X terminated?
release instance

push X into idle pool

instance Q is not empty

instance Q

idle pool

Fig. 3. Overview of abstract machine.

another active frame, the corresponding thread in the suspended frame is trig-
gered. If the thread becomes ready and is enqueued into the thread queue, the
instance frame also becomes ready and is moved to the instance queue.

4.2 Compiling to Threaded-C

The compiler must generate an explicit threaded code from an implicit parallel V
program. In compilation, we use a virtual machine code DVMC as an intermediate
code, and Threaded-C as a target code.

We explain the compilation rules for DVMC to generate Threaded-C code. As
shown in the previous sections, both Datarol virtual machine and EARTH archi-
tecture support threaded execution. However, the two-level scheduling in DVMC,
instance frame level scheduling and thread level scheduling, is merged and mapped
to the ready queue in EARTH.

Table 1 shows basic translation rules. Basically, since a function instance in
DVMC is a parallel entity, a function in DVMC is translated to a THREADED
function in Threaded-C. By using a TOKEN instruction for a THREADED func-
tion, the function instance is forked in Threaded-C. Both DVMC functions and
THREADED functions use heap frame as their activation record. There are two
types of function calls in DVMC: strict call and non-strict call. As a usual conven-
tion, a strict call does not start until all the arguments become available. In con-

DVMC Threaded-C

function) THREADED function
thread) THREAD
basic instruction) basic instruction
strict call) TOKEN instruction
non-strict call) TOKEN (with I-structure)

Table 1. Translation rules

trast, a non-strict call starts its execution before the arguments become available.
This execution style overlaps computations among caller and callee side, maxi-
mally exploits �ne-grain parallelism, and realizes
exible execution order, since
computation can be triggered by a subset of the arguments. Although function
call in Threaded-C is basically strict, by using I-structure library[5], we can realize
non-strict call in Threaded-C.

In Threaded-C, a thread is enclosed by THREAD id and END THREAD(). In
DVMC, a thread is started with a thread label and ended with ! mark. Each
instruction has a continuation tag, showing which threads are waiting for this in-
struction to �nish. In contrast to Threaded-C, the number of the synchronization
signals that a thread waits for is not explicitly coded in the instruction sequence in
DVMC. It relies on the compiler to scan the sequence to compute synchronization
information for each thread. On contrary, Threaded-C needs the programmer to
explicitly specify sync signals that a thread waits for by the INIT SYNC primitive.
In Threaded-C, each thread is associated with a sync slot, which is a quadruple:
(slot-number, sync-count, reset-count, thread-number). The reset-count is neces-
sary when sync-count becomes zero and the thread needs to restart, for example
a thread within a loop. The sync slots need to be initialized in advance. Thus,
the �rst few instructions in any Threaded-C function are usually INIT SYNC
primitives, assigning sync slots to threads and setting sync counts accordingly.
(DVMC and Threaded-C versions of Fibonacci program fib are shown in Fig.7 in
appendix)

4.3 Static scheduling

Although EARTH supports thread level execution, excessively �ne-grained threads
may incur heavy overhead. Compile-time scheduling is e�ective to reduce run-time
cost of scheduling �ne-grain activities. In scheduling a non-strict program, cares
must be taken for achieving high performance while keeping non-strict semantics
of the program.

Our scheduling method pays attention not to violate non-strict semantics. Al-
though another scheduling is possible for software implemented DVMC system[13],
in which blocking threads can be realized by software support, the compiler for
EARTH, in which a thread is no-preemptive, adopt a compile-time scheduling
similar to separation constraint partitioning[20]. The basic rule for the thread

scheduling is that two nodes must reside in di�erent threads if there exists any in-
direct dependency between them. Indirect dependences, such as a certain indirect
dependence due to access to asynchronous data and a potential indirect depen-
dence due to function call, may require dynamic scheduling. In our scheduling, a
merging policy is introduced to make more functions �t conventional invocation
style.

Fine-grain codes such as shown in Fig.1 will incur heavy overhead. Our static
scheduler can translate such a �ne-grain code into a coarse grain code as shown in
Fig.4. In the �gure, shaded parts are two recursive calls. As a result of static thread
merge, operations concerning each function call are merged into a single thread,
and the function is invoked as a strict function. This code can be translated to a
Threaded-C program, and can be executed e�ciently on EARTH.

RECEIVE 1 i6;
RECEIVE 2 i7;
RECEIVE 3 p8;
EQI i6 i7 i9;
SW i9

NOP;
ADDI i6 i7 i11;
SETI 2 i12;
DIVI i11 i12 i13;
MOVE i13 i11;
NOP;
SETP SUMM p14;
CALL p14 p15;
LINK p15 i6 1;
LINK p15 o10 2;
RLINK p15 i16 3;
SETI 1 i17;
ADDI i10 i17 i18;
SETP SUMM p19;
CALL p19 p20
LINK p20 i18 1;
LINK p20 i7 2;
RLINK p20 i21 3;

RECEIVE nil i21;
RECEIVE nil i16;
ADDI i16 i21 i22;
MOVE i22 i23;

NOP;
MOVE i6 i23;

MERGE;
RETURN p8 ;23;
RINS;

Fig. 4. Code after static thread merging.

Following is a result of preliminary performance evaluation on EARTH-MANNA
using Fibonacci program. The compiled version is a Threaded-C program gener-
ated from V program by the compiler. The hand-coded version is a Threaded-C
program written by a programmer using the same algorithm as the V source pro-
gram. As shown in the table, the automatically generated compiled version runs

as fast as the hand-coded version on EARTH-MANNA.

n
16 24 32

compiled[ms] 2 59 1984

hand-coded[ms] 2 56 1970

Table 2. Elapsed time of �b(n) on EARTH-MANNA

5 Fine-grain parallel data-structures

Non-strict data-structures alleviate the di�culty of programming for complex
data-structures[6]. Due to non-strictness, programmers can concentrate on the
essential dependencies in the problems without writing explicit synchronizations
between producers and consumers of data-structure elements. In addition to this
advantage of abstracting timing problems, non-strict data-structures have another
advantage to communication overhead, which is one of the problems in parallel
processing. An eager evaluation scheme of non-strict data-structures increases po-
tential parallelism during program execution. This evaluation scheme is e�ective
for hiding communication overhead, by switching multiple contexts while waiting
for the result of communication results.

Partitioning and distribution of large data-structures have a large impact on
the parallel processing performance. Although the owner computes rule is known
to be e�ective for SPMD style programming to some extent, such a monolithic
rule is not suitable for MIMD style programming, whose computation and com-
munication pattern may complex and unpredictable. The combination of non-strict
data-structures and the eager evaluation can eliminate descriptions of explicit par-
titioning and distribution of large data-structures, as well as explicit synchroniza-
tion in MIMD style programming. The multithreaded execution with the ability
to tolerate computation and synchronization latencies alleviate the problems of
non-optimal code such as non-uniform grain size and ill-mapped data-structures.
However, non-strict data-structures require frequent dynamic scheduling at a �ne-
grain level during program execution. Fine-grain dynamic scheduling causes heavy
overhead, which o�sets the gain of latency hiding. In this section, we discuss on
the implementation issues of non-strict data-structures.

5.1 Implementation model

An array is generated by a bulk operator, mkarray, in V. In creating a non-strict
array, the allocation of the array block and the computations to �ll the elements
are separated. In a data
ow computation scheme, a mkarray immediately returns

an array block (pointer) and calls the �lling functions in parallel. Fig.5 outlines
the mkarray computation model on a distributed memory machine. In the �gure,
the mkarray node is an instance representing an array, a mksubarray node is an
instance representing a subarray block on a node, and pfs are instances of �lling
functions for array elements. On distributed-memory machines, an array is often
distributed over the processor nodes, and �lling functions are scattered among the
processor nodes. We map the �lling functions using the owner computes rule as
a basic rule. Although the pfs may activated in parallel, they may be scheduled
according to data dependencies.

mkarray

mksubarray

physical PE’s

pf
pf

pf
pf

pf
pf

pf
pf

pf
pf

pf
pf

pf
pf

pf
pf

mksubarray mksubarray mksubarray

Fig. 5. Schematic view of a mkarray computation model on a distributed memory ma-
chine.

Array descriptors support array distribution and realize global address access
for distributed arrays. Array descriptors consist of a body, a decomposition table,
and a mapping table, in order to manage the top-level information, the decompo-
sition scheme, and the mapping scheme, respectively. The body has a total size,
the number of dimension, the number of processors, and various
ags. The decom-
position table has the lower and the upper bounds of each dimension, and some
parameters to specify the decomposition scheme: the number of logical processors,
the block size, and the base point. The mapping table has correspondences be-
tween the logical and physical processors for the sub-arrays, the top of the local
address for the block.

5.2 Discussion

According to this model, we implemented arrays in V. We also measured pre-
liminary performance on EARTH-MANNA using matrix multiplication program
matmul.

mapping table

HOME PAGE

PE ID local address local address
(exist flag)

CACHE

decomposition table

decomp. schemesubscript

block sizemax. min. num of PEs

block sizemax. min. num of PEs

descriptor body

size

dim

scat

flags

base

base

...

PE ID local address local address
(exist flag)

...

descriptor

Fig. 6. Array descriptor

matrix size 10 20 30 40 50

elapsed time[sec] 3.14*10�2 4.10*10�1 3.27 10.0 52.1

Table 3. Elapsed time of matmul on EARTH-MANNA

This result is very slow. Although EARTH-MANNA has the external hardware
necessary for e�cient support of multithreaded execution, naive implementation of
non-strict data-structures incurs heavy overhead. Arrays in V are non-strict, and
support element-by-element synchronization. Ideally, �ne-grain computation and
communication are pipelined and overlapped in a data
ow computation scheme,
without exposing the synchronization and communication overhead. However, the
overheads of �ne-grain processing degrade the performance.

Although our language is a �ne-grain non-strict data
ow language and our
implementation scheme employs a multithread execution model, access to a data-
structure element is performed by means of pointers to heap areas. Thus, many
optimization techniques proposed for conventional languages are also applicable
to our implementation of �ne-grain parallel data-structures. In order to reduce
the overhead caused by the frequent �ne-grain data access, we are considering to
incorporate following optimization techniques:

{ caching mechanism for �ne-grain data accesses, and
{ grouping mechanism for �ne-grain data accesses.

The second technique is to transform non-strict access to data-structure into sched-
uled strict access, by data dependency analysis between producers and consumers
at compilation phase. In this technique, as many as possible non-strict accesses
could be transformed to strict accesses, while the parallelism would fall victim. So

that, the compiler has the trade o� between non-strictness with high parallelism
and strictness with low parallelism. During the optimization process, following
issues are considered: Fine-grain parallel data-structures of our language allow
element-by-element access. This feature is one of the key points in order to write
non-strict programs as well as parallel programs. Optimizations involving indis-
creet grouping may reduce e�ective parallelism, and may lead to a deadlock at
runtime in the worst case.

6 Concluding remarks

We discussed implementation issues of V, a non-strict functional programming
language, on EARTH. Functional languages are attractive for writing parallel pro-
grams due to their expressive power and clean semantics. The goal is to imple-
ment V e�ciently on EARTH, realizing a high-level programming language on
a high performance architecture. The combination of a language with �ne-grain
parallelism and a data
ow evaluation scheme is suitable for high-level program-
ming for massively parallel computation. In compiling V to EARTH, we use a
virtual machine code DVMC as an intermediate code, and Threaded-C as tar-
get code. Threaded-C is an explicit multi-threaded language, targeted for the
EARTH model. We executed sample programs on EARTH-MANNA. The pre-
liminary performance results are encouraging. Although further improvement is
required for non-strict data-structures, the codes generated from V programs by
our compiler achieved comparable performance with the performance of hand-
written Threaded-C codes.

References

1. Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
�eld, and Burton Smith. The Tera computer system. In Proceedings of the 1990
ACM International Conference on Supercomputing, pages 1{6, 1990.

2. M. Amamiya, R. Hasegawa, and S. Ono. Valid: A High-Level Functional Program-
ming Language for Data Flow Machine. Review of Electrical Communication Labo-
ratories, 32(5):793{802, 1984.

3. M. Amamiya, T. Kawano, H. Tomiyasu, and S. Kusakabe. A Practical Processor De-
sign For Multithreading. In Proc. of the Sixth Symposium on Frontiers of Masssively
Parallel Computing, pages 23{32, Annapolis, October 1996.

4. M. Amamiya and R. Taniguchi. Datarol:A Massively Parallel Architecture for Func-
tional Languages. In the second IEEE symposium on Parallel and Distributed Pro-
cessing, pages 726{735, December 1990.

5. Jose Nelson Amaral and Gunag R. Gao. Implementation of I-Structures as a Library
of Functions in Portable Threaded-C. Technical report, University of Delaware, 1998.

6. Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: data structures for parallel
computing. ACM Trans. Prog. Lang. and Sys., 11(4):598{632, October 1989.

7. Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiser-
son, Keith H. Randall, and Yuli Zhou. Cilk: An E�cient Multithreaded Runtime
System. In Proceedings of the 5th Symposium on Principles and Practice of Parallel
Programming, pages 207{216, July 1995.

8. David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel programming
in Split-C. In IEEE, editor, Proceedings, Supercomputing '93: Portland, Oregon,
November 15{19, 1993, pages 262{273, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1993. IEEE Computer Society Press.

9. Jack B. Dennis and Guang R. Gao. Multithreaded computer architecture: A summary
of the state of the art, chapter Multithreaded Architectures: Principles, Projects, and
Issues, pages 1{74. Kluwer academic, 1994.

10. W. K. Giloi. Towards the Next Generation Parallel Computers: MANNA and
META. In Proceedings of ZEUS '95, June 1995.

11. Laurie J. Hendren, Xinan Tang, Yingchun Zhu, Guang R. Gao, Xun Xue, Haiying
Cai, and Pierre Ouellet. Compiling C for the EARTH Multithreaded Architecture.
In Proceedings of the 1996 Conference on Parallel Architectures and Compilation
Techniques (PACT '96), pages 12{23, Boston, Massachusetts, October 20{23, 1996.
IEEE Computer Society Press.

12. Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Guang R.
Gao, and Laurie J. Hendren. A Study of the EARTH-MANNA Multithreaded Sys-
tem. International Journal of Parallel Programming, 24(4):319{348, August 1996.

13. K. Inenaga, S. Kusakabe, T. Morimoto, and M. Amamiya. Hybrid Approach for
Non-strict Data
ow Program on Commodity Machine. In International Symposium
on High Performance Computiong (ISHPC), pages 243{254, November 1997.

14. Yuetsu Kodama, Hirohumi Sakane, Mitsuhisa Sato, Hayato Yamana, Shuichi Sakai,
and Yoshinori Yamaguchi. The EM-X Parallel Computer: Architecture and Basic
Performance. In Proceedings of the 22th Annual International Symposium on Com-
puter Architecture, 1995.

15. S. Kusakabe and M. Amamiya. Data
ow-based Language V, chapter 3.3, pages 98{
111. Ohmsha Ltd., 1995.

16. S. Kusakabe, T. Nagai, Y. Yamashita, R. Taniguchi, and M. Amamiya. A Data
ow
Language with Object-based Extension and its Implementation on a Commercially
Available Parallel Machine. In Proc. of Int'l Conf. on Supercomputing'95, pages
308{317, Barcelona, Spain, July 1995.

17. R. S. Nikhil. Cid: A Parallel, \Shared-Memory" C for Distributed-Memory Machines.
Lecture Notes in Computer Science, 892:376{, 1995.

18. R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A multithreaded massively par-
allel architecture. In Proceedings of the 19th Annual International Symposium on
Computer Architecture, pages 156{167, May 1992. Also as CSG-memo-325-1, Mas-
sachusetts Institute of Technology, Laboratory for Computer Science.

19. Mitsuhisa Sato, Yuetsu Kodama, Shuichi Sakai, and Yoshinori Yamaguchi. EM-C:
Programming with Explicit Parallelism and Locality for the EM-4 Multiprocessor.
In Michel Cosnard, Guang R. Gao, and Gabriel M. Silberman, editors, Proceedings
of the IFIP WG 10.3 Working Conference on Parallel Architectures and Compilation
Techniques, PACT '94, pages 3{14, Montr�eal, Qu�ebec, August 24{26, 1994. North-
Holland Publishing Co.

20. K. E. Schauser, D. E. Culler, and S. C. Goldstein. Separation Constraint Parti-
tioning | A New Algorithm for Partitioning Non-strict Programs into Sequential
Threads. In Proc. Principles of Programming Languages, January 1995.

21. Xinan Tang, Oliver Maquelin, Gunag R. Gao, and Prasad Kakulavarapu. An
Overview of the Portable Threaded-C Language. Technical report, McGill Univer-
sity, 1997.

Appendix

1: RECEIVE 1 i5;

RECEIVE 2 p6;

SETI 1 i7;

LTI i5 i7 i8;

SWN i8 15;

__SW_B 15 T;

NOP ;

SETI 1 i20;

MOVE i20 i21 ->(3);

__SW_E 15 T;

__SW_B 15 E;

NOP;

SETI 1 i9;

SUBI i5 i9 i10;

SETN FIB n11;

CALLS n11 f12 (i10) (i13)

-> (2);

SETI 2 i14;

SUBI i5 i14 i15;

SETN FIB n16;

CALLS n16 f17 (i15) (i18)

-> (2);

! __SW_E 15 E;

2: RECEIVE NIL i13;

RECEIVE NIL i18;

ADDI i13 i18 i19;

! MOVE i19 i21 -> (3);

3: MERGE 2;

RETURN p6 i21;

! RINS;

THREADED fib(SPTR done, long int i5,

long int *GLOBAL p6)

{

SLOT SYNC_SLOTS [2];

long int i7,i8,i9,i10,i13,i14,

i15,i18,i19,i20,i21;

INIT_SYNC(0, 2, 2, 2);

INIT_SYNC(1, 1, 1, 3);

i7 = 2;

i8 = i5 < i7;

if (i8)

{

i20 = 1;

i21 = i20;

SYNC(1);

}

else {

i9 = 1;

i10 = i5 - i9;

TOKEN(fib, SLOT_ADR(0), i10,

TO_GLOBAL(&i13));

i14 = 2;

i15 = i5 - i14;

TOKEN(fib, SLOT_ADR(0), i15,

TO_GLOBAL(&i18));

END_THREAD();

THREAD_2:

i19 = i13 + i18;

i21 = i19;

}

END_THREAD();

THREAD_3:

DATA_RSYNC_L(i21, p6, done);

END_FUNCTION();

}
(a) DMVC (b) Threaded-C

Fig. 7. DVMC and Threaded-C code of function fib

