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Abstract the task graph is then systematically reduced.
Markov-based solutions of task graph systems have
This paper describes a simulation tool for the analysis P€€n reported in [5] and [6]; although limited to relatively

of complex jobs described in the form of task graphs. The Small task graphs, a Markov-based solution is used for the
simulation procedure relies on the PN-based topological analysis of scheduling policies in [6]. Since Stochastic
representation of the task graph that takes advantage of Pelri Nets (SPN) provide a natural representation of paral-
directly modeling precedence constraints and other char- '€lism and synchronization their use spawns applications
acteristics inherent in Generalized Stochastic Petri Nets fTom individual parallel and concurrent programs to dis-

(GSPN). The GSPN representation is enhanced with tributed applications and m.ulti-processor systems [7,' 8,
enabling functions that govern the sequence of firings of 91: SPN's can be used to directly capture the topological

transitions representing execution of tasks. The regulated Information of a task graph and provide a systematic way
flow of activity is carried out observing not only prece- [OF @pplying factors such as processor heterogeneity, allo-
dence constraints but specific allocation heuristics and Cation schemes, communication costs, and random execu-
communication delays. The tool is useful in evaluating 0N times. Also, a SPN-based solution can be applied to
different heuristics described by the corresponding imple- @/Pitrary graphs which are acyclic but not necessarily

mented algorithm, or using a deterministic timespan given Series-parallel [10]. SPN-based tools automatically gener-
by a Gantt chart. ate Markov models that represent the execution process of

complex task graphs where each state is given by the
_ number of tasks executing in parallel. These models are
1. Introduction then solved to compute system performance characteris-

L ., tics such as a distribution of the overall completion time.
Task graphs represent general computation jobs which

have been decomposed into modules called tasks that are When the job represented by a task graph is executed
executed according to some precedence constraints. Taskon the processing elements of a HCS, estimating the over-
graphs are a well known tool to study performance issues &l completion time becomes an optimization problem
of complex jobs. A direct solution technique for series- INvolving the mapping of tasks to processors such that
parallel task graphs is reported in [1]; an average comple- COmpletion time is minimized. Mapping tasks to process-
tion time of the overall job is derived assuming no restric- N units is a hard problem and several heuristics have
tions exist on the number and architecture of processing P&€n proposed in the literature. However, before choosing
units and with no regard to allocation schemes. Execution the most effective heuristic a method must be available for
times of fork-join parallel programs in multiprocessor €omputing an expected completion time and deriving
environments is discussed in [2]. An approach based on €xecution distributions for any given task graph, HCS, and
multiplication/convolution is applied to Heterogeneous allocation heuristic. The methodology reported in [10] to
Computing Systems (HCS) at coarse and fine levels of SOIve complex task graphs using SPN's is not in itself an
granularity in [3]. Also, in [4] performance prediction of ~OPtimization tgchnlque, .but it can be used in conjunction
fork-join task graphs is addressed, where the residenceWith optimization techniques which attempt to search a
times of each task are estimated in terms of service SPace of completion time distributions. However, Markov-

demands and queuing delays; based on these estimationst,’ased numerical solutions are limited to exponential dis-
tributions and often involve a large state space.



Consequently, the solution process may be unstable and
subject to stiffness problems rendering inaccurate results.
Discrete event simulation can use the framework provided
by SPN’s [11] and circumvent the limitations encountered
in the solution of Markov-based models. The work
reported in this paper uses the SPN-based topological rep-
resentation of task graph systems just as in [10] but
applies discrete-event simulation to obtain execution time
distributions and estimates of the Mean Time to Comple-
tion (MTTC) of the jobs represented. Thus a common
model based on SPN’s is used to drive a discrete event
simulation of the overall job. The method can be used to
analyze and compare several assignment heuristics given
either the algorithm or a Gantt chart of specific assign-
ment cases. To illustrate the use of the tool several assign-
ment heuristics are evaluated and compared.

The next section of the paper introduces the notation

same processor; these priorities may be taken from the
indices of the tasks, e.gw; =k —i, or they may be
randomly or determined according to the assignment
heuristic employed.

» asetP ={Py P,,...,P,} consisting ofn processors
composing a heterogeneous suite.

e a kxn execution time matrixB[i, j], 1<i <k,
1< j < nwherebj is the average execution time f
onP;.

e an nxn communication time matrixCJr, ],
1<r,s<n where each entrg, is the average com-
munication time to transfer a data packet of standard

size fromP, to Pq.

e a kxn static allocation matrixA[i, j], 1<i <Kk,
1< j <nwhere entrya; =1 if T; has been allocated
to P;, and O otherwise.

and parameters used. Basic concepts on Petri nets are

introduced in section three and their application to
describe task graphs is given in section four. Section five
deals with the simulation methodology. A brief discussion
on allocation heuristics is given in section six. The inser-

tion of communication delays is discussed in section six.

Simulation algorithms are presented in section seven
Lastly, applications of the tool are discussed.

2. Parameters and Notation

Throughout the paper the following notation is used to
describe the simulation tool and related issues.

a task graphG(T,E) where the vertex set

T={T, T, ..., Ty} consists ok tasks which compose
some overall job and the edge Eetonsists of ordered

pairs from T which correspond to data or control
dependencies. The topology Dfis described in detail

by the following:

- an in-degree vectod = [d; dy, ..

.,d¢] whered,

3. Basic Petri Net Concepts

A Petri net (PN) is a directed, weighted, and bipartite
graph [12]. PN’s are bipartite in that nodes are of two
types, placesand transitions with arcs occurring either

_from places to transitions or from transitions to places.
When an arc is from a plaqeto a transitiort, thenp is
an input place of; a placep is anoutput placeof t if an
arc proceeds frorhto p. Places and transitions are repre-
sented pictorially by circles and thin rectangles, respec-
tively. A third component of any PN are tokens which
reside in places; pictorially, tokens are represented by dots
within the perimeters of places. Tokens are transferred
from one place to another by the firing of transitions.
When a transitiort fires, tokens are removed from all
input places of and placed in the output placestpthus,
enforcing a logical flow of activity throughout the net. A
transition can fire if it is enabled, i.e., if all of its input
places possess at least one token. An arc may be
weighted where the weight specifies the number of tokens

is the number of tasks which must complete before \yhich must reside in an input place in order for a transi-

T, may initiate execution.

- an out-degree vectad =[h, hy,...,h] where

tion to be enabled, or the number of tokens placed in an
output place by the firing of an enabled transition; if the

h; is the number of tasks which are spawned after weight is unspecified then it is assumed to be one. PN'’s

the completion of;.

- a task graph structureTG[i][j], 1<i <K,
1< j < h; whereTGQ[i] is an array specifying thh;
tasks which are spawned by the completionTof
thus, the ordered paif( TG[i, j]) cE.

e ak x k matrix pkt[i, j], 1 <1i, j < k wherepkt[i, j] is

the average number of data packets of standard SizePN is a graplG

that is sent fronTl; to T;. Alternatively, these can be
specified as edge weights for the elements.of

* a priority vectorW = [w; W,, ..., w,] which induces

and their dynamic behavior can be captured in mathemati-
cal notation via state vectors. Given a PN witplaces, a
marking g of the PN is denoted b¥l,; a marking is
described by & - vector whosdath component denotes
the number of tokens in plagg; an initial marking of the
PN is denoted bi,. A particular PN with an underlying
graphN is denoted K, Mg). The reachability graph of a
r(M, A) where the vertex sl is the set

of all possible markings for the PN and the edgelset
consists of all possible transition firings transforming one
marking into another.

a sequential ordering of any ready tasks assigned to the
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Figure 1. A simple task graph

Stochastic Petri netare PN’s in which there is an
exponentially distributed delay time between the enabling
and firing of transitions. The reachability graph of a
bounded SPN is isomorphic to a finite Markov chain
(MC) [13]; in particular, the markings of the reachability

transitionsity andit; are used to enforce initiation and
completion conditions, respectively, for the overall job.
The presence of at least one token in a place may repre-
sent the fulfillment of all preconditions for the initiation

of the task. The firing of a timed transition represents the

graph comprise the state space of a MC and the transitioncompletion of execution of the corresponding task. The

rate between any two stat¥sandX; is the sum of all fir-

ing delays for transitions transformimg; into M;. Gen-
eralized stochastic Petri ne(6SPN) have been proposed
[14] in which transitions are of two type8med transi-
tions which have the exponentially determined firing rates
andimmediatetransitions which have no firing delay and
have priority over any timed transitiofEnabling func-
tions are marking-dependent functions which can be
defined on each transition as a switching mechanism.
Transition priorities (timed vs. immediate) and enabling
functions are logically equivalent extensions of SPN
which endow them with the full computational power of
Turing machines [15]. In this paper the notion of GSPN is
used.

4. GSPN Models of Task Graphs

Task graphs are assumed to be series-parallel for sev-

eral approaches to performance evaluation [16] and opti-
mization [17]; however, this limitation is avoided in the
PN-based methodology of this work. Fig. 1 shows a sim-
ple task graph which will be used to illustrate the transla-
tion of task graphs into GSPNs. The translation of a task
graph into a GSPN begins with the association of each
taskT; with a place/timed transition paip; andt;. Fig.

2 shows the GSPN corresponding to the task graph in Fig.

1. Auxiliary places xpy and xp; and immediate

delay time of each transition corresponds to the exponen-
tially distributed execution time of the task. A plapge

can be associated with the in-degtkdo enforce prece-
dence constraints. Initially, the presence of a tokexpin
enablest; the firing ofity represents the initiation of an
execution cycle. The presence of three tokengpinand

the firing ofit; indicates that an execution cycle has been
completed. Timed transitions in the GSPN model in Fig.
2 will fire once enabled. Beginning with an initial mark-
ing My a sequence of markings can be generated to form
a reachability graph. The set of markings generated corre-
spond to the possible execution states of the system,
where a system state is defined by the tasks which are
executing concurrently. If firing times are exponentially
distributed the set of markings generated corresponds to a
Markov chain that can be solved using well known tools
such as SPNP [18] or SHARPE [1].

Consider some markiniyl; in which taskTg should be
ready to run. To make this possible, b&thand T; must
have finished execution; this will be indicated by the pres-
ence of two tokens ipg, i.e. X;(ps) = 2. To capture this
precedence constraint it suffices to associate each input
arc into a timed transition with a weight corresponding to
the in-degree of each node in the task graph. Alterna-
tively, the in-degree vector is associated with marking-
dependent enabling functions.
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Figure 2. GSPN model of the task graph from Fig. 1
5. Simulation Methodology ConditionQ; checks for precedence constraints, that is,

N N when the number of tokems; in placep; is equal to the
In a SPN model, the firing of transitions represents the jy_degreed; of the vertex representing tadk, its prece-
occurrence of events, in this case, execution of tasks. To gence constraints are met, i.e.,

simulate execution of tasks [11], a clock is set for each

newly enabled transition to keep track of the execution o L if m=d

time until the transition fires. The simulation procedure Q= S) otherwise

must also check for precedence constraints, availability of

processors, and priority of tasks. When a transition is  ConditionV; checks for allocation and availability of
enabled its firing time is generated as a random variate processors. To check for allocation suffices to examine
from a selected distribution. Firing times are recorded by theith row of matrix A for a; = 1 and then verify if pro-
associating clocks to transitions. The PN-based simula- cessor | is free. Let a binary vector
tion procedure takes place observing the following major FREE=[freg;],0< j <n-1 keep track of which pro-
steps: cessors are currently free, then

1) Check for newly enabled transitions, V; = a; free,
2) Generate firing firing times, and

If more than one transition satisfies conditi@randV
3) Update clocks. @

and their corresponding tasks are allocated to the same
processor, only one transition should be enabled (only one

5.1. Enabling Functions task should execute) even though these tasks could
A transitiont; is enabled when conditior;, V;, and execute in parallel. The task with the highest priority is
Z, are satisfied. An entry of the enabling vector chosen using the priority vectdV. Let Rdybe the set of
F =[f],0<i < kis evaluated such that if: transitions representing parallel tasks allocated to the
f=QViZ same processor. That is, the set of transitions that could

be enabled from a current markiig then
evaluates to one andcan fire.



L if w, = m%X{Wj} iii). Uniform distribution,U (b1, b2;):
=0 JeRAy
0 otherwise X = ux(bzj - bly) + bl

|
Note that these functions could be easily implemented

by incorporating additional places and transitions to the 5.3. Clock Update
model in Fig. 2. For example the presence of a tokenina A |ocal clock that keeps track of firing times and a
dedicated place can be used to model the availability of a global clock is used to record the overall completion time.
processor and to derive statistical measurements on thewhen a timed transition is enabled a local clock is set to
usage of that processor [19]. Also additional immediate the generated firing time to indicate the remaining time
transitions can be used to model task priorities. It can be yntil the transition fires. A global clock is denotedGs
argued that additional modeling elements may obscure theand local clocks are represented by a vector
representation of a task graph and although they are use-.C =[ic;], 0<i < k - 1 wherelc; is the local clock asso-
ful, they become transparent to the user when dealing ciated to transitiot .
with large complex models. We find the addition of
places to model processing elements and their intercon-
nections useful for the case of analyzing the behavior of
systems running several jobs modeled by different task
graphs or several instances of the same job in an effort to
capture the load of the system, resource contention and
usage. In our case the effect of external load is reflected
in the execution time of each subtask. The use of enabling
functions keeps the model simple and the simulation code
relatively simple as well. C=C+min_t

Since local clocks indicate remaining times, they are
discarded when they reach 0 time units and the corre-
sponding transitions fire. At the moment a transition fires,
the global clock and local clocks are updated. The global
clock update is performed by adding the minimum local
clock time min_t to the global clockC; min t is taken
from the set of enabled transitions that have not yet fired.
The following expressions are used to update all clocks.

5.2. Firing times Ic; =lc; —min_t
If a timed transition is enabled, a firing time is gener- where min t =min{lc;}, 0<i<k-1. Once the last

ated using a firing transition rate given in terms of the (ansition fires, the global clock C indicates the overall
average execution times of each task obtained from matrix completion time.

B. Random variates are generated from three possible dis-
tributions: exponential, normal, and uniform. The values 6. H isti
given by matrixB are used according to the distribution - Heunstics

function selected. Uniform and normal functions require a  pijferent allocation heuristics can be evaluated by

second value that must be provided by the useBlf mapping them into the allocation matr To illustrate
denotes the first matrix given as the execution maix  the yse of the simulation methodology discussed in this

thenB2 denotes a second matrix provided by the user for paper four static allocation heuristics are evaluated and
the case of normal and uniform distributions. For expo- compared.

nential and normal distributiortsl;; provides the average
execution time. For normal distributions the matB2
provides the standard deviatigj. In the case of a uni-
form distribution, matrixB1 provides the starting point
bl; and matrixB2 provides the ending poim2;. These
values are used to calculate the mearbgs« b2;)/12. A
pseudo-random number is generated fron (0, 1). A
firing time x; associated to transitiofy is generated for L if by =min{by}
each distribution as follows: a; = !

1. Shortest Estimated Execution Time First (SEETF)
In this scheme [20, 21, 22] ta3k is selected at ran-
dom from the task set and assigned to the processor
that executed; faster. The elements of the task alloca-
tion matrix from the SEETF algorithm are determined
as follows:

. o 0 otherwise
i). Exponential distribution, exp(; ):

x; = - bl; x In(u) 2. Minimum Finish Time (MFT) In this allocation

scheme [22], tasK; is also selected randomly from a

ii). Normal distribution,N(blij,bzﬁ): topologically sorted task set, i.e. taking into account
. the precedence constraints between tasks. The selected

X = (a'zlzu ~6)x b2; +b1; processor is the one that minimizes the finish time of a

et v task in a deterministic simulated execution, where the

finish time of a selected task; is given by the



minimum sum of its execution time; and the next enables parallel communication. In terms of a task graph,
time instance in which processéY, becomes a free once a given task completes, successor tasks experience

processor. an initiation delay equal to the data transfer time for all
[ if min{b, + time until P, is free} intended packets; ideally, any successor task allocated to
a; = P the same processor as the parent task shoulql be able to

0 otherwise begin execution immediately after the completion of the

Note that all tasks are selected randomly but restricted parent task.

to those tasks whose predecessors have already been The properties of such a high-performance network
allocated. can be modeled in a GSPN by inserting additional

3. Largest Task First (LTF22]. The selection of tasks place/timed-transitions to represent each individual com-
i§ based on service demand.s. The task with the Iargestmuni.cation; augmentation of the task graph with commu-
service demand is selected first, or alternatively the nication nodes has been proposed for CTMC-based analy-

. . ; . : sis [23] and at the SPN level [24]. Each timed-transition
task with the largest execution time is selected first. | : ; : : .
inserted is associated with an exponentially distributed

Thus: : "
delay whose parameter is the average communication
L if by =max{b;} time between the host processors. Thus, given a com-
g = otherwisle pleted taskT; allocated to processd?, and a successor
task T; allocated toPg, the average communication rate
A processolP; is selected randomly. assigned to the transition modeling the transfer of data is
4. Most Data Task First (MDTFYhis scheme selects ~ 9Iven by:
the task that generates most data. The data generated 1
by a taskT; is determined in terms of the number of % = Crs PKE;
data packets going out, that is:
K Fig. 5a illustrates a segment of some task graph in
pkt = > pki; which Task A spawns tasks B, C, and D. Suppose the
=1 four tasks are allocated to three processors such that A
Thus, the construction of the allocation matrix pro- and C are allocated to one processor, and B and D are
ceeds as follows: allocated to the other two processors, then the resulting
GSPN for Case 1 would be as shown in Fig. 5b. Note the
_ L i pky = max{pkt} insertion of place/transition pairs between A and B and A
T Ep otherwise and D to represent the individual

In terms of simulation, communication delays are
determined from a distribution function using the average
delay o; and associating a local time to communication
tasks.

and in this case also the procesBgris selected ran-
domly.

7. Communication Delays

As in [10], two approaches are presented based on two 7-2. Modeling Bus-Oriented Networks
types of interconnection networks: (a) a high-performance  In interconnection networks characterized by low-con-
network characterized by high-connectivity and parallel nectivity, groups of processors may have to share common
communications and (b) a bus-oriented network with low- communication links, as is the case with a bus-oriented
connectivity. In both cases, output data is assumed to bearchitecture. Also, in lower cost systems processors may
accumulated in a buffer during task execution and trans- pe forced to expend computation cycles on communica-

mitted after task completion. tion processing. If, additionally, output data packets for
successor tasks are queued up in a single buffer in some

7.1. Modeling High-performance Communica- random ordering and transmitted on a FIFO basis, then it

tion Networks is highly unlikely that a successor task will receive all of

its packets before any other successor task. In terms of
the example in Fig. 5a, if the processor to which task A is
allocated must broadcast packets in random order to the
processors associated with tasks B, C, and D , then it is
reasonable to assume that on average B, C, and D will
experience uniform initiation delay.

High-performance communication networks can be
characterized as expensive systems in which inter-node
communication takes place on dedicated, point-to-point
links. Data intended for each successor is written to a
separate buffer. Furthermore, each processor may be cou
pled with a front-end communication processor which
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a) Segment of a task graph b) SPN with communication nodes

Figure 5. GSPN model assuming a high-performance network

Such behavior can be reflected in the GSPN by simply 8. Simulation Algorithms
modifying the rate function governing the firing of the
transitions associated with each task. In this case, no A simulation algorithm based on the PN-based topo-
extra nodes are inserted in the PN model. Rather, the fir- logical description of task graphs is now described. The
ing delay of each transition is increased by the sum of algorithm generates the MTTC and a tabulation to plot the
communication costs associated with each successor taskCumulative probability distribution of the execution time.
Let T; be allocated td®; where completion of; spawns The following steps summarize the simulation process for

m= h; tasksT,, T, T,,, Which are allocated to pro- the case in which no communication delay is taken into
17 27" " Om
cessorsPy ,Py,,...,P, . Then a modified firing rate for account:
transitiont; is given by: 1) Initialize the global clockC and the initial marking
/i“ _ 1 MO.
' Ui + g c.. pkt 2) Check for newly enabled transitions. In the absence
=R AR of newly enabled transitions go to step 5).

3) For each enabled timed transitiprgenerate firing
time x; .

This new value is then used to determine execution
times from the distribution function of choice with the
value ofy;; determined accordingly. In reality a given net- 4) For each enabled timed transitions, set the local
work may be heterogeneous with respect to interconnec-  clocklc; tolc; = x;.
tion capabilities. In this case the GSPN model can be sys- 5y Find the minimum local clockin_t
tematically constructed to appropriately model each seg- N
ment of the network, reflecting the different sets of
assumptions mentioned above. The net result is that the
simulation process uses a GSPN representation with
dynamically determined transition rates and enabling  7) Update global clockC and local clockdc;. Notice
functions capturing the full interplay of task precedence  that by firing transitions with the minimum remaining
relationships, allocations specifications, availability of  time equal tomin_t, its Ic; =0 and removed from the
idle processors, diverse execution rates across a heteroge- set oflcy’s. The firing of the last timed transition ends

6) Fire the transition with the minimum clockin t.
Once a timed transition fires, the corresponding task
completes execution and the host processor is released.

neous suite, and communication delays. the current cycle. A new cycle begins at step 1) by
resetting the initial markingly and the global clock
C.

8) Update the marking record and repeat from step 2).



The alwve procedure is also used for the case of low- generated and sent to successor tasks.
performance networks where the firing rates are modified ¢ following matrix B specifies the spectrum of
accordingly. To take into account transfer delays in @ eyecution times for each task across six processing units

high-performance network some modifications — are , the system in standard time units per execution:
needed. Letcc, denote the communication clock

between tasK; and taskT,. Note that transition; is a p92.31.342132.3.2.10
transition that has already fired, that is, the corresponding %3 4.31.352134.5.5 -15
taskT,; is in the process of transferring data. After transfer +_021.51.3521425 .2.37
is complete, a token travels to output plgge The set of 052 .22 . 352222 .5 .2 .10
communication cloc_kscgh is gls_o compare_d with local U592 31 653132 .5.2 18
clockslc; to determine the minimum timmin t. Note 0 0

that the set ofc;’s corresponds to transitioisthat have bD52.31.371132.3.2.10

been enabled but are not yet transferring data. Ifinet The communication delays per data packet in the inter-
selected corresponds to a local cléck then transitior; connection network between the six processors are char-

fires, else, themin_t corresponds to a communication  acterized by the matri€ in terms of standard time units
clock and a token is now transferred to a destination place per packet:

pn. Steps 1) to 4) are the same and the rest of the algo-

rithm is modified as follows: g’ 1.1.2.2 -15
5) Find the minimum local clock: D'l 0 .4.3.2 '1D
ih 02.3.20 .3.20
6) Update global clock, local clockdc;, and commu- O, o 3 39 15
nication clocksgy,: gr = T
cat Gn 0l.1.3.2.10(
C=C+min_t
Relative priorities among the 13 tasks are specified thus:
Icj = lc; — min_t W=[13121189107654312]

CGh = CCjp — Min_t It should be noted that this priority scheme is entirely

) _ arbitrary as is the allocation scheme. The numerical and

7) If min_t corresponds to a local clot, then: simulation results shown in Fig. 7 correspond to the prob-

7.1) Transitiont; fires. Tokens are removed from  ability of completion at time, P(X < t) of the overall job

the input places and the corresponding processor is based on three communication scenarios: a) there are no

released. communication costs, b) communication occurs over a

7.2) Ift; is the last transition, then stop the cycle. high- performance network, and ¢) communication takes
place over a low-performance network. THRdTTC

7.3) Generate communication delays and set com- oq ¢ along with confidence intervals are given in Table

munication clocks tac, = i 1. Up to 1000 task graphs were simulated and the time to
Sin render averaged results took about 1.69 secs. compared

8) If min_t corresponds to a communication clock then wjth 125.13 secs. needed by the numerical tool (SPNP) in

transfer a token to output plapg. a Sparc classic workstation. This difference is in part due

9) Update the marking record and go back to step 2).  to the large number of states generated. For the case of the
low performance network, SPNP took 2.40 secs. while
the simulation process took 0.63 secs [25].

) ) o A second application consists in evaluating the task

A hypothetical 13-node task graph is shown in Fig. 6. graph shown in Fig. 8. This 20-node task graph describes
This graph was used in [10] to illustrate a PN-based the LU decomposition algorithm common in the solution
numerical approach to the solution of complex task of jinear systems encountered in many scientific applica-
graphs. The simulation procedure is applied to the task tions. Several schedules for different heuristics were
graph and compared with the results rendered by the gerived in [26]. Two heuristics the Heavy Node First
SPNP tool [18]. The static allocation scheme used maps (4EN) and Weighted Length (WL) were examined to

cessorP; where j =i modn The edge weight shown in  anga,, | respectively:

Fig. 6 correspond to the number of standard sized packets

9. Applications
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Figure 7. CDF of completion time given static allocation and network type



Table 1. Comparison of MTTC results

Case Numerical Simulation
MTTC MTTC 99% confidence intervals

High-Performance | g g,59 | 155059 17.985419.2063
Network
Low-Performance | 3 o504 | 235772 22.611924.5426
Network
No-communication| 4, 1999 | 14.1491 13.581714.7165
Costs

11000101000000110010D used in the simulation.

ALNF25011001000010000100
00010001110110001007 10. Conclusions

110100001100110001001 The numer.ica_l s_olution of ta_sk graphs based on a
AL = 1510101000010001100 GSRN mo.del'ls limited to.executlon tlmes that are expo-
L™ nentially distributed. A reliable evaluation of large com-

0000101001000100010Gp0 plex task graphs is not guaranteed as it involves the solu-
tion of an underlying very large state space. One way to
circumvent this problem is using simulation. The simula-
tion technique discussed relies on a the PN-based topol-
ogy of a given task graph. Besides naturally capturing the
dynamics of a job execution, another advantage in relying
on a PN-based topology is that a common model is used
for both a numerical and a simulation-based analysis. This
is useful in the development of a user interface currently
under construction that incorporates both methods of
solution.

Both heuristics are based on the execution times
(weights) of each task. The HNF heuristic examines the
task graph level by level assigning the heaviest nodes first.
The WL heuristic assigns control nodes first by associat-
ing a rank determined in terms of the length of an exit
path, branching factor, number of depending tasks in the
path and their weights. For further details see [26]. The
schedules reported in the form of Gantt charts were
derived assuming the following:

1) The processing units are identical, The simulation tool presented facilitates the analysis

2) A communication over processing time ratio very and comparison of allocation heuristics. This is illustrated
high. Consequently, communication delays are by the evaluation of four heuristics for a particular appli-
assumed negligible, and cation. Results are reported to compare the behavior of
3) Execution times as shown in Fig. 7. two types of networks and a comparison is made between
simulation results and those obtained using a numerical
evaluation. The results of these comparisons validate the
simulation tool implemented. It turns our that the simula-
tion algorithm implemented is faster than the numerical
solution of the cases reported because of the largeness
Wine =[201916 1514138912187 361117 4 25 10 1problem. However, an interface currently under develop-
ment is required to handle large applications involving
Wy =[201917 1615118101418 7 36 12 13 4 25 9 1]thousands of tasks. Also, the tool can be used to explore
) o ) ) and determine optimal size of networks in terms of the
Thus, any instance of heuristics given in the form of hymper of processors to achieve the best performance of a
Gantt charts such as those derived to compare dedUSter'particular application. Since simulation avoids the prob-
ing techniques in [27] can be similarly characterized for |em of state explosion present in Markov-based models, a
the simulation procedure. Fig. 9 shows the plots obtained ysefyl extension to this tool must include the analysis of

in the evaluation of SEETF, MFT, LTF, HNF, and WL mytiple task graphs for which the use of color Petri nets
heuristics under the assumption of exponentially dis- \yould be more suitable.

tributed execution times. The priority vectors for the first
three schemes were derived as the assignments were
made. The results show that HNF and WL perform better
as expected. Again 1000 copies of the task graph were

The simulation of these two heuristics under a uniform
distribution with zero variance rendered the same total
execution time of 96 units. Again examining the sched-
ules the following priority vectors were obtained:
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Figure 8. Task Graph for the LU decomposition algorithm
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