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Abstract

This paper describes a simulation tool for the analysis
of complex jobs described in the form of task graphs. The
simulation procedure relies on the PN-based topological
representation of the task graph that takes advantage of
directly modeling precedence constraints and other char-
acteristics inherent in Generalized Stochastic Petri Nets
(GSPN). The GSPN representation is enhanced with
enabling functions that govern the sequence of firings of
transitions representing execution of tasks. The regulated
flow of activity is carried out observing not only prece-
dence constraints but specific allocation heuristics and
communication delays. The tool is useful in evaluating
different heuristics described by the corresponding imple-
mented algorithm, or using a deterministic timespan given
by a Gantt chart.

1. Introduction

Task graphs represent general computation jobs which
have been decomposed into modules called tasks that are
executed according to some precedence constraints. Task
graphs are a well known tool to study performance issues
of complex jobs. A direct solution technique for series-
parallel task graphs is reported in [1]; an average comple-
tion time of the overall job is derived assuming no restric-
tions exist on the number and architecture of processing
units and with no regard to allocation schemes. Execution
times of fork-join parallel programs in multiprocessor
environments is discussed in [2]. An approach based on
multiplication/convolution is applied to Heterogeneous
Computing Systems (HCS) at coarse and fine levels of
granularity in [3]. Also, in [4] performance prediction of
fork-join task graphs is addressed, where the residence
times of each task are estimated in terms of service
demands and queuing delays; based on these estimations,

the task graph is then systematically reduced.

Markov-based solutions of task graph systems have
been reported in [5] and [6]; although limited to relatively
small task graphs, a Markov-based solution is used for the
analysis of scheduling policies in [6]. Since Stochastic
Petri Nets (SPN) provide a natural representation of paral-
lelism and synchronization their use spawns applications
from individual parallel and concurrent programs to dis-
tributed applications and multi-processor systems [7, 8,
9]. SPN’s can be used to directly capture the topological
information of a task graph and provide a systematic way
for applying factors such as processor heterogeneity, allo-
cation schemes, communication costs, and random execu-
tion times. Also, a SPN-based solution can be applied to
arbitrary graphs which are acyclic but not necessarily
series-parallel [10]. SPN-based tools automatically gener-
ate Markov models that represent the execution process of
complex task graphs where each state is given by the
number of tasks executing in parallel. These models are
then solved to compute system performance characteris-
tics such as a distribution of the overall completion time.

When the job represented by a task graph is executed
on the processing elements of a HCS, estimating the over-
all completion time becomes an optimization problem
involving the mapping of tasks to processors such that
completion time is minimized. Mapping tasks to process-
ing units is a hard problem and several heuristics have
been proposed in the literature. However, before choosing
the most effective heuristic a method must be available for
computing an expected completion time and deriving
execution distributions for any giv en task graph, HCS, and
allocation heuristic. The methodology reported in [10] to
solve complex task graphs using SPN’s is not in itself an
optimization technique, but it can be used in conjunction
with optimization techniques which attempt to search a
space of completion time distributions. However, Markov-
based numerical solutions are limited to exponential dis-
tributions and often involve a large state space.



Consequently, the solution process may be unstable and
subject to stiffness problems rendering inaccurate results.
Discrete event simulation can use the framework provided
by SPN’s [11] and circumvent the limitations encountered
in the solution of Markov-based models. The work
reported in this paper uses the SPN-based topological rep-
resentation of task graph systems just as in [10] but
applies discrete-event simulation to obtain execution time
distributions and estimates of the Mean Time to Comple-
tion (MTTC) of the jobs represented. Thus a common
model based on SPN’s is used to drive a discrete event
simulation of the overall job. The method can be used to
analyze and compare several assignment heuristics given
either the algorithm or a Gantt chart of specific assign-
ment cases. To illustrate the use of the tool several assign-
ment heuristics are evaluated and compared.

The next section of the paper introduces the notation
and parameters used. Basic concepts on Petri nets are
introduced in section three and their application to
describe task graphs is given in section four. Section five
deals with the simulation methodology. A brief discussion
on allocation heuristics is given in section six. The inser-
tion of communication delays is discussed in section six.
Simulation algorithms are presented in section seven.
Lastly, applications of the tool are discussed.

2. Parameters and Notation

Throughout the paper the following notation is used to
describe the simulation tool and related issues.

• a task graph G(T, E) where the vertex set
T = {T1,T2, . . . ,Tk} consists ofk tasks which compose
some overall job and the edge setE consists of ordered
pairs from T which correspond to data or control
dependencies. The topology ofT is described in detail
by the following:

− an in-degree vectorD = [d1,d2, . . . ,dk] where di

is the number of tasks which must complete before
Ti may initiate execution.

− an out-degree vectorH = [h1,h2, . . . ,hk] where
hi is the number of tasks which are spawned after
the completion ofTi .

− a task graph structureTG[i ][ j ], 1 ≤ i ≤ k,
1 ≤ j ≤ hi whereTG[i ] is an array specifying thehi

tasks which are spawned by the completion ofTi ;
thus, the ordered pair (Ti ,TG[i , j ])ε E.

• a k × k matrix pkt[i , j ], 1 ≤ i , j ≤ k wherepkt[i , j ] is
the average number of data packets of standard size
that is sent fromTi to Tj . Alternatively, these can be
specified as edge weights for the elements ofE.

• a priority vectorW = [w1,w2, . . . ,wk] which induces
a sequential ordering of any ready tasks assigned to the

same processor; these priorities may be taken from the
indices of the tasks, e.g.wi = k − i , or they may be
randomly or determined according to the assignment
heuristic employed.

• a setP = {P1,P2, . . . ,Pn} consisting ofn processors
composing a heterogeneous suite.

• a k × n execution time matrixB[i , j ], 1 ≤ i ≤ k,
1 ≤ j ≤ n wherebij is the average execution time ofTi

on Pj .

• an n × n communication time matrixC[r , s],
1 ≤ r , s ≤ n where each entrycrs is the average com-
munication time to transfer a data packet of standard
size fromPr to Ps.

• a k × n static allocation matrixA[i , j ], 1 ≤ i ≤ k,
1 ≤ j ≤ n where entryaij = 1 if Ti has been allocated
to Pj , and 0 otherwise.

3. Basic Petri Net Concepts

A Petri net (PN) is a directed, weighted, and bipartite
graph [12]. PN’s are bipartite in that nodes are of two
types,placesand transitions, with arcs occurring either
from places to transitions or from transitions to places.
When an arc is from a placep to a transitiont, then p is
an input place oft; a placep is anoutput placeof t if an
arc proceeds fromt to p. Places and transitions are repre-
sented pictorially by circles and thin rectangles, respec-
tively. A third component of any PN are tokens which
reside in places; pictorially, tokens are represented by dots
within the perimeters of places. Tokens are transferred
from one place to another by the firing of transitions.
When a transitiont fires, tokens are removed from all
input places oft and placed in the output places oft; thus,
enforcing a logical flow of activity throughout the net. A
transition can fire if it is enabled, i.e., if all of its input
places possess at least one token. An arc may be
weighted where the weight specifies the number of tokens
which must reside in an input place in order for a transi-
tion to be enabled, or the number of tokens placed in an
output place by the firing of an enabled transition; if the
weight is unspecified then it is assumed to be one. PN’s
and their dynamic behavior can be captured in mathemati-
cal notation via state vectors. Given a PN withk places, a
marking q of the PN is denoted byMq; a marking is
described by ak − vector whosei th component denotes
the number of tokens in placepi ; an initial marking of the
PN is denoted byM0. A particular PN with an underlying
graphN is denoted (N, M0). The reachability graph of a
PN is a graphGR(M , ∆) where the vertex setM is the set
of all possible markings for the PN and the edge set∆
consists of all possible transition firings transforming one
marking into another.
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Figure 1. A simple task graph

Stochastic Petri netsare PN’s in which there is an
exponentially distributed delay time between the enabling
and firing of transitions. The reachability graph of a
bounded SPN is isomorphic to a finite Markov chain
(MC) [13]; in particular, the markings of the reachability
graph comprise the state space of a MC and the transition
rate between any two statesXi andXj is the sum of all fir-
ing delays for transitions transformingMi into M j . Gen-
eralized stochastic Petri nets(GSPN) have been proposed
[14] in which transitions are of two types:timed transi-
tions which have the exponentially determined firing rates
and immediatetransitions which have no firing delay and
have priority over any timed transition.Enabling func-
tions are marking-dependent functions which can be
defined on each transition as a switching mechanism.
Transition priorities (timed vs. immediate) and enabling
functions are logically equivalent extensions of SPN
which endow them with the full computational power of
Turing machines [15]. In this paper the notion of GSPN is
used.

4. GSPN Models of Task Graphs

Task graphs are assumed to be series-parallel for sev-
eral approaches to performance evaluation [16] and opti-
mization [17]; however, this limitation is avoided in the
PN-based methodology of this work. Fig. 1 shows a sim-
ple task graph which will be used to illustrate the transla-
tion of task graphs into GSPNs. The translation of a task
graph into a GSPN begins with the association of each
taskTi with a place/timed transition pair,pi and ti . Fig.
2 shows the GSPN corresponding to the task graph in Fig.
1. Auxiliary places xp0 and xp1 and immediate

transitionsit0 and it1 are used to enforce initiation and
completion conditions, respectively, for the overall job.
The presence of at least one token in a place may repre-
sent the fulfillment of all preconditions for the initiation
of the task. The firing of a timed transition represents the
completion of execution of the corresponding task. The
delay time of each transition corresponds to the exponen-
tially distributed execution time of the task. A placepi

can be associated with the in-degreedi to enforce prece-
dence constraints. Initially, the presence of a token inxp0

enablesit0; the firing of it0 represents the initiation of an
execution cycle. The presence of three tokens inxp1 and
the firing of it1 indicates that an execution cycle has been
completed. Timed transitions in the GSPN model in Fig.
2 will fire once enabled. Beginning with an initial mark-
ing M0 a sequence of markings can be generated to form
a reachability graph. The set of markings generated corre-
spond to the possible execution states of the system,
where a system state is defined by the tasks which are
executing concurrently. If firing times are exponentially
distributed the set of markings generated corresponds to a
Markov chain that can be solved using well known tools
such as SPNP [18] or SHARPE [1].

Consider some markingMi in which taskT6 should be
ready to run. To make this possible, bothT2 andT3 must
have finished execution; this will be indicated by the pres-
ence of two tokens inp6, i.e. xi (p6) = 2. To capture this
precedence constraint it suffices to associate each input
arc into a timed transition with a weight corresponding to
the in-degree of each node in the task graph. Alterna-
tively, the in-degree vector is associated with marking-
dependent enabling functions.
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Figure 2. GSPN model of the task graph from Fig. 1

5. Simulation Methodology

In a SPN model, the firing of transitions represents the
occurrence of events, in this case, execution of tasks. To
simulate execution of tasks [11], a clock is set for each
newly enabled transition to keep track of the execution
time until the transition fires. The simulation procedure
must also check for precedence constraints, availability of
processors, and priority of tasks. When a transition is
enabled its firing time is generated as a random variate
from a selected distribution. Firing times are recorded by
associating clocks to transitions. The PN-based simula-
tion procedure takes place observing the following major
steps:

1) Check for newly enabled transitions,

2) Generate firing firing times, and

3) Update clocks.

5.1. Enabling Functions
A transition ti is enabled when conditionsQi ,Vi , and

Zi are satisfied. An entry of the enabling vector
F = [ fi ], 0 ≤ i ≤ k is evaluated such that if:

fi = QiVi Zi

evaluates to one andti can fire.

ConditionQi checks for precedence constraints, that is,
when the number of tokensmi in placepi is equal to the
in-degreedi of the vertex representing taskTi , its prece-
dence constraints are met, i.e.,

Qi =




1 if mi = di

0 otherwise

ConditionVi checks for allocation and availability of
processors. To check for allocation suffices to examine
the ith row of matrix A for aij = 1 and then verify if pro-
cessor j is free. Let a binary vector
FREE= [ freej ], 0 ≤ j ≤ n − 1 keep track of which pro-
cessors are currently free, then

Vi = aij freej

If more than one transition satisfies conditionQ andV
and their corresponding tasks are allocated to the same
processor, only one transition should be enabled (only one
task should execute) even though these tasks could
execute in parallel. The task with the highest priority is
chosen using the priority vectorW. Let Rdybe the set of
transitions representing parallel tasks allocated to the
same processor. That is, the set of transitions that could
be enabled from a current markingM , then



Zi =




1 if wi =
jε Rdy
max{w j }

0 otherwise

Note that these functions could be easily implemented
by incorporating additional places and transitions to the
model in Fig. 2. For example the presence of a token in a
dedicated place can be used to model the availability of a
processor and to derive statistical measurements on the
usage of that processor [19]. Also additional immediate
transitions can be used to model task priorities. It can be
argued that additional modeling elements may obscure the
representation of a task graph and although they are use-
ful, they become transparent to the user when dealing
with large complex models. We find the addition of
places to model processing elements and their intercon-
nections useful for the case of analyzing the behavior of
systems running several jobs modeled by different task
graphs or several instances of the same job in an effort to
capture the load of the system, resource contention and
usage. In our case the effect of external load is reflected
in the execution time of each subtask. The use of enabling
functions keeps the model simple and the simulation code
relatively simple as well.

5.2. Firing times
If a timed transition is enabled, a firing time is gener-

ated using a firing transition rate given in terms of the
av erage execution times of each task obtained from matrix
B. Random variates are generated from three possible dis-
tributions: exponential, normal, and uniform. The values
given by matrixB are used according to the distribution
function selected. Uniform and normal functions require a
second value that must be provided by the user. IfB1
denotes the first matrix given as the execution matrixB
thenB2 denotes a second matrix provided by the user for
the case of normal and uniform distributions. For expo-
nential and normal distributionsb1ij provides the average
execution time. For normal distributions the matrixB2
provides the standard deviationρ ij . In the case of a uni-
form distribution, matrixB1 provides the starting point
b1ij and matrixB2 provides the ending pointb2ij . These
values are used to calculate the mean as (b1ij + b2ij )/2. A
pseudo-random numberu is generated fromU(0, 1). A
firing time xij associated to transitionti is generated for
each distribution as follows:

i). Exponential distribution, exp(b1ij ):

xij = − b1 j × ln(u)

ii). Normal distribution,N(b1ij , b22
ij ):

xij = (
a=12

a=1
Σ ua − 6) × b2ij + b1ij

iii). Uniform distribution,U(b1ij , b2ij ):

xij = u × (b2ij − b1ij ) + b1ij

5.3. Clock Update
A local clock that keeps track of firing times and a

global clock is used to record the overall completion time.
When a timed transition is enabled a local clock is set to
the generated firing time to indicate the remaining time
until the transition fires. A global clock is denoted asC
and local clocks are represented by a vector
LC = [lci ], 0 ≤ i ≤ k − 1 wherelci is the local clock asso-
ciated to transitionti .

Since local clocks indicate remaining times, they are
discarded when they reach 0 time units and the corre-
sponding transitions fire. At the moment a transition fires,
the global clock and local clocks are updated. The global
clock update is performed by adding the minimum local
clock time min_t to the global clockC; min_t is taken
from the set of enabled transitions that have not yet fired.
The following expressions are used to update all clocks.

C = C + min_t

lci = lci − min_t

where min_t =
i

min {lc i }, 0 ≤ i ≤ k − 1. Once the last

transition fires, the global clock C indicates the overall
completion time.

6. Heuristics

Different allocation heuristics can be evaluated by
mapping them into the allocation matrixA. To illustrate
the use of the simulation methodology discussed in this
paper four static allocation heuristics are evaluated and
compared.

1. Shortest Estimated Execution Time First (SEETF).
In this scheme [20, 21, 22] taskTi is selected at ran-
dom from the task set and assigned to the processor
that executesTi faster. The elements of the task alloca-
tion matrix from the SEETF algorithm are determined
as follows:

aij =




1 if bij =
j

min {bij }

0 otherwise

2. Minimum Finish Time (MFT). In this allocation
scheme [22], taskTi is also selected randomly from a
topologically sorted task set, i.e. taking into account
the precedence constraints between tasks. The selected
processor is the one that minimizes the finish time of a
task in a deterministic simulated execution, where the
finish time of a selected taskTi is given by the



minimum sum of its execution timebij and the next
time instance in which processorPj becomes a free
processor.

aij =




1 if
j

min {bij + time until Pj is free}

0 otherwise

Note that all tasks are selected randomly but restricted
to those tasks whose predecessors have already been
allocated.

3. Largest Task First (LTF)[22]. The selection of tasks
is based on service demands. The task with the largest
service demand is selected first, or alternatively the
task with the largest execution time is selected first.
Thus:

aij =




1 if bij =
i

max{bij }

0 otherwise

A processorPj is selected randomly.

4. Most Data Task First (MDTF)This scheme selects
the task that generates most data. The data generated
by a taskTi is determined in terms of the number of
data packets going out, that is:

pkti =
k

j=1
Σ pktij

Thus, the construction of the allocation matrix pro-
ceeds as follows:

aij =




1 if pktij =
i

max{pkti }

0 otherwise

and in this case also the processorPj is selected ran-
domly.

7. Communication Delays

As in [10], two approaches are presented based on two
types of interconnection networks: (a) a high-performance
network characterized by high-connectivity and parallel
communications and (b) a bus-oriented network with low-
connectivity. In both cases, output data is assumed to be
accumulated in a buffer during task execution and trans-
mitted after task completion.

7.1. Modeling High-performance Communica-
tion Networks

High-performance communication networks can be
characterized as expensive systems in which inter-node
communication takes place on dedicated, point-to-point
links. Data intended for each successor is written to a
separate buffer. Furthermore, each processor may be cou-
pled with a front-end communication processor which

enables parallel communication. In terms of a task graph,
once a given task completes, successor tasks experience
an initiation delay equal to the data transfer time for all
intended packets; ideally, any successor task allocated to
the same processor as the parent task should be able to
begin execution immediately after the completion of the
parent task.

The properties of such a high-performance network
can be modeled in a GSPN by inserting additional
place/timed-transitions to represent each individual com-
munication; augmentation of the task graph with commu-
nication nodes has been proposed for CTMC-based analy-
sis [23] and at the SPN level [24]. Each timed-transition
inserted is associated with an exponentially distributed
delay whose parameter is the average communication
time between the host processors. Thus, given a com-
pleted taskTi allocated to processorPr and a successor
task Tj allocated toPs, the average communication rate
assigned to the transition modeling the transfer of data is
given by:

δ ij =
1

crs pktij

Fig. 5a illustrates a segment of some task graph in
which Task A spawns tasks B, C, and D. Suppose the
four tasks are allocated to three processors such that A
and C are allocated to one processor, and B and D are
allocated to the other two processors, then the resulting
GSPN for Case 1 would be as shown in Fig. 5b. Note the
insertion of place/transition pairs between A and B and A
and D to represent the individual

In terms of simulation, communication delays are
determined from a distribution function using the average
delay δ ij and associating a local time to communication
tasks.

7.2. Modeling Bus-Oriented Networks
In interconnection networks characterized by low-con-

nectivity, groups of processors may have to share common
communication links, as is the case with a bus-oriented
architecture. Also, in lower cost systems processors may
be forced to expend computation cycles on communica-
tion processing. If, additionally, output data packets for
successor tasks are queued up in a single buffer in some
random ordering and transmitted on a FIFO basis, then it
is highly unlikely that a successor task will receive all of
its packets before any other successor task. In terms of
the example in Fig. 5a, if the processor to which task A is
allocated must broadcast packets in random order to the
processors associated with tasks B, C, and D , then it is
reasonable to assume that on average B, C, and D will
experience uniform initiation delay.
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Such behavior can be reflected in the GSPN by simply
modifying the rate function governing the firing of the
transitions associated with each task. In this case, no
extra nodes are inserted in the PN model. Rather, the fir-
ing delay of each transition is increased by the sum of
communication costs associated with each successor task.
Let Ti be allocated toPj where completion ofTi spawns
m = hi tasksTq1

,Tq2
, . . . ,Tqm

which are allocated to pro-
cessorsPy1

, Py2
, . . . ,Pym

. Then a modified firing rate for
transitionti is given by:

λ̃ i =
1

µ ij +
m

k=1
Σ cjyk

pktiqk

This new value is then used to determine execution
times from the distribution function of choice with the
value ofµ ij determined accordingly. In reality a given net-
work may be heterogeneous with respect to interconnec-
tion capabilities. In this case the GSPN model can be sys-
tematically constructed to appropriately model each seg-
ment of the network, reflecting the different sets of
assumptions mentioned above. The net result is that the
simulation process uses a GSPN representation with
dynamically determined transition rates and enabling
functions capturing the full interplay of task precedence
relationships, allocations specifications, availability of
idle processors, diverse execution rates across a heteroge-
neous suite, and communication delays.

8. Simulation Algorithms

A simulation algorithm based on the PN-based topo-
logical description of task graphs is now described. The
algorithm generates the MTTC and a tabulation to plot the
cumulative probability distribution of the execution time.
The following steps summarize the simulation process for
the case in which no communication delay is taken into
account:

1) Initialize the global clockC and the initial marking
M0.

2) Check for newly enabled transitions. In the absence
of newly enabled transitions go to step 5).

3) For each enabled timed transitionti generate firing
time xij .

4) For each enabled timed transitions, set the local
clock lci to lci = xij .

5) Find the minimum local clockmin_t

6) Fire the transition with the minimum clockmin_t.
Once a timed transition fires, the corresponding task
completes execution and the host processor is released.

7) Update global clockC and local clockslci . Notice
that by firing transitions with the minimum remaining
time equal tomin_t, its lci = 0 and removed from the
set of lci ’s. The firing of the last timed transition ends
the current cycle. A new cycle begins at step 1) by
resetting the initial markingM0 and the global clock
C.

8) Update the marking record and repeat from step 2).



The above procedure is also used for the case of low-
performance networks where the firing rates are modified
accordingly. To take into account transfer delays in a
high-performance network some modifications are
needed. Let ccih denote the communication clock
between taskTi and taskTh. Note that transitionti is a
transition that has already fired, that is, the corresponding
taskTi is in the process of transferring data. After transfer
is complete, a token travels to output placeph. The set of
communication clocksccgh is also compared with local
clocks lci to determine the minimum timemin_t. Note
that the set oflci ’s corresponds to transitionsti that have
been enabled but are not yet transferring data. If themin_t
selected corresponds to a local clocklci , then transitionti

fires, else, themin_t corresponds to a communication
clock and a token is now transferred to a destination place
ph. Steps 1) to 4) are the same and the rest of the algo-
rithm is modified as follows:

5) Find the minimum local clock:
min_t =

ih
min {lc i , ccih}.

6) Update global clockC, local clockslci , and commu-
nication clocksccih:

C = C + min_t

lci = lci − min_t

ccih = ccih − min_t

7) If min_t corresponds to a local clocklci , then:

7.1) Transitionti fires. Tokens are removed from
the input places and the corresponding processor is
released.

7.2) If ti is the last transition, then stop the cycle.

7.3) Generate communication delays and set com-

munication clocks toccih =
1

δ ih
.

8) If min_t corresponds to a communication clock then
transfer a token to output placeph.

9) Update the marking record and go back to step 2).

9. Applications

A hypothetical 13-node task graph is shown in Fig. 6.
This graph was used in [10] to illustrate a PN-based
numerical approach to the solution of complex task
graphs. The simulation procedure is applied to the task
graph and compared with the results rendered by the
SPNP tool [18]. The static allocation scheme used maps
tasks to processors such that a taskTi is assigned to pro-
cessorPj where j = i modn. The edge weight shown in
Fig. 6 correspond to the number of standard sized packets

generated and sent to successor tasks.

The following matrix B specifies the spectrum of
execution times for each task across six processing units
in the system in standard time units per execution:

BT =
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The communication delays per data packet in the inter-
connection network between the six processors are char-
acterized by the matrixC in terms of standard time units
per packet:

C =
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Relative priorities among the 13 tasks are specified thus:

W = [13 12 11 8 9 10 7 6 5 4 3 1 2]

It should be noted that this priority scheme is entirely
arbitrary as is the allocation scheme. The numerical and
simulation results shown in Fig. 7 correspond to the prob-
ability of completion at timet, P(X ≤ t) of the overall job
based on three communication scenarios: a) there are no
communication costs, b) communication occurs over a
high- performance network, and c) communication takes
place over a low-performance network. TheMTTC
results along with confidence intervals are given in Table
1. Up to 1000 task graphs were simulated and the time to
render averaged results took about 1.69 secs. compared
with 125.13 secs. needed by the numerical tool (SPNP) in
a Sparc classic workstation. This difference is in part due
to the large number of states generated. For the case of the
low performance network, SPNP took 2.40 secs. while
the simulation process took 0.63 secs [25].

A second application consists in evaluating the task
graph shown in Fig. 8. This 20-node task graph describes
the LU decomposition algorithm common in the solution
of linear systems encountered in many scientific applica-
tions. Several schedules for different heuristics were
derived in [26]. Two heuristics the Heavy Node First
(HFN) and Weighted Length (WL) were examined to
determine the corresponding assignment matricesAHNF

andAWL, respectively:
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Table 1. Comparison of MTTC results

SimulationNumerical
MTTC MTTC 99% confidence intervals

Case

High-Performance
Network

18.8269 18.5959 17.9854− 19.2063

Low-Performance
Network

23.5204 23.5772 22.6119− 24.5426

No-communication
Costs

14.1999 14.1491 13.5817− 14.7165

AT
HNF =






1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0

0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1






AT
WL =






1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1

0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0

0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0






Both heuristics are based on the execution times
(weights) of each task. The HNF heuristic examines the
task graph level by lev el assigning the heaviest nodes first.
The WL heuristic assigns control nodes first by associat-
ing a rank determined in terms of the length of an exit
path, branching factor, number of depending tasks in the
path and their weights. For further details see [26]. The
schedules reported in the form of Gantt charts were
derived assuming the following:

1) The processing units are identical,

2) A communication over processing time ratio very
high. Consequently, communication delays are
assumed negligible, and

3) Execution times as shown in Fig. 7.

The simulation of these two heuristics under a uniform
distribution with zero variance rendered the same total
execution time of 96 units. Again examining the sched-
ules the following priority vectors were obtained:

WHNF = [20 19 16 15 14 13 8 9 12 18 7 3 6 11 17 4 2 5 10 1]

WWL = [20 19 17 16 15 11 8 10 14 18 7 3 6 12 13 4 2 5 9 1]

Thus, any instance of heuristics given in the form of
Gantt charts such as those derived to compare decluster-
ing techniques in [27] can be similarly characterized for
the simulation procedure. Fig. 9 shows the plots obtained
in the evaluation of SEETF, MFT, LTF, HNF, and WL
heuristics under the assumption of exponentially dis-
tributed execution times. The priority vectors for the first
three schemes were derived as the assignments were
made. The results show that HNF and WL perform better
as expected. Again 1000 copies of the task graph were

used in the simulation.

10. Conclusions

The numerical solution of task graphs based on a
GSPN model is limited to execution times that are expo-
nentially distributed. A reliable evaluation of large com-
plex task graphs is not guaranteed as it involves the solu-
tion of an underlying very large state space. One way to
circumvent this problem is using simulation. The simula-
tion technique discussed relies on a the PN-based topol-
ogy of a given task graph. Besides naturally capturing the
dynamics of a job execution, another advantage in relying
on a PN-based topology is that a common model is used
for both a numerical and a simulation-based analysis. This
is useful in the development of a user interface currently
under construction that incorporates both methods of
solution.

The simulation tool presented facilitates the analysis
and comparison of allocation heuristics. This is illustrated
by the evaluation of four heuristics for a particular appli-
cation. Results are reported to compare the behavior of
two types of networks and a comparison is made between
simulation results and those obtained using a numerical
evaluation. The results of these comparisons validate the
simulation tool implemented. It turns our that the simula-
tion algorithm implemented is faster than the numerical
solution of the cases reported because of the largeness
problem. However, an interface currently under develop-
ment is required to handle large applications involving
thousands of tasks. Also, the tool can be used to explore
and determine optimal size of networks in terms of the
number of processors to achieve the best performance of a
particular application. Since simulation avoids the prob-
lem of state explosion present in Markov-based models, a
useful extension to this tool must include the analysis of
multiple task graphs for which the use of color Petri nets
would be more suitable.
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