Implementation of a Parallel Genetic Algorithm
on a Cluster of Workstations:
the Traveling Salesman Problem, A Case Study

Giuseppe Sena'*, Germinal Isern'**, and Dalila Megherbi?

! Northeastern University, College of Computer Science,
Boston, MA 02115, U.S.A.
{tonysena,isern}@ccs.neu.edu
% University of Denver, Division of Engineering,
Denver, CO 80208, U.S.A.
dmegherb@du.edu

Abstract. A parallel version of a Genetic Algorithm is presented and
implemented on a cluster of workstations. Even though our algorithm
is general enough to be applied to a wide variety of problems, we used
it to obtain optimal/suboptimal solutions to the well known Traveling
Salesman Problem. The proposed algorithm is implemented using the
Parallel Virtual Machine library over a network of workstations, and it is
based on a master-slave paradigm and a distributed-memory approach.
Tests were performed with clusters of 1, 2, 4, 8, and 16 workstations,
using several real problems and population sizes. Results are presented
to show how the performance of the algorithm is affected by variations
on the number of slaves, population size, mutation rate, and mutation
interval. The results presented show the utility, efficiency and potential
value of the proposed algorithm to tackle similar NP-Complete problems.

1 Introduction

In this paper a parallel/distributed version of a Genetic Algorithm (GA) is pre-
sented and implemented over a cluster of workstations to obtain quasi-optimal
solutions to the widely known Traveling Salesman Problem (TSP).

Genetic Algorithms are computational models inspired by the idea of evolu-
tion [15], and they were introduced by John Holland and his students [7, 3]. GAs
encode solutions to a specific problem using a chromosome-like data structure
and apply recombination operators to produce new individuals. GAs are often
used as function optimizers, and are also considered as global search methods
that do not use gradient information. Therefore, they might be applied to prob-
lems in which the function to be optimized is non-differentiable or with multiple
local optima.

* ON Technology Corp., Cambridge, MA 02142, U.S.A., tsena@on.com.
** On leave from Universidad Central de Venezuela, Caracas, Venezuela.

A GA is inherently parallel [9], and at every iteration individuals are inde-
pendently selected for crossover and mutation following some probability dis-
tribution. The proposed parallel and distributed implementation introduced in
this paper uniformly decomposes the population among the available processors
(hosts), so that genetic operators can be applied in parallel to multiple indi-
viduals. A master-slave paradigm is used to implement the Parallel Distributed
Genetic Algorithm (PDGA).

The proposed PDGA is applied to the TSP [10, 4, 8]. The problem at hand is
an optimization problem which consists of finding a Hamiltonian cycle of mini-
mum length. Individuals in the population are Hamiltonian cycles represented as
a sequence of vertices, which makes the mutation and crossover operators simpler
and efficient. New heuristics as well as decisional rules are introduced to support
computationally efficient migration of individuals between sub-populations in
order to improve the gene pool.

Our PDGA is implemented on a network of SUN workstations (Ultra Sparc 1)
running the Parallel Virtual Machine (PVM) library, and tests are performed
using 1, 2, 4, 8, and 16 slave workstations. Several real problems and population
sizes are used in our experiments, which are obtained from a library of TSPs
called TSPLIB from Rice University.

The experimental results obtained are very promising. In particular, we show
that as we increase the size of the population the performance of the PDGA
improves as we increase the number of slave tasks used. We additionally show
that with small population sizes (i.e. p = 128) the communication overhead
overcomes the advantage of using our PDGA.

The rest of this paper is organized as follows: in section 2 we give an overview
of the GA methodology used, present the problem encoding and the fitness
function used. In addition, we show the general design of our PDGA the problem
parameters and the GA operators used. Section 3 describes our test environment,
and the test results and analysis are presented in section 4. The conclusions and
future research is presented in section 5.

2 GA Methodology

Usually, only two components of a GA are problem dependent: the problem
encoding and the evaluation (fitness) function. The following subsections present
the encoding, mutation and crossover operators, and the fitness function used
for the TSP. In addition, an overview of the proposed PDGA is presented.
Three different ways of exploiting parallelism in GAs can be defined [15]:
(a) a parallel GA similar to the canonical GA [7], (b) an Island Model that uses
distinct sub-populations, and (c) a fine-grain massively parallel implementation
where each individual resides in a processor. In this paper the island model is
used in order to exploit a more coarse-grain parallelism, which can be easily
extended to a distributed system. The general idea behind the island model is to
distribute the total population among the available processors, and to execute
a classical GA with each sub-population. Hence every few generations (based

on well defined criteria), sub-populations could swap few individuals (chosen at
random among the best fit). This migration process allows sub-populations to
share “genetic material”.

2.1 Problem Encoding

Traditional GAs use binary bit-strings to encode individuals in the population.
However, many researchers [2, 10, 8] use real-valued or non-binary encodings
instead of binary encodings, and employ recombination operators or specialized
operations that may be problem or domain specific. For the TSP, individuals in
the population are Hamiltonian cycles. If we try to represent Hamiltonian cycles
as bit-strings we will soon find out that the mutation and crossover operators
can generate invalid individuals with a very high probability. Hence the need for
repairing algorithms to convert invalid bit-strings into valid individuals. There-
fore, we represent a cycle as sequence of vertices, so that each Hamiltonian cycle
could be one of the possible n! permutations of the vertices of G = (V, E).

2.2 Fitness Function

Let us assume that G = (V, E) is the graph representing the problem, with
V = {vg,v1,...,v,—1}. Each individual in the population is a Hamiltonian cycle
HCy (k=1,2,...,nl) in G. Let us define V,, = {p1,p2,...,pn} as the set of all
possible permutations of the elements of V. The fitness function F' is defined as:

n—1
F(HCy) =Y Cost(vy, (i), Vpu((i+1) mod m) VK € [1,n] . (1)
i=0
where HC), = (Vp, (0), Vpx(1)s - - s Upy (n—1)) and Cost(v;,v;) is the distance be-

tween each pair of cities v; and v;. Therefore, F(HC},) would be the tour-length
of the Hamiltonian cycle HCj,.

2.3 PDGA: Distributed-Memory Approach

The basic idea of a GA is simply to generate a random population of individuals
and apply mutation and crossover operators [4, 17] to a sub-population in each
generation until an individual is found to satisfy some criteria for fitness or a
maximum number of generations (iterations) is reached. It should be clear at this
point, that there is an implicit parallelism in this basic GA and one could apply
this basic GA to sub-populations in parallel in order to improve the performance
of the algorithm.

Several Parallel Genetic Algorithms (PGA) have been proposed in the lit-
erature [14, 16, 12, 10, 6, 13]. In this paper we present the design and im-
plementation of a Parallel-Distributed Genetic Algorithm (PDGA) based on a
distributed-memory approach. Figure 1 shows the general architecture of the
proposed PDGA, and the interaction between the MASTER and SLAVE tasks.
The idea is to start-up a MASTER task whose main purpose is to control the

Minimum
Path and
Cost

Problem Problem
Master Parameters

Fig.1. PDGA: General Design

operations of the system by broadcasting the problem parameters and by syn-
chronizing the operation of the SLAVE tasks. The master task spawns as many
slave tasks as specified by the user and uniformly decomposes the population
among those slaves. Every slave task receives the problem parameters from the
master task, generates a random sub-population and starts executing a basic
GA [9] within its own sub-population. During every generation and after each
slave task has performed the crossover and mutation operations (and probably
migration), each slave task sends back to the master task the minimum-cost
Hamiltonian cycle found in that generation. Based on the results received, the
master decides if it has reached the goal or if it is necessary to compute the next
generation.

2.4 Problem Parameters

The input parameters required by the PDGA to solve the TSP are: a) nslaves:
number of slave tasks, b) n: number of vertices (cities) in the graph, ¢) p: total
number of Hamiltonian cycles in the population, d) r: crossover rate, e) m:
mutation rate, f) mut_int: mutation interval, g) mig rate: migration rate,
h) mig_int: migration interval, and i) min_threshold: minimum tour-length
accepted to stop the algorithm.

2.5 GA Operators

In this section we present the GA operators used for mutation and crossover, as
well as the way we perform migration of sub-populations. The proposed PDGA is

an example of what is called a steady state GA [2], which means that offsprings do
not replace parents, instead they replace some less fit members of the population.

Many mutation operators for the TSP have been proposed in the literature [4,
10, 17, 8], and we selected one that is simple to implement when cycles are
represented as a sequence of vertices: choose two of the vertices in the cycle at
random and swap them. A mutation operation is performed as often as indicated
by the mutation interval parameter (mut_int).

There are also several crossover operators that have been studied for the
TSP [4, 10, 17, 8]. In order to apply a GA to permutation problems (like the
TSP), it is necessary to use special operators to ensure that the recombination
of two permutations (individuals) also yields another permutation [11]. Again,
due to its simplicity, we chose here a crossover operator called OX operator [17],
also known as order crossover operator. The crossover operation (mating) is
performed every generation (iteration) with some percentage of the population
(r) selected at random.

As we mentioned before, we use an island model to exploit differences among
sub-populations. Each sub-population represents an island and we move the
genetic material between islands in a specific way. The migration of a percentage
of the population (mig_rate) is performed every mig_int generations between
consecutive slave tasks as if they were connected in a logical ring topology. Each
slave task S; chooses the best individuals in their sub-population and sends them
to its successor S(i11) mod nsiaves i the ring, and receives those individuals from
its predecessor task S(;_1) mod nsiaves and replaces the worst fit individuals with
the ones just received. After several migrations one may observe that every slave
task will have most of the best individuals found by the others. In addition this
process will provide more diversity to the gene pool used for the search.

3 Test Environment (Experiments)

The proposed PDGA was implemented using PVM [5], which is a message pass-
ing library that allows programmers to write parallel/distributed applications
using a NoW [1]. Figure 1 shows the message exchange that occurs between the
MASTER and SLAVE tasks.

Tests were performed on a cluster of twenty (20) SUN SparcStations (Ultra
Sparc 1) running Solaris 2.6 and PVM 3.4b. For debugging and virtual machine
configuration we used XPVM 1.1, an X Windows interface for the PVM console
program. We tested our algorithm using 1, 2, 4, 8 and 16 slave tasks running in
parallel, and different population sizes (p =128, 512, 1024, and 2048) changing
only the number of slave tasks in order to observe and study the increase in
performance (speedup). In addition, we studied the effect of variations in the
mutation rate (m) and mutation interval (mut_int) on the total execution time
and convergence rate of the proposed algorithm.

We used a library of TSP problems (TSPLIB) from Rice University that con-
tains real data for graphs of different sizes. Vertices in the graphs represent cities
in countries around the world, and the cost associated with every edge repre-

sents distances between each pair of cities. Test runs were performed with data
from cities in Germany and Switzerland. We present the results obtained from
data in Bavaria, Germany (bavaria29.data), represented by a complete undi-
rected graph of n = 29 vertices, and with optimal tour-length of 2020 (problem
parameters: r = m = 0.5, mut_int = 20, mig_int = 25, and mig_rate = 0.1).

In order to determine the effectiveness of the proposed PDGA we selected
TSP problems for which the minimum tour-length cost was known. In addition,
we required the PDGA to stop if and only if the derived solution was within 1%
off the optimal solution provided (for bavaria29.data min_threshold = 2040).

4 Test Results and Analysis

4.1 Effect of Population Size and Number of Slave Tasks

In light of the results presented in figures 2 and 3, one can observe that as the
size of the population increased the performance of the parallel version improved
(proportionally) as the number of slave tasks increased. One may also notice that
for small populations (i.e. p = 128) the performance decreased as the number of
slaves increased. In addition, when the number of slaves increased the commu-
nication and synchronization overhead increased and the program spent more
time in communication than performing useful computations.

We also notice from fig. 2 that one cannot keep increasing arbitrarily the
number of slave tasks used. There is a maximum number of slaves after which the
execution time increases instead of decreasing (i.e. 8 slaves). This result can be
justified by and is in line with the fact that, depending on the population size and
the number of slaves, if the number of slaves keeps increasing the communication
and synchronization overhead will overcome the advantage of using the PDGA.
The worst case happened when we used very small populations (i.e. p = 128). In
these cases with a single slave (sequential program) we obtained better results
(most of the time) than with 4, 8, or 16 slaves. This shows again that the proposed
PDGA is better suited for large populations. It is also worth and important to
mention that with small populations a parallel and distributed version of a GA
is most likely to converge to a local minima due to a small gene pool. Figure 3
shows that the number of generations is virtually invariant to the increase in the
number of slave tasks used.

We should emphasize that all tests were performed on a cluster of worksta-
tions connected through an Ethernet LAN (baseband network), which becomes a
bottleneck when the number of workstations is increased. In order to obtain bet-
ter performance as the number of workstations is increased, it would be necessary
to replace the interconnection network used (Ethernet) by a high-performance
network (like ATM, FastEthernet, etc.).

4.2 Effect of the Mutation Interval (mut_int)

Figure 4 presents the results of varying the mutation interval, and how it affects
the convergence and total execution time of the PDGA. These tests were per-

bavaria29.data

bavaria29.data

——p=128

g

g

Number of Iterations (gener ations)

Execution Times (sec)
= =
S 3
5 5

50,00

8 -
6 18 Population Sze ° ; . M

a
Number of Slaves

Number of Javes

Fig. 2. (Ezecution time) as a function of Fig. 3. (Number of generations) as a func-
(number of slaves) and (population size) tion of (number of slaves)

formed with 8 slaves, a population of p = 1024, and a mutation rate of m = 10%.
In the top of the graph we observe that the execution time decreases rapidly at
first and then slowly reaches a minimum around mut_int = 30. After that it
begins to increase again. It is worthwhile to mention that for mut-int < 2 the
PDGA diverges. This behavior can be justified and explained by the fact that in
this case mutations are performed almost on every generation, which does not
allow the PDGA to get stabilized towards an optimal solution. The bottom of
the graph shows a behavior similar to the behavior illustrated in the top of the
graph, but with respect to the number of generations (iterations).

4.3 Effect of the Mutation Rate (m)

Figure 5 presents the results of varying the mutation rate, and how this affects
the convergence and total execution time of the PDGA. These tests were per-
formed with 8 slaves, a population of p = 1024, and a mutation interval, mut_int,
equal to 20. In the top of the graph we observe that the execution time does
not change drastically with variations in the mutation rate. However, the exe-
cution time slightly improves as we reduce the mutation rate below 30%, which
seems logical because we are reducing the amount of work each slave must do
to perform mutations. The bottom of the graph shows a behavior similar to the
behavior illustrated in the top of the graph, but with respect to the number of
generations.

bavaria29.data bavaria29.data

25.00 400 12 250
350 - [
10 et -~
2000 Al 200
30 i ™
ol M
- M 250 , /
g 1500 g B 150 o
2 £l & 5
o
£ n z £ 3
IS _ = = 2
s = T 20 % E e =
H z] 2
g £ g :
i 1000 o 2 5 100 2
4
100
500 50
2
50
000 0
o 0

4 8 12 16 18 20 22 24 28 32 36 40 01 02 03 04 05 06 07 08 09
Mutation Interval (mut_int) Mutation Rate (m)

Fig.4. Effect of the Mutation Interval Fig.5. Effect of the Mutation Rate (m) on
(mut_int) on the PDGA the PDGA

5 Conclusions and Future Work

In this paper we introduced a parallel/distributed paradigm of a GA (PDGA)
and we successfully applied it to the TSP. We used PVM to implement the
proposed PDGA and we tested it on real data. We compared the proposed PDGA
with a sequential GA and showed that said PDGA yielded very good results for
large populations. Moreover, we also showed that, for a given population size, it is
not recommended to increase the number of slave tasks arbitrarily. In particular,
it has been shown in this paper that there is an optimum combination, in terms of
population size and number of slave tasks, which leads to a better computational
speed.

There are still many unanswered questions remaining. It is necessary to ex-
periment with different encoding, crossover and mutation operators. We should
also study in more detail how the mutation and migration rates affect the con-
vergence speed of our PDGA. It would be interesting to test the PDGA with
very large size problems (i.e. graphs with thousands of nodes), as well as other
variations of the classical TSP. We are experimenting with several new heuris-
tics as well as decisional rules to support computationally efficient migration to
improve the gene pool. In particular, we are studying several migration schemes
(i.e. random migration, alternating slaves, etc.). We are also analyzing other
implementations of the basic PDGA using a different programming paradigm
(i.e. MPMD) in order to reduce the intrinsic communication overhead and the
need of synchronization exposed by the master-slave paradigm. We also must
produce a deeper performance analysis considering granularity (communication

vs. computation time and frequency) and scalability factors, in order to tune up
our parallel/distributed implementation.

We will also be studying how to apply GAs and our experience with the TSP
to other scheduling and networking problems (i.e. general routing, ATM rout-
ing and bandwidth allocation, load balancing, etc.). We are also developing a
new implementation of our PDGA that will run over a network of heterogenous
workstations directly attached to an ATM switch and with the latest version of
PVM. Despite the lack of a deep performance analysis of the PDGA proposed,
the results presented in this paper show the utility, versatility, efficiency and
potential value of the proposed PDGA to solve and tackle NP-Complete prob-
lems. The PDGA presented is not only a good example of parallel/distributed
programming, but it also shows how an inherent parallel algorithm can be effi-
ciently implemented using well understood programming paradigms, flow control
techniques, and load balancing approaches.

References

[1] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW team. A Case of
NOW (Networks of Workstations). IEEE Micro, 15(1):54-64, February 1995.

[2] L. Davis, editor. Handbook of GA. Van Nostrand Reinhold, NY, 1991.

[3] K. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Phd’s thesis, University of Michigan, Ann Arbor, MI, 1975.

[4] B.R. Fox and M.B. McMahon. Genetic Operators for Sequencing Problems. In
Rawlins [12], pages 284-300.

[5] A. Geist, A. Beguellin, J. Dongarra, et al. PVM: Parallel Virtual Machine. A
User’s Guide and Tutorial for Net. Parallel Comp. The MIT Press, 1994.

[6] M. Gorges-Schleuter. Explicit Parallelism of Genetic Algorithms through Popu-
lation Structures. Parallel Problem Solving from Nature, pages 150-159, 1991.

[7] J. Holland. Adaptation in Natural and Artificial Systems. U. Mich. Press, 1975.

[8] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolutionary Programs.
Springer-Verlag, Berlin, Germany, 1993.

[9] T.M. Mitchell. Machine Learning. Series in CS. McGraw-Hill, 1997.

[10] H. Miihlenbein. Evolution in Time and Space - The Parallel Genetic Algorithm.
In Rawlins [12], pages 317-337.

[11] S. Rana, A.E. Howe, D. Whitley, and K. Mathias. Comparing Heuristic, Evolu-
tionary and Local Search Approaches to Scheduling. In Proc. of the 3"¢ Artificial
Intelligence Planning Systems Conference, 1996.

[12] G.J.E. Rawlins, editor. Foundations of Genetic Algorithms. Morgan-Kaufmann
Publishers, Inc., San Mateo, California, 1991.

[13] T. Starkweather, D. Whitley, and K. Mathias. Optimization Using Distributed
Genetic Algorithms. Parallel Problem Solving from Nature, 1991.

[14] R. Tanese. Distributed Genetic Algorithms. In Proc. of the 3"% Int. Conf. on
Genetic Algorithms, pages 434-439. Morgan-Kaufmann Publishers, Inc., 1989.

[15] D. Whitley. A Genetic Algorithm Tutorial. Stat. and Computing, 4:65-85, 1994.

[16] D. Whitley and T. Starkweather. Genitor II: a Distributed Genetic Algorithm.
Journal Exzpt. Theory Artificial Intelligence, 2:189-214, 1990.

[17] D. Whitley, T. Starkweather, and D. Shaner. The Traveling Salesman and Se-
quence Scheduling: Quality Solutions Using Genetic Edge Recombination. In
Davis [2], chapter 22, pages 350-372.

