
A Parallel Genetic Algorithm for task mapping

on parallel machines

S. Mounir Alaoui1, O. Frieder2, and T. El-Ghazawi3

1 Florida Institute of Technology, Melbourne, Florida, USA
salim@ee.fit.edu,

2 Illinois Institute of Technology, Chicago, Illinois, USA
ophir@csam.iit.edu,

3 George Mason University, Washington D.C, USA
tarek@gmu.edu

Abstract. In parallel processing systems, a fundamental consideration
is the maximization of system performance through task mapping. A
good allocation strategy may improve resource utilization and increase
signi�cantly the throughput of the system. We demonstrate how to map
the tasks among the processors to meet performance criteria, such as
minimizing execution time or communication delays. We review the Lo-
cal Neighborhhod Search (LNS) strategy for the mapping problem.We
base our approach on LNS since it was shown that this method outper-
forms a large number of heuristic-based algorithms. We call our mapping
algorithm, that is based on LNS, Genetic Local Neighborhood Search
(GLNS), and its parallel version, Parallel Genetic Local Neighborhood
Search (P-GLNS). We implemented and compared all three of these map-
ping strategies. The experimental results demonstrate that 1) GLNS al-
gorithm has better performance than LNS and, 2) The P-GLNS algo-
rithm achieves near linear speedup.

1 Introduction

Parallel processor systems o�er a promising and powerful alternative for high
performance computing. Ine�cient mapping or scheduling of parallel programs
on architectures, however, limit our success. A parallel program is a collection
of separate cooperating and communicating modules called tasks or processes.
Tasks can execute in sequence or at the same time on two or more processors.
Task mapping distributes the load of the system among its processors so that
the overall processing objective according to given criteria is maximized. An ef-
�cient allocation strategy avoids the situation where some processors are idle
while others have multiple jobs queued up.
A study in 1994 [8] demonstrated the power of the Local Neighborhood

Search (LNS) algorithm for task allocation over a wide range of methods. We
develop two new load balancing algorithms based on LNS. The �rst, called Ge-

netic Local Neighborhood Search (GLNS), is a genetic algorithm based on
LNS. The second is a coarse grain parallel implementation of GLNS, we call



it P-GLNS . In the reminder of this paper, we present our algorithm GLNS
and a parallelization of this algorithm called P-GLNS. Our experimental results
demonstrate that GLNS and P-GLNS achieve better mappings than LNS and
P-GLNS yields near linear speedup.

2 Background

A popular classi�cation scheme for task scheduling algorithms was introduced
by Casavant [2]. This classi�cation scheme, at the highest level, distinguishes
between local and global scheduling. Local scheduling schedules the execution
of processes within one processor . Global scheduling relates to parallel and dis-
tributed machines and determines on which processor to execute a job.
The next level in the hierarchy di�erentiates between dynamic and static schedul-
ing. In other words, it de�nes the time where the scheduling decisions are made.
In dynamic scheduling, the decisions are made during the execution of the pro-
gram. The scheduler dynamically balances the workload each time there is un-
balance. In this case, the process of load balancing can be made by a single
processor (nondistributed), or it can be distributed physically among processors
(distributed).
In the case of distributed dynamic global scheduling, we distinguish between
cooperative and noncooperative scheduling. In cooperative scheduling, a proces-
sor balances the load cooperatively with other processors. In a noncooperative
scheduling, a processor balances the load based only on the information it has
locally. Each processor is independent of the actions of other processors. The
major disadvantages of dynamic distributed load balancing algorithms is the
runtime overhead for load information distribution, making placement decisions,
and transferring a job to a target host continually during program execution.
In static scheduling, the decisions are made at the compilation stage, before
the program execution. The resource needs of processes and the information
regarding the state of the system are known. An "optimal" assignment can be
made based on selected criteria [16], [20]. This problem, however, is generally
NP-complete [15]. Sub-optimal solutions can be divided into two categories. Al-
gorithms in the �rst category (approximate) of the "suboptimal" class consist of
searching in a sub-part of the solution space, and stopping when a "good" so-
lution is obtained. The second category is made up of heuristic methods, which
assume a priori knowledge concerning processes, communication, and system
characteristics.
Another classi�cation scheme is Sender- or Receiver-initiated [5]. A load bal-
ancing algorithm is said to be sender-initiated if the load balancing process is
initiated by the overloaded nodes; whereas for receiver-initiated, the underloaded
nodes initiate the algorithm. A combination of both sender and receiver initiated
yields symmetrically-initiated algorithms. The load balancing can be initiated
either by the overloaded node if the load exceeds a pre-determined threshold, or
by the underloaded node if the load index drops below a given threshold.
In 1994, Benmohammed-Mahieddine, et al [1] developed a variant of symmetri-



cally initiated algorithm: the PSI (Periodic Symmetrically-Initiated) that out-
performed its predecessor.
We focus on global, static and sub-optimal heuristic scheduling algorithms. Talbi
and Bessiere developed a parallel genetic algorithm for load balancing[6]. Their
implementation is based on the assumption that all the communication laten-
cies between processes are known. They also compared their results with those
found by the simulated annealing method. They demonstrated that genetic ap-
proach gives better results. A paper by Watts and Taylor [11] exposes a serious
de�ciency in current load balancing strategies, motivating further work in this
area.

3 A Genetic Local Neighborhood Search

As described in Golberg [4], in general terms, a genetic algorithm consists of four
parts.

1) Generate an initial population
2) Select pair of individuals based on the �tness function.
3) Produce next generation from the selected pairs by applying pre-selected ge-
netic operators.
4) If the termination condition is satis�ed stop, else go to step 2.

The termination condition can be either:
1) No improvement in the solution after a certain number of generations.
2) The solution converges to a pre-determined threshold.

3.1 Initial Population

The representation of an individual (mapping) is similar to the one in [6]. This
representation satis�es two constraints: 1) We must be able to represent all the
possible mapping solutions, and 2) We must be able to apply genetic operators
on those individuals. A mapping is represented by a vector where number p in
position q means that process q has been placed on processor p. Based on the
three cost functions of LNS, we de�ne our general cost function (GCF). GCF is
the �tness function in our genetic approach. The goal is to minimize this general
cost function. GCF is de�ned as a weighted sum of the three LNS cost functions.

GCF = w1�H +w2� L+ w3�D

The weights w1, w2, and w3 depend on the mapping problem. In our experi-
ment, these weights are chosen equal to those used in the LNS algorithm [19] to
be able to compare the two algorithms.



3.2 Individual representation

3.3 selection scheme

Two common Genetic Algorithms selection schemes were tested:
rank selection and roulette wheel selection [4]. Rank selection selects the �ttest
individuals to take part in the reproductive steps. This method opts for more
exploitation at the expense of exploration. The second scheme is the roulette
wheel selection. In this selection the search is more randomized but we still give
to the �ttest individuals more probability to be selected. These two di�erent
schemes are used in Genetic Algorithms depending on the problem. In our genetic
algorithm we chose rank selection. We found experimentaly that this selection
converges faster than the roulette wheel selection for the mapping problem[19].

3.4 crossover

The best individuals resulting from the selection step are paired up. The two
elements of each give birth to two o�springs. The crossover operator combines
two elements of a pair to produce two new individuals. This operator picks
randomly a crossover point number (between 0 and the size of an individual).
It combines the pair, depending on this number, as shown in Figure 3. This
new pair constitutes a pair replacing the parent pair in the new population. The
crossover operator combine all the pairs to form the new population.

1 2 1 2 2 3 1 3

2 2 2 3 3 3 1 1

1 2 1 3 3 3 1 1

2 2 2 2 2 3 1 3

crossover point

individual 1

individual 2

new
individual 1

new 
individual 2

Fig. 1. Crossover



3.5 mutation

A mutation is to applied to a random transformation on the individuals after a
certain number of generations. This mutation potentially explores new solutions
and introduces random behavior into the search. The use of mutation avoids
potentially limiting the search space due to local minimum values.
Mutation occurs after a certain number of generations. Its objective is to change
randomly one bit or gene. In addition to traditional mutation, we also evaluate
our adaptive mutation. That is, in adaptive mutation we mutade only if the
�tness of the best individual is not increased after N generations. The value of
N is determined experimentally. We ran our genetic algorithm 50 times starting
with di�erent initial populations each time. Six di�erent mutation rates were
taken into consideration: 0.1, 0.3, 0.5, 0.7, 0.9 and the adaptive method, we
found experimentally that our adaptive mutation yields a better general cost
function value.

3.6 Experimental Results

We experiment with �ve di�erent data sets (DATA1, DATA2, DATA3, DATA4,
DATA5). Each data set corresponds to a di�erent communication graph. LNS
and GLNS algorithms are runned on these �ve data sets. We plot the results
after 100,200...800 generations for each algorithm (Table 2).

DATA1 DATA2 DATA3 DATA4 DATA5

Generations LNS GA LNS GA LNS GA LNS GA LNS GA
0 7.28 7.25 10.93 10.93 6.88 6.72 6.44 6.44 7.28 7.03
100 6.87 6.88 10 8.90 4.71 3.11 5.60 3.14 6.87 6.88

200 6.87 6.88 9.83 8.82 4.65 2.87 4.82 3.08 6.87 6.88
300 6.66 6.32 9.83 8.73 4.20 2.60 4.28 3.08 6.66 6.72
400 6.11 5.89 9.44 8.55 3.88 2.60 4.04 3.02 6.11 6.02

500 5.95 5.69 9.23 8.55 3.88 2.43 3.88 3.02 5.95 5.69
600 5.22 4.89 9.36 8.48 3.27 2.40 3.64 2.97 5.95 5.64
700 5.22 4.75 8.85 8.48 3.20 2.40 3.64 2.97 5.22 5.18

800 5.22 4.75 8.85 8.33 3.20 2.33 3.64 2.86 5.22 5.18
Table 1. performance of GLNS VS LNS

Table 2 summarizes the performance of both LNS and GLNS.We run the two
algorithms on �ve di�erent data sets. The weights used for the genetic algorithm
are the same than for the LNS algorithm: W1=1, W2=0.1, W3=0.01 The GA
is the GCF value of the best member of the population at termination.

For all the data sets the Genetic Algorithm converge to a better solution
than LNS. For the data set DATA1 for example the GA converges to a value of
4.75 after 800 generations. The LNS algorithm converges to 5.22 which is much
greater than 4.75. The worst case is with the last data set. The GA converge



to a value of 5.22 after 800 generations not much better than the LNS value of
5.18, but before 400 generations LNS found better results than GA. The Genetic
Algorithm outperforms the LNS algorithm which is known to be better than a
wide range of methods including simulated annealing.

4 Parallel Genetic Local Neighborhood Search

4.1 Parallelization strategies

Evolution is a highly parallel process. Each individual is selected according to
its �tness to survive and reproduce. Genetic algorithms are an abstraction of
the evolutionary process and are indeed very easy to parallelize. Nowadays,
the coarse grain parallelization is the most applied model for parallel genetic
algorithms [13], [12] [7] [18]. This model divides the population into few sub-
populations and an individual can migrate from one sub-population to another
one. It is characterized by three parameters, namely, the sub-population size ,
themigration rate wich de�nes how many individuals migrate, and themigra-

tion interval that represents the interval between two migrations. The main
problem is to de�ne the migration rate and the migration interval correctly [7].
We use this model in our computation. We have implemented both GLNS and
P-GLNS algorithms. P-GLNS is implemented on a network of workstations us-
ing Parallel Virtual Machine (PVM) language.

For this parallelization we de�ne three parameters. The �rst one is the sub-
populations sizes. The second is the migration rate which de�ne how many indi-
viduals migrate. The third is the migration interval that represents the interval
between two migrations.

4.2 strategy

We use a master-slave model. The processors that are executing the genetic
algorithm on a subpopulation send their results to a master after a �xed number
of generations. This master will select the best individuals and broadcast them
to slaves. Those slaves will work on those new individuals combined with the
previous ones. This method is quite similar to the one used in [14].

4.3 migration rate

The migration rate corresponds to the number of individuals that migrate each
time there is a migration. The migration rate is taken as half of the popula-
tion size. In other words at each migration the processors send to the master
half of their population. The individuals sent are the best of the corresponding
subpopulation. A larger migration rate will increase the communication cost be-
tween processes. It will be shown that a migration rate of 1/2 is the best for the
problem parameters considered.



4.4 migration interval

The migration interval represents the interval between two migrations. This mi-
gration interval is determined experimentally. After a certain number of gener-
ations the processors send their best individuals to the master. It will be shown
that a migration interval of 110 is the best for the problem parameters consid-
ered.

5 Experimental Results

5.1 Experiments

The experiments were conducted on a network of workstations. For our parallel
implementation we used the Parallel Virtual Machine message passing library
(PVM). We run P-GLNS to de�ne the best migration rate and the best migration
interval for the problem parameters used. To compute the speedup we runned
P-GLNS and GLNS on three di�erent data sets.

We found experimentally that the minimumcost is achieved with a migration
rate of 0.5. The more individuals we send, the bigger is the migration rate. This
results in more interaction between the nodes. This explains the decreasing cost
between rates 0 and 0.5. However, when the number of individuals sent becomes
larger, the communication cost becomes higher. This explains the increasing cost
between 0.5 and 0.8 migration rates. For the problem parameters used, 0.5 is
the perfect trade o� point between communication cost and interaction between
nodes. The position of such trade o� point should be determined experimentally
for each case. In the same way, the best migration interval found is 110.

0
2
4
6
8

10
12
14
16

2 4 6 8 10 12 14 16

sp
ee

du
p

number of slaves

"P-GLNS"
"linear"

Fig. 2. speedup

For the parallel implementation three di�erent mapping problems are taken
into consideration. For each one we perform 100 runs and compute the sequential
and the parallel time to �nd an acceptable solution (�tness greater than some



threshold). The speedup is the ratio between these two time measurements. Our
algorithm was run on a 10 Base-T ethernet network. We can see in (Figure 5)
that for 2,4 and 8 slaves we have a near linear speedup with our experiments on
a 10 Base-T network. Assuming, we are using a 100 Base-T network the speedup
will be much better when larger number of slaves are used. Thus, near linear
speedup can be obtained in any parallel processing environement with a reason-
able interprocessor communication network. Each slave works independently of
other slaves. They search during a certain number of generations in their search
space until they reached a sub-solution. The best sub-solution will be the start
of new searchs. In the sequential genetic algorithm the best individuals mate to-
gether. There is no possibility with a ranking selection that two locally-optimal
solutions mate together. On the other hand, in a parallel implementation each
individual has its own sub-optimal solutions, and they are mixed without other
sub-populations interferences. This fact makes the parallel search powerfull and
e�cient. For a large number of stations the communication cost become higher,
and this explain the decreasing speedup with 12 and 16 processors in a 10 Base-T
network.

6 Conclusion

Based on the Local Neighborhood Search algorithmwe developed a coarse graine
parallel genetic algorithm called Parallel Genetic Local Neighborhood Search (P-
GLNS). The �tness function of P-GLNS is a weighted sum of the three LNS cost
functions[19]. Our algorithm balances communication requests and takes into
consideration the case where the communication latencies are unknown. Both
GLNS and P-GLNS were implemented for di�erent data sets. Simulation results
show that GLNS outperforms the LNS algorithm wich is known to be better
than a wide range of methods. The parallelization of G-LNS, P-GLNS achieves
a near linear speedup and thus is scalable. We have shown that by increasing
the migration rate and migration interval, the performance of the parallel algo-
rithm improves. However, increasing these parameters above certain operation
points can result in larger overhead that may decrease the bene�t from using
parallel genetic algorithms. A trade o� can be easily obtained experimentally as
demonstrated in this work.

References

1. Benmohammed-Mahieddine, K., P. M. Dew and M. Kara. 1994. " A Periodic
Symmetrically-initiated Load Balancing Algorithm for Distributed Systems.

2. Casavant, T. L., and J.G. Kuhl. 1988. " A taxonomy of scheduling in General-
purpose Distributed Computing Systems" IEEE Trans. Software Eng., vol. 14, No.
2,

3. Cybenko, G. 1989 "Load balancing for distributed memory multiprocessors" Journal
of Parallel and distributed computing. 7: 279-301, 1989.

4. D.E.Goldberg. Genetic Algorithms in search Optimization and Machine learning.
Addison Wesley, New York, 1989.



5. Eager, D. L., E. D. Lazowska, and J. Zahorjan. 1986. " A comparison of receiver
initiated and sender initiated adaptive load sharing" Performance evaluation, Vol.
6, 1986, pp. 53-68.

6. E-G.Talbi, P.Bessiere : Parallel genetic algorithm for the graph partitioning prob-
lem. ACM international Conference on SuperComputing, Cologne, Germany, June
1991

7. Erik Cantu-Paz. A summary of Research on Parallel Genetic Algorithms.
Illinois Genetic Algorithms Laboratory http://www-illigal.ge.uiuc.edu/ cantu-
paz/publications.html, 01/20/98.

8. F.Berman and Bernd Stramm. Mapping Function-Parallel Programs with the Prep-
P Automatic Mapping Preprocessor. University of California, San Diego. January
7,1994.

9. Grosso, P. (1985). Computer simulations of genetic adaptation: Parallel Subcom-
ponent Interaction in a Multilocus Model. PhD thesis, University of Michigan.

10. Horton, G. 1993. "A multi-level di�usion method for dynamic load balancing."
Par. Comp. 19, pp. 209-218 (1993). In proc 9th International.

11. J. Watts and S. Taylor. A Practical Approach to Dynamic Load Balancing. Sub-
mitted to IEEE Transactions on Parallel and Distributed Systems. 1998.

12. Levine, D. (1994). A parallel genetic algorithm for the set partitionning problem.
PhD thesis, Illinois Institute of technology.

13. Li T. and Mashford J. (1990) A parallel genetic algorithm for quadratic assigne-
ment. In R.A Ammar, editor, Proceedings of the ISMM International Conference.
Parallel and Distributed Computing and Systems, pages 391-394, New York, NY:
Acta Press, Anaheim, CA.

14. Marin, F., Trelles-Salazar, O., and Sandoval, F. (1994). Genetic algorithms on
lan-message passing architectures using pvm: Application to the routing problem.
In Y.Davidor, H-P. Shwefel, and R.Manner, editors, Parallel Problem Solving from
Nature -PPSN III, volume 866 of Lecture Notes in Computer Science, pages 534-543,
berlin, Germany: Springer-Verlag.

15. M. R. Garey and D.S. Johnson. Computers and Intractability: A guide to the
theory of NP-completeness. W.H. Freeman and Company, New York 1979.

16. Ni, L. M. and K. Hwang. 1981. "Optimal load balancing strategies for a multiple
processors system" in Proc. Int. Conf. Parallel Proc., 1981, pp. 352-357

17. P.J.M van Laarhoven and E.H.L Aarts. Simulated Annealing: Theory and Appli-
cations. D.Reidel Publishing Company, Boston, 1987.

18. S. Mounir Alaoui, A. Bellaachia, A.Bensaid, O. Frieder "A Parallel Genetic Load
Balancing Strategy" Cluster Computing Conference - CCC '97 March 9-11, 1997
Emory University, Atlanta, Georgia.

19. S. Mounir Alaoui, Master Thesis, Alakhawayn University, Rabat Morocco. June
1997

20. Shen, C. and W. Tsai. 1985. "A graph matching approach to optimal tasks assign-
ment in distributed computing systems using a minimax criterion" IEEE Trans.


