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Abstract. A set of synchronization relations between distributed nonatomic events
was recently proposed to provide real-time applications with a fine level of dis-
crimination in the specification of causality relations and synchronization con-
ditions. For a pair of distributed nonatomic eventsX andY , the evaluation of
the synchronization relations requiresjNX j � jNY j integer comparisons, where
jNX j andjNY j, respectively, are the number of nodes on which the two nonatomic
eventsX andY occur. In this paper, we show that this polynomial complex-
ity of evaluation can by simplified using properties of partial orders to a lin-
ear complexity. Specifically, we show that most relations can be evaluated in
min(jNX j; jNY j) integer comparisons, some injNX j integer comparisons, and
the others injNY j integer comparisons. These linear time evaluation conditions
enable the real-time applications to detect the relations efficiently.
Keywords: Time, Synchronization, Distributed system, Efficient measures.

1 Introduction
Several distributed applications are characterized by real-time constraints on response
times. High-level actions in such distributed real-time application executions [11, 12]
are realistically modeled by nonatomic poset, i.e., nonlinear, events (where at least some
of the component atomic events of a nonatomic event occur at more than a single point
in space concurrently), for example, in industrial process control, distributed multime-
dia support, coordination in mobile computing, avionics, terrestrial, undersea and aerial
navigation, planning, robotics, and virtual reality. It is important to provide these and
emerging sophisticated real-time applications a fine level of discrimination in the speci-
fication of various synchronization/causality relations between nonatomic poset events.
In addition, [20] stressed the theoretical and practical importance of the need for such
relations. Most of the existing literature [1, 2, 4, 5, 6, 7, 10, 14, 16, 17, 18, 19, 20] does
not address this issue. A set of causality relations between nonatomic poset events was
proposed in [8, 11, 12] to specify and reason with a fine-grained specification of causal-
ity. This set of causality relations [8, 11, 12] extended the hierarchy of the relations in
[9, 15]. Specific use of the proposed relations in distributed mutual exclusion and dis-
tributed predicate specification in the context of a real-time air defence control system
was also demonstrated in [11]. An axiom system on the proposed relations was given
in [13]. The objective of this paper is to derive efficient test conditions for the relations
in [11, 12].

We adopt the following poset event structure model as in [4, 9, 10, 11, 14, 15, 16,
20]. Consider a poset(E;�) where� is an irreflexive partial ordering that represents



the causality relation.(E;�) represents points in space-time which are the most prim-
itive atomic events related by the causality relation. Elements ofE are partitioned into
local executions at a coordinate in the space dimensions. In a distributed system,E rep-
resents a set of events and is discrete. Each local executionEi is a linearly ordered set of
events in partitioni. An evente in partitioni is denotedei. For a distributed computing
system, points in the space dimension correspond to the set of processes (also termed
nodes), andEi is the set of events executed by processi. Causality between events at
different nodes is imposed by message communication. We also assume there are a fi-
nite number of nodesi, and eachEi has a dummy initial event (?i) and a dummy final
event (>i). Let E? andE> denote the sets of initial events and final events, respec-
tively. We assume that8 ?i 8>j 8e 2 (E n E? n E>),?i� e � >j .

Nonatomic nonlinear events are defined as follows. LetE denote the power set of
E. LetA ( 6= ;) � (E � ;). Thus, there is an implicit one-many mapping fromA to
E. Each elementA of A is a non-empty subset ofE, and is termed aninterval or a
nonatomic event. It follows that ifA

T
Ei 6= ;, then (A

T
Ei) has a least and a greatest

event. Typically,A is the set of all the sets that represent a higher level grouping of the
events ofE that is of interest to an application. An eventA of interest to an application
will usually not contain any dummy events. We denoteA

T
Ei asAi.

We define thenode setof a nonatomic event to be the set of nodes at which its
component atomic events occur.

Definition 1. NA, the node set of eventA, is fi j Ei

T
A 6� f?i;>igg.

The relations proposed in [9] formed an exhaustive set of causality relations to ex-
press all possible interactions between a pair of linear intervals. The relationsR1 -
R4 andR10 - R40 from [9] are expressed in terms of the quantifiers overX andY in
Table 1. ForR10, R20, R30, andR40, the order of quantifiers was reversed from the
order inR1, R2, R3, andR4, respectively. Observe that the relationsR20 andR30 are
different from relationsR2 andR3, respectively, when applied to posets.

RelationR Expression forR(X;Y ) Evaluation condition using
relation� between cuts

R1 8x 2 X8y 2 Y; x � y
Q

x2X
[\+Y 6� x" ]

R10 8y 2 Y 8x 2 X; x � y =
Q

y2Y
[#y 6� [*X ]

R2 8x 2 X9y 2 Y; x � y
Q

x2X
[[+Y 6� x" ]

R20 9y 2 Y 8x 2 X; x � y [+Y 6� [*X

R3 9x 2 X8y 2 Y; x � y \+Y 6� \*X

R30 8y 2 Y 9x 2 X; x � y
Q

y2Y
[#y 6� \*X ]

R4 9x 2 X9y 2 Y; x � y [+Y 6� \*X
R40 9y 2 Y 9x 2 X; x � y

Table 1. Relations in [9] are given in the first two columns. The third column (explained later)
gives the evaluation conditions derived in this paper.

Q
is the product or conjunction operator.

When the relations of [9] are applied to a pair of poset intervals, the hierarchy
they form is incomplete. In [8, 11, 12], we formulated causality relations between a



pair of nonatomic poset intervals along the lines of [9] by extending these results to
nonatomic poset events. The relations form an “exhaustive” set of causality relations
between nonatomic poset events using first-order predicate logic and only the relation
� between atomic events, and fill in the partial hierarchy of causality relations between
nonatomic poset events, formed by relations in [9, 15].

The causality relations between a pair of nonatomic poset events were formulated in
[8, 11, 12] using the notion ofproxies. For each nonatomic poset eventX , two proxies
LX andUX to represent its beginning and end, respectively, were defined using Defi-
nition 2 or 3. These proxies were the equivalents of the beginning and end instants of a
nonatomic linear event [1, 2, 5].

Definition 2. � LX = fei 2 X j8e0i 2 X; ei � e0ig � UX = fei 2 X j8e0i 2 X; ei � e0ig

Definition 3. � LX = fe 2 X j8e0 2 X; e � e0g � UX = fe 2 X j8e0 2 X; e � e0g

Any of the above or a similar definition of proxies is consistently used, depending on
context and application. We denote a proxy ofX asX̂. Figure 1 depicts the proxies of
X andY and serves as a visual aid for the following discussion.

atomic event time

space

L

L

X XU

Y YU

Y

X

Fig. 1. Poset eventsX andY and their proxies.

The causality relations in [8, 11, 12] were defined using two aspects of specify-
ing the relations. Causality relations between poset intervals can be specified between
the proxies ofX andY . As there is a choice of two proxies ofX and choice of two
proxies ofY , there are four combinations between the proxiesX̂ and Ŷ . The eight
causality relations in Table 1 can be specified for each combination, thus yielding 32
relations betweenX andY . We denote the set of these causality relations asR. From
the construction ofR, it follows that for nonatomic poset eventsX andY , there is a
1-1 equivalence between anyr(X;Y ), for r 2 R, andR(X̂; Ŷ ), for someR in Table 1
and someX̂ and somêY .
Notation: We use the notation̂X to specifically distinguish a subset ofE that acts as a
proxy for another subsetX of E. Otherwise, when the distinction is not important, the
notationX refers to any subset ofE, which can also be a proxy of another set.



Objectives. Given a trace of a distributed execution, the application identifies pertinent
nonatomic events and needs to know what relations are satisfied between pairs of such
events. Implicit in the use of these relations is the need to detect whether some specific
relation holds between a given pair of nonatomic events (see Problem 4).

Problem 4.Given a recorded trace of a distributed computation(E;�) and a set of
nonatomic eventsA, then for every pair of nonatomic poset eventsX andY , where
X;Y 2 A, efficiently determine (i) if a specific relationr(X;Y ) holds, forr 2 R, and,
(ii) all the relationsr(X;Y ) that hold, forr 2 R.

Problem 1 can be answered by testing for the appropriate causality relation(s) of
Table 1 onX̂ and Ŷ . Observe from the second column of Table 1 that each relation
r(X;Y ), for r 2 R, (which corresponds exactly to someR(X̂; Ŷ ), for someR in Ta-
ble 1) can be evaluated withjNX j � jNY j checks1 for causality. This is significantly
better thanjX j � jY j checks for causality that would be needed without the use of
proxies in the definitions of causality. However, this evaluation has a polynomial com-
putational complexity (jNX j � jNY j checks for causality). Our objective is to simplify
the test for the relations. In this paper, we show that the evaluation of the relations can
by further simplified using properties of partial orders.

Recall that for nonatomic poset eventsX andY , there is a 1-1 equivalence between
anyr(X;Y ), for r 2 R, andR(X̂; Ŷ ), for someR in Table 1 and somêX and somêY .
But X̂ andŶ are themselves nonatomic poset events likeX andY – the only difference
is that for any nodei, jX̂ij � 1 and jŶij � 1, whereasjXij and jYij are bounded
only by jEij. We show that the evaluation methodology and complexity ofR(X;Y ) is
independent of the size ofjXij andjYij. Hence, we derive the evaluation methodology
for R(X;Y ), whereR belongs to Table 1. Then, using a suitable quantification ofX

andY in these results to represent the various proxiesX̂ andŶ , we obtain the evaluation
methodology for each of the 32 relations inR. The simplified evaluation conditions we
derive have only a linear computational complexity for each relation.

The main result in the paper (Theorem 20) therefore shows that relationsR1, R10,
R20,R3,R4, andR40 can be evaluated inmin(jNX j; jNY j) integer comparisons, rela-
tionR2 in jNX j integer comparisons, and relationR30 in jNY j integer comparisons.

Sections 2.1 and 2.2 introduce execution prefixes associated with nonatomic events,
and the� relation between such prefixes. Section 2.2 informally shows the equivalence
betweenR(X;Y ), for R in Table 1, and the� relation between certain prefixes asso-
ciated withX andY . Section 2.3 develops timestamps of execution prefixes associated
with nonatomic events, and Section 2.4 develops an efficient test for the� relation on
such prefixes. Combining the results of Sections 2.2 and 2.4, Section 2.5 determines
the exact complexity of testing forR(X;Y ), for R in Table 1. Section 3 concludes.
Proofs of theorems and lemmas are given in [8].

2 Efficient Evaluation of Causality Relations
2.1 Cuts of an Execution
LetP be the set of all process/node partitions. An execution prefix or acut is the union
of a downward-closed subset of eachEi, for every nodei 2 P .
1 We use the termsjNX j andjNY j which are upper bounds onjNX̂ j andjNŶ j, respectively.



Definition 5. A cutC is the union of a downward-closed subset of eachEi in (E;�),
whereE =

S
8i2P Ei.

C � C � E
^

E? � C
^

ei 2 C =) (8e0i; e
0
i � ei =) e0i 2 C)

A cut has a well-defined upper and lower bound at each node in its node set. Next,
we defineS(C) to be the set of latest events at each node in cutC. S(C) denotes the
“surface” of cutC and is the same as the proxyU(C) if U(C) is defined by Definition 2.

Definition 6. � S(C) = fei 2 C j 8e0i 2 C; ei � e0ig

Given a cutC, Ci (or [S(C)]i) is a subset ofC (or S(C)) that contains elements in
partitioni. Thus,C (or S(C)) is projected over partitioni.

Comparison of Cuts. It is known from lattice theory that the set of all cuts, denoted
C, forms a lattice ordered by�. We introduce a new relation� over the set of cuts.
�(C;C 0) signifies that cutC is a proper subset of cutC 0 and moreover,Ci is a proper
subset ofC 0

i. This relation is useful to derive simplified evaluation conditions for the
relations between nonatomic poset events.

Definition 7. We express the relation�(C;C 0) in different forms, each of which will
be used subsequently.

1. �(C;C 0) iff (8z 2 (S(C) nE?); z 62 S(C 0)
V
z 2 C 0)

V
C 0 6= E?.

2. 6�(C;C 0) iff (9z 2 (S(C) nE?); z 2 S(C 0)
W
z 62 C 0)

W
C 0 = E?.

3. �(C;C 0) iff (8z 2 (S(C 0) nE?); z 62 C)
V
C 0 6= E?

V
NC � NC0 .

4. 6�(C;C 0) iff (9z 2 (S(C 0) nE?); z 2 C)
W
C 0 = E?

W
NC 6� NC0 .

All the four forms of the definition can be seen to be equivalent. The termsC 0 6= E?

andC 0 = E? are required to make the definitions robust in certain cases whereC 0 =
E?. The forms in Definition 7.2 and Definition 7.4 express the condition for6�(C;C 0)
which we will use subsequently as follows. The significance of6� is that if 6�(C;C 0),
then some event inS(C) (equals or) happens causally after some event inS(C 0). If
we can chooseC andC 0 appropriately to correspond toX andY , for anyR(X;Y ),
for R 2 Table 1, then we have a reexpression for the relationR. Then the evaluation
of R(X;Y ) which requires at leastjNX j � jNY j checks for causality reduces to the
evaluation of6�(C;C 0) which takesjP j evaluations in the general case. ButC andC 0

are not arbitrary cuts; rather, they are the cuts identified byX andY and are structured
based on the membership ofX andY . Therefore, the number of checks for causality
can be further reduced.

2.2 Past and Future Cuts of a Poset Event
For atomic evente, there are two special cuts#e ande". #e is the maximal set of events
that happen before or equale. #e denotes the causal past (CP) ofe. e" is the union of
a downward-closed subset of events at each node, such that the maximum element of
the downward-closed subset at any nodei is the earliest event ati for which e happens
before or equals the event.e" is the complement of the causal future (CCF) ofe and
denotes the execution prefix upto and including the beginning of the causal future ofe

at each node.



Definition 8. [CP:] #e � fe0 j e0 � eg

Definition 9. [CCF:] e" � fe0 j e0 6� eg
S
fei; i 2 P j ei � e

V
(8e0i; e

0
i � ei =)

e0i 6� e)g

The cuts#e ande" have the property that cut#y has a unique maximal event and
cutx" has a unique minimal event. Also,#e is downward-closed in(E;�); e" is not.

Given a poset event, we define certain cuts that represent the past and the future of
the execution associated with the poset event; each cut has a different significance.

Label Definition Timestamp, derived from Defn. 15 and Lemma 16

C1(X) or\+X
T

8x2X
f#x g T (\+X)� 8i 2 P; T (\+X)[i] = min8x2X(T (#x)[i])

C2(X) or[+X
S

8x2X
f#x g T ([+X)� 8i 2 P; T ([+X)[i] =max8x2X(T (#x)[i])

C3(X) or\*X
T

8x2X
fx" g T (\*X)� 8i 2 P; T (\*X)[i] = min8x2X(T (x")[i])

C4(X) or[*X
S

8x2X
fx" g T ([*X)� 8i 2 P; T ([*X)[i] =max8x2X(T (x")[i])

Table 2. Definitions of special sets of posetX. These sets are shown to be cuts. Timestamps of
the cuts are given in the third column.

S(C1)

time Event in X

S(C3) S(C2)

S(C4)

Fig. 2.Cuts of posetX which contains 8 atomic events.

Definition 10. The second column of Table 2 defines certain sets associated with poset
eventX .

Lemma 11. The sets defined in Definition 10 are cuts.

Figure 2 illustrates the cuts C1–C4 defined in Table 2 for a posetX containing eight
elements that are marked by shaded circles. The four horizontal lines are the time lines
of four nodes. There is a computation event (not shown) at the intersection of each
horizontal time line and a cut C1–C4. The surface of each cut is marked and labeled as



follows: S(C1), S(C2), S(C3), andS(C4) are marked by a thick line, a thick dashed
line, a dashed line, and a far-spaced dashed line, respectively.

The cuts\+X and[+X which are determined by the set of cutsf#x j x 2 Xg
condense the causality information in each cut in the set, i.e., information about the
past of the execution associated with events inX . The cuts\*X and[*X which are
determined by the set of cutsfx" j x 2 Xg condense the causality information in each
cut in the set, i.e., information about the future of the execution associated with events
in X . Observe that\+X and[+X are downward-closed subsets of(E;�); \*X and
[*X are not.

Lemma 12. The members of a poset are related to the cuts associated with the poset,
defined in Definition 10, as follows.

12.1 8e0 2 S(\+X)8x 2 X; e0 � x

12.2 8e0 2 S([+X)9x 2 X; e0 � x

12.3 8e0 2 S(\*X)9x 2 X; x � e0

12.4 8e0 2 S([*X)8x 2 X; x � e0

The cuts of a nonatomic poset event defined in Definition 10 represent various
execution prefixes associated with the nonatomic event. Cuts C1(X) and C2(X) are
about the past of the nonatomic event and cuts C3(X) and C4(X) are about the future
of the nonatomic event. The significance of these cuts is discussed and expressed in
knowledge-theoretic terminology next [3]. We will use notation�X and�cut to repre-
sent knowledge about nonatomic eventX and cutcut, respectively.Kx(�) is a predi-
cate that is true if eventx has knowledge of�. 	x represents the knowledge available
at eventx.

1. \+X is the maximum set of events that causally precede everyx 2 X . It represents
the maximum execution prefix about which all events inX have knowledge.
In knowledge-theoretic terms,8x2X ,Kx(�\+X ) = true. Also,8x2X ,�\+X �

	x.
2. [+X is the maximum set of events such that each event causally precedes somex 2

X . It represents the maximum execution prefix about which only all the events inX

collectively have knowledge, but no one event inX may have complete knowledge.
In knowledge-theoretic terms,

S
8x2X (	x) = �[+X . Also,8ei 2 S([+X) 9x 2

X , 	x � 	ei .
3. \*X is a cut such thatS(\*X) is the set of earliest events on each node that are

causally preceded by somex 2 X . It represents the minimum execution prefix such
that all the maximum events of this prefix are preceded by at least one event inX .
In knowledge-theoretic terms,8ei 2 S(\*X) 9x 2 X , Kei(�x) = true. Also,
8ei 2 S(\*X) 9x 2 X , 	x� 	ei .

4. [*X is a cut such thatS([*X) is the set of earliest events on each node that are
causally preceded by everyx 2 X . It represents the minimum execution prefix
such that all the maximum events of this prefix are causally preceded by all the
events inX .
In knowledge-theoretic terms,8ei2S([*X),Kei(�X ) = true. Also,8ei 2 S([*X)
8x 2 X , 	x� 	ei .



Key Idea 1: The cuts\+X , [+X, \*X, and[*X aggregate the causality information
about allx in a nonatomic eventX in a condensed form, as described above. Once
identified at a one-time cost, these cuts can be reused at a low cost to evaluate causality
relations with respect to all other nonatomic events.

We now informally show the equivalence of (i) the relationsR(X;Y ), forR in the
second column of Table 1, and (ii) the relation6� on appropriately identified cutsC1,
C2, C3, andC4 associated withX andY as given in the third column of Table 1,
using Lemma 12 and the knowledge-theoretic analysis of the cuts. (See [8] for a formal
proof.) Note that if6�(C;C 0), then some event inS(C 0) happens before (or equals)
some event inS(C). But, in the following discussion, we assume that if6�(C;C 0), then
some event inS(C 0) happens before some event inS(C).

R1(X;Y ): This relation holds iff8x 2 X , 6�(\+Y ; x"), i.e.,8x 2 X , some event
in S(\+Y ) happens causally after some event inS(x"), implying by the use of
a transitive argument and Lemma 12.1 that for all eventsx in X , all events inY
happen causally afterx.

R10(X;Y ): This relation holds iff8y 2 Y , 6�(#y;[*X), i.e.,8y 2 Y , some event
in S(#y) happens causally after some event inS([*X), implying by the use of a
transitive argument and Lemma 12.4 that for all eventsy in Y , y happens causally
after all events inX .

R2(X;Y ): This relation holds iff8x 2 X , 6�([+Y ; x"), i.e.,8x 2 X , some event
in S([+Y ) happens causally after some event inS(x"), implying by the use of a
transitive argument and Lemma 12.2 that for all eventsx in X , some event inY
happens causally afterx.

R20(X;Y ): This relation holds iff6�([+Y ;[*X), i.e., some event inS([+Y ) hap-
pens causally after some event inS([*X), implying by the use of a transitive
argument and Lemmas 12.2 and 12.4 that some event inY happens causally after
all the events inX .

R3(X;Y ): This relation holds iff6�(\+Y ;\*X), i.e., some event inS(\+Y ) happens
causally after some event inS(\*X), implying by the use of a transitive argument
and Lemmas 12.1 and 12.3 that for some event inX , all the events inY happen
causally after that event inX .

R30(X;Y ): This relation holds iff8y 2 Y , 6�(#y;\*X), i.e.,8y 2 Y , some event
in S(#y) happens causally after some event inS(\*X), implying by the use of a
transitive argument and Lemma 12.3 that for all eventsy in Y , y happens causally
after some event inX .

R4(X;Y ), R40(X;Y ): This relation holds iff 6� ([+Y ;\*X), i.e., some event in
S([+Y ) happens causally after some event inS(\*X), implying by the use of
a transitive argument and Lemmas 12.2 and 12.3 that some event inY happens
causally after some event inX .

2.3 Timestamps
Timestamps of Atomic Events. Each atomic event is assigned a timestamp which is
the clock value when the event occurs. Clocks are such that the timestamps of events
have the following property:e�e0 iff T (e)< T (e0) [4, 16]. The canonical vector clocks



in [4, 16] have the above property. Each primitive atomic evente is assigned a timestamp
T (e) that is a vector of sizejP j, whereP is the set of all process/node partitions. This is
the minimum size of a clock/timestamp that is required to capture the above property of
timestamps. Assuming that the identifier of a process/nodei is i itself, T (e) is defined
as follows.

Definition 13. T (e) � 8i 2 P , T (e)[i] = jfei j ei � e gj, i.e.,T (e)[i] is the number of
events on nodei that causally precede or equale.

Let T be the setfT (e)je 2 Eg. Note that(E;�) is isomorphic to(T ; <).
Analogous to the timestampT (e), the reverse timestampTR(e) of an event indi-

cates the number of events in the future that are causally affected by the current event.

Definition 14. TR(e)�8i 2 P ,TR(e)[i] = jfei j ei � e gj, i.e.,TR(e)[i] is the number
of events on nodei that causally happen after or equale.

Observe that once the timestamp structure is established for the entire computation, the
“reverse” timestamp structure can also be established.

Given two distinct atomic eventsej ande0k, the causality between them can be tested
as follows:ej � e0k iff T (ej)[j] < T (e0k)[j].

Timestamps of Cuts and Nonatomic Events.For a cutC, we define its timestamp
T (C) such that theith component of the timestamp is the maximum of theith compo-
nents of the timestamps of all the events inC that occur at nodei.

Definition 15. T (C) � 8i 2 P , T (C)[i] = max8xi2C(T (x)[i])

Observe thatT (C)[i] is the same asT ([S(C)]i)[i], i.e.,T (C)[i] is theith component of
the timestamp of the latest event inC that occurs ati.

Lemma 16. The timestamp of a cut composed by the union or intersection of other cuts
is as follows.

– If C �
T
s=1;k C

s thenT (C) � 8i 2 P; T (C)[i] = mins=1;k(T (Cs)[i])
– If C �

S
s=1;k C

s thenT (C) � 8i 2 P; T (C)[i] = maxs=1;k(T (Cs)[i])

Corollary 17. The timestamps of the cuts of a poset defined in the second column of
Table 2 are given in the third column of the table.

Causality between nonatomic poset eventsX andY is determined as follows. Com-
pare the timestamp of an appropriately chosen cut associated withX with the timestamp
of an appropriately chosen cut associated withY to test for the� relation between the
two cuts. Then formally show that this test (possibly multiple such tests) is equivalent
to the test for causality (Section 2.5).

From Defns. 8 and 13, observe thatT (#x), the timestamp of cut#x associated with
any eventx is simplyT (x). From Defns. 9 and 14, observe thatT (x"), the timestamp
of cut x" associated with any eventx is as follows:T (x")[i] = jEij � TR(x)[i] � 1.
(This expression accounts for the two dummy events inEi.) Using timestamps of cuts
#x andx", the overhead of computing timestamps of the cuts given in Table 2 for each



X is as follows. Theith component of the timestamp of each ofC1(X) andC2(X) is
amin andmax function, respectively, offT ([S(#x)]i)[i] j x 2 Xg. Similarly, theith

component of the timestamp of each ofC3(X) andC4(X) is amin andmax function,
respectively, offT ([S(x")]i)[i] j x 2 Xg. Observe that forC1(X) andC3(X), it suf-
fices to consider only the least element inX

T
Ei, for eachi 2 NX . Similarly, observe

that forC2(X) andC4(X), it suffices to consider only the latest element inX
T
Ei,

for eachi 2 NX . Hence, theith component of the timestamp of each ofC1(X),
C2(X), C3(X), andC4(X) is amin or max function over theith components of
jNX j timestamps, which has ajNX j computational complexity. ForjP j components of
the timestamp, the computational complexity isjNX j � jP j. Fortunately, we show in
Theorem 19 (using Key Idea 2) that all thejP j components of the timestamps of the
cuts are not required for computing the� relation between the cuts. Rather, for event
X , only thejNX j components for the nodes inNX are relevant, and hence, only these
need to be computed. So the computational complexity of computing the timestamp of
a cutC1(X), C2(X), C3(X), or C4(X) is jNX j2. Observe that this computation of
the timestamps of the above cuts is a one-time cost (analyzed in [8] and shown to be
negligible). Once computed, the timestamp of a cut associated withX can be reused
in the evaluation of the relation� between this cut and cuts associated with multiple
other nonatomic events.

2.4 Efficient Evaluation of� between Past and Future Cuts of Posets
Notation: We use#X andX " to denote cuts about the past and future associated with
any nonempty subset ofE, respectively.

Definition 18. For any nonatomic poset eventX ,
� #X denotes eitherC1(X) orC2(X). �X " denotes eitherC3(X) orC4(X).

We showed at the end of Section 2.2 that each of the 8 relationsR(X;Y ) in Table 1
can be expressed as6� (C;C 0), whereC andC 0 are appropriately identified in that
section. Thus, we have a reexpression for the relationR in terms of�. Then the eval-
uation ofR(X;Y ) which requires at leastjNX j � jNY j checks for causality reduces
to the evaluation of6�(C;C 0) which takesjP j evaluations in the general case. ButC

andC 0 are not arbitrary cuts; rather, they are the cuts identified byX andY and are
structured based on the membership ofX andY . Specifically,C andC 0 are the cuts#Y
andX " which are determined by the sets of cutsf#y j y 2 Y g andfx" j x 2 Xg,
respectively, which have the property that each cut#y has a unique maximal event and
each cutx" has a unique minimal event. This property suggests that sufficient causal
information aboutX andY is condensed into theNX andNY components, respec-
tively, of each of the above cuts and their surfaces, and leads to the following idea.

Key Idea 2: If �(#Y ;X ") is violated, then some event inS(#Y ) equals or happens
causally after some event inS(X "). This violation must occur at a node inNX because
the events[S(X ")]NX

are the earliest possible events among events inS(X "), in terms
of causality. Using analogous reasoning, this violation must occur at a node inNY

because the events[S(#Y )]NY
are the latest possible events among events inS(#Y ),

in terms of causality.



Therefore, the violation of�(#Y ;X ") can be detected byjNX j checks for causal-
ity between atomic events, by comparing for eachi in NX , [S(X ")]i and [S(#Y )]i.
Analogously, the violation of�(#Y ;X ") can be detected byjNY j checks for causal-
ity between atomic events, by comparing for eachi in NY , [S(X ")]i and [S(#Y )]i.
Therefore, the violation of�(#Y ;X ") can be detected inmin(jNX j; jNY j) checks
for causality between atomic events.

As noted in Section 2.2, the cutsC1(X), C2(X), C3(X), andC4(X) represent
condensed forms of causality information aboutX , i.e., information about the past and
future of the distributed execution associated withX ; using the timestamps of these
condensed forms of causality information allows the use of timestamps with condensed
causality information to derive efficient tests for the relations in Table 1.
Detecting violation of�(#Y ;X "): Applying the timestamps of cuts#Y andX " to
Key Idea 2, we have the following. The violation of�(#Y ;X ") can be detected by
comparing theNX components of the timestamps ofS(#Y ) andS(X "), or by com-
paring theNY components of the timestamps ofS(#Y ) andS(X "). This leads to the
following result. See [8] for proof.

Theorem 19. 6�(#Y ;X ") can be tested inmin(jNX j; jNY j) integer comparisons.

2.5 Evaluating Causality between Nonatomic Poset Events

As shown informally in Section 2.2, the test forR(X;Y ), whereR 2 Table 1, is equiv-
alent to a test (in some cases, multiple tests) for6�(#Y ;X "), as indicated in the third
column of Table 1. Combining this result with Theorem 19, we have the following re-
sult (formally proved in [8]).

Theorem 20. Each relationR(X;Y ) in Table 1 can be evaluated with the following
complexity: relationsR1,R10,R20,R3,R4, andR40 can be evaluated inmin(jNX j; jNY j)
integer comparisons, relationR2 in jNX j integer comparisons, and relationR30 in
jNY j integer comparisons.

Proof: As shown informally in Section 2.2, the test forR(X;Y ), whereR 2 Table 1,
is equivalent to a test (in some cases, multiple tests) for6�(#Y ;X "), as indicated in
the third column of Table 1. The complexity of testing for6�(#Y ;X ") is as follows.

RelationsR20,R3,R4,R40: These relations can be evaluated using a single test#Y
� X ". By Theorem 19, these relations can be evaluated inmin(jNX j; jNY j) in-
teger comparisons.

RelationR2: This relation can be evaluated usingjNX j tests of the form#Y �X 00 ",
wherejNX00 j= 1. (By using reasoning similar to that at the end of Section 2.3,jX j
tests are not needed; testing with only the latest event ofX at each node inNX

suffices.) By Theorem 19, each test can be evaluated in1 integer comparison. So
the relation can be evaluated injNX j integer comparisons.

RelationR30: This relation can be evaluated usingjNY j tests of the form#Y 00�X ",
wherejNY 00 j= 1. (By using reasoning similar to that at the end of Section 2.3,jY j
tests are not needed; testing with only the earliest event ofY at each node inNY

suffices.) By Theorem 19, each test can be evaluated in1 integer comparison. So
the relation can be evaluated injNY j integer comparisons.



RelationsR1,R10: By reasoning similar to that forR2 andR30, these relations can
be evaluated injNX j and also injNY j integer comparisons, i.e.,min(jNX j; jNY j)
integer comparisons. ut

Recall that each of the 32 relationsr(X;Y ), for r 2 R, is equivalent to a relation
R(X̂; Ŷ ), whereR belongs to Table 1, by using a suitable quantification ofX andY
in Table 1 to represent their various proxiesX̂ and Ŷ instead. Each of the 2 proxies
of a nonatomic event has 4 cuts associated with it. Thus, Fig. 3 illustrates the four cuts
associated with the two proxies of the eventX of Fig. 2. The surfaces of the cuts are
marked as in Fig. 2. These cuts are used in Theorem 19 upon which Theorem 20 is
based. Therefore, Theorem 20 gives the evaluation complexity of each relationr 2 R.

S(C4)

LX UX

time Event in X

S(C2)S(C2) S(C3)S(C3)

S(C1)S(C1)

S(C4)

Fig. 3.Cuts of proxiesLX andUX . X contains 8 atomic events.

It is shown in [8] that the overhead of setting up the timestamp structure is negligible
in comparison with the overhead of the evaluation conditions themselves. To address
Problem 1, we simply apply the linear-time evaluation conditions in the third column
of Table 1 to the various causality relations in the second column, after quantifyingX

andY by their appropriate proxies, to evaluate relations inR.

3 Conclusion
The set of causality relations between nonatomic poset events proposed in [11, 12] is
useful to distributed real-time applications that need a fine level of discrimination in
specifying synchronization conditions. We derived efficient evaluation conditions for
these causality relations between nonatomic poset eventsX andY ; most relations can
be evaluated inmin(jNX j; jNY j) integer comparisons, some injNX j integer compar-
isons, and the others injNY j integer comparisons, wherejNX j andjNY j, respectively,
are the number of nodes on which the two nonatomic eventsX andY occur. The sim-
plified evaluation conditions for the relations have only a linear complexity of testing,
whereas a naive evaluation of the relations as per their definitions has a polynomial
complexity (jNX j � jNY j) of testing.

During the derivation of our efficient testing conditions, we also defined special
system execution prefixes associated with nonatomic poset events. We also saw how to



capture causality information associated with a nonatomic event, i.e., information about
the past and future execution associated with the nonatomic event, in a condensed and
aggregated form via the definition of special execution prefixes associated with the
nonatomic event. Furthermore, we provided a mechanism to capture such condensed
information about causality of a nonatomic event using a timestamp that has the same
size as the timestamp of a single atomic event. As distributed real-time applications be-
come more widespread [11, 12], the proposed theory will be useful to evaluate causality
relations between distributed nonatomic events.
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