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Abstract. A set of synchronization relations between distributed nonatomic events
was recently proposed to provide real-time applications with a fine level of dis-
crimination in the specification of causality relations and synchronization con-
ditions. For a pair of distributed nonatomic evetfsandY’, the evaluation of

the synchronization relations requingéx | x | Ny | integer comparisons, where

| Nx | and| Ny |, respectively, are the number of nodes on which the two nonatomic
eventsX andY occur. In this paper, we show that this polynomial complex-
ity of evaluation can by simplified using properties of partial orders to a lin-
ear complexity. Specifically, we show that most relations can be evaluated in
min(|Nx|,|Ny|) integer comparisons, some|iNx | integer comparisons, and
the others i Ny | integer comparisons. These linear time evaluation conditions
enable the real-time applications to detect the relations efficiently.
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1 Introduction

Several distributed applications are characterized by real-time constraints on response
times. High-level actions in such distributed real-time application executions [11, 12]
are realistically modeled by nonatomic poset, i.e., nonlinear, events (where at least some
of the component atomic events of a nonatomic event occur at more than a single point
in space concurrently), for example, in industrial process control, distributed multime-
dia support, coordination in mobile computing, avionics, terrestrial, undersea and aerial
navigation, planning, robotics, and virtual reality. It is important to provide these and
emerging sophisticated real-time applications a fine level of discrimination in the speci-
fication of various synchronization/causality relations between nonatomic poset events.
In addition, [20] stressed the theoretical and practical importance of the need for such
relations. Most of the existing literature [1, 2, 4, 5, 6, 7, 10, 14, 16, 17, 18, 19, 20] does
not address this issue. A set of causality relations between nonatomic poset events was
proposedin [8, 11, 12] to specify and reason with a fine-grained specification of causal-
ity. This set of causality relations [8, 11, 12] extended the hierarchy of the relations in
[9, 15]. Specific use of the proposed relations in distributed mutual exclusion and dis-
tributed predicate specification in the context of a real-time air defence control system
was also demonstrated in [11]. An axiom system on the proposed relations was given
in [13]. The objective of this paper is to derive efficient test conditions for the relations
in[11, 12].

We adopt the following poset event structure model as in [4, 9, 10, 11, 14, 15, 16,
20]. Consider a poséit, <) where< is an irreflexive partial ordering that represents



the causality relation(.E, <) represents points in space-time which are the most prim-
itive atomic events related by the causality relation. Elemen#s afe partitioned into
local executions at a coordinate in the space dimensions. In a distributed skstem,
resents a set of events and is discrete. Each local exedutisra linearly ordered set of
events in partitior. An evente in partition: is denotec;. For a distributed computing
system, points in the space dimension correspond to the set of processes (also termed
node$, andE; is the set of events executed by procesSausality between events at
different nodes is imposed by message communication. We also assume there are a fi-
nite number of nodes and eaclF; has a dummy initial eventl(;) and a dummy final
event (T;). Let E+ and ET denote the sets of initial events and final events, respec-
tively. We assume that L; VT;Vee (E\ E* \ ET), Li<e < T;.

Nonatomic nonlinear events are defined as follows.4 dienote the power set of
E.Let A (# 0) C (£ — 0). Thus, there is an implicit one-many mapping frofrto
E. Each elementl of A is a non-empty subset df, and is termed amterval or a
nonatomic eventt follows that if A ) E; # 0, then (4 ] E;) has a least and a greatest
event. Typically,A is the set of all the sets that represent a higher level grouping of the
events ofF that is of interest to an application. An evehbf interest to an application
will usually not contain any dummy events. We dendtf) FE; asA;.

We define thenode sebf a nonatomic event to be the set of nodes at which its
component atomic events occur.

Definition1. N4, the node setof event,is{: | E;(A Z {L;, T:}}.

The relations proposed in [9] formed an exhaustive set of causality relations to ex-
press all possible interactions between a pair of linear intervals. The relatibns
R4 andR1’ - R4’ from [9] are expressed in terms of the quantifiers a¥eandY in
Table 1. ForR1', R2', R3', and R4’, the order of quantifiers was reversed from the
order inR1, R2, R3, and R4, respectively. Observe that the relatid®® andR3' are
different from relationsk2 and R3, respectively, when applied to posets.

RelationR|Expression folR( X, Y')||Evaluation condition usirg
relation< between cutg
R1 Vee XVyeY,z <yl [l exlMY £zt]
RY' YyeYVe e X,z <y =Huey[$y§KUﬂX]
R2 Vee XAy eY,z <y HzeX[UUYKxT]

R2' JyeYvVee X,z <y UpY € UpX
R3 Jre XVyeY,z <y NyY £ Np X
R3’ VyeY3Iz e X,z <y Huey[iy £ Ny X ]
R4 Jre Xy eY,z <y UpY £ Ny X

R4 JyeYre X,z <y

Table 1. Relations in [9] are given in the first two columns. The third column (explained later)
gives the evaluation conditions derived in this paj¢ris the product or conjunction operator.

When the relations of [9] are applied to a pair of poset intervals, the hierarchy
they form is incomplete. In [8, 11, 12], we formulated causality relations between a



pair of nonatomic poset intervals along the lines of [9] by extending these results to
nonatomic poset events. The relations form an “exhaustive” set of causality relations
between nonatomic poset events using first-order predicate logic and only the relation
< between atomic events, and fill in the partial hierarchy of causality relations between
nonatomic poset events, formed by relations in [9, 15].

The causality relations between a pair of nonatomic poset events were formulated in
[8, 11, 12] using the notion gfroxies For each nonatomic poset event two proxies
Lx andUx to represent its beginning and end, respectively, were defined using Defi-
nition 2 or 3. These proxies were the equivalents of the beginning and end instants of a
nonatomic linear event [1, 2, 5].

Definition2. ¢ Lx ={e; € X|Ve, € X,e; X e} o Ux ={e; € X|Ve, € X,e; > e}}

Definition3. e Lx = {e € X|Ve' € X,e <e'} oUx={e€ X|Ve' € X,e = €'}

Any of the above or a similar definition of proxies is consistently used, depending on
context and application. We denote a proxy¥®fas X . Figure 1 depicts the proxies of
X andY and serves as a visual aid for the following discussion.

ffffffff X |
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Fig. 1. Poset eventX andY and their proxies.

The causality relations in [8, 11, 12] were defined using two aspects of specify-
ing the relations. Causality relations between poset intervals can be specified between
the proxies ofX andY. As there is a choice of two proxies & and choice of two
proxies ofY, there are four combinations between the proxtesnd Y. The eight
causality relations in Table 1 can be specified for each combination, thus yielding 32
relations betweeX andY. We denote the set of these causality relationR asrom
the construction ofR, it follows that for nonatomic poset events andY’, there is a
1-1 equivalence between angX,Y), for r € R, andR(X,Y), for someR in Table 1
and someX and somé&’.

Notation: We use the notatioX to specifically distinguish a subset Bfthat acts as a
proxy for another subseX of E. Otherwise, when the distinction is not important, the
notationX refers to any subset @, which can also be a proxy of another set.



Objectives. Given a trace of a distributed execution, the application identifies pertinent
nonatomic events and needs to know what relations are satisfied between pairs of such
events. Implicit in the use of these relations is the need to detect whether some specific
relation holds between a given pair of nonatomic events (see Problem 4).

Problem 4. Given a recorded trace of a distributed computafiBh<) and a set of
nonatomic eventsd, then for every pair of nonatomic poset evetsandY, where
X,Y € A, efficiently determine (i) if a specific relation( X, Y') holds, forr € R, and,
(ii) all the relationsr (X, Y") that hold, forr € R.

Problem 1 can be answered by testing for the appropriate causality relation(s) of
Table 1 onX andY. Observe from the second column of Table 1 that each relation
r(X,Y), forr € R, (which corresponds exactly to sorRé¢X,Y), for someR in Ta-
ble 1) can be evaluated wiltNx | x |Ny| checks' for causality. This is significantly
better than X| x |Y| checks for causality that would be needed without the use of
proxies in the definitions of causality. However, this evaluation has a polynomial com-
putational complexity|(Vx| x | Ny | checks for causality). Our objective is to simplify
the test for the relations. In this paper, we show that the evaluation of the relations can
by further simplified using properties of partial orders.

Recall that for nonatomic poset evetifsandY’, there is a 1-1 equivalence between
anyr(X,Y),forr € R, andR(X,Y), for someR in Table 1 and som& and somé&’.

But X andY are themselves nonatomic poset eventslikandY — the only difference

is that for any node, |X;| < 1 and|Y;| < 1, whereag X;| and |Y;| are bounded
only by |E;|. We show that the evaluation methodology and complexitR oX, Y) is
independent of the size ¢kX;| and|Y;|. Hence, we derive the evaluation methodology
for R(X,Y), whereR belongs to Table 1. Then, using a suitable quantificatioX of
andY in these results to represent the various proXiemdY’, we obtain the evaluation
methodology for each of the 32 relationsin The simplified evaluation conditions we
derive have only a linear computational complexity for each relation.

The main result in the paper (Theorem 20) therefore shows that reldibn®1’,

R2', R3, R4, andR4' can be evaluated imin(|Nx|, | Ny|) integer comparisons, rela-
tion R2 in |Nx| integer comparisons, and relati®3’ in | Ny | integer comparisons.

Sections 2.1 and 2.2 introduce execution prefixes associated with nonatomic events,
and the< relation between such prefixes. Section 2.2 informally shows the equivalence
betweenR(X,Y), for R in Table 1, and the« relation between certain prefixes asso-
ciated withX andY . Section 2.3 develops timestamps of execution prefixes associated
with nonatomic events, and Section 2.4 develops an efficient test fex tredation on
such prefixes. Combining the results of Sections 2.2 and 2.4, Section 2.5 determines
the exact complexity of testing faR(X,Y’), for R in Table 1. Section 3 concludes.
Proofs of theorems and lemmas are given in [8].

2 Efficient Evaluation of Causality Relations

2.1 Cuts of an Execution
Let P be the set of all process/node partitions. An execution prefixcot & the union
of a downward-closed subset of eah for every node € P.

! We use the termEVx | and| Ny | which are upper bounds diV¢ | and| Ny |, respectively.



Definition 5. A cut C is the union of a downward-closed subset of eagln (E, <),
whereE = Uy;cp Ei-

CECQE/\EJ‘QC/\eiECZ(Ve;, e; <ei=e; €C)

A cut has a well-defined upper and lower bound at each node in its node set. Next,
we defineS(C) to be the set of latest events at each node inCeut (C) denotes the
“surface” of cutC' and is the same as the proXyC) if U (C) is defined by Definition 2.

Definition 6. o S(C) ={e; € C | Ve] € C,e; = e}}

Given a cutC, C; (or [S(C)];) is a subset of” (or S(C)) that contains elements in
partitioni. Thus,C (or S(C)) is projected over partition

Comparison of Cuts. It is known from lattice theory that the set of all cuts, denoted
C, forms a lattice ordered by . We introduce a new relatio& over the set of cuts.

& (C, ") signifies that cu' is a proper subset of ca’ and moreover; is a proper
subset ofC]. This relation is useful to derive simplified evaluation conditions for the
relations between nonatomic poset events.

Definition 7. We express the relatiog (C, C") in different forms, each of which will
be used subsequently.

1. <(C,C") iff (V2 € (S(C)\ E*),z ¢ S(C'Y Nz € C') \NC" # E*.
2. £(C,C") iff (3z € (S(C)\ EY),2 € S(CY\ z¢ )\ C' = EL.
3. <(C,C") iff (V2 € (S(C')\ EY),2 & C) \C" # EX A No C Nev.
4. £(C,0")iff (32 € (S(C") \ EY),z € )\ C' = EX\| N¢ Z Ne».

All the four forms of the definition can be seen to be equivalent. The tétmg E+
andC’ = E* are required to make the definitions robust in certain cases witlere
E*. The forms in Definition 7.2 and Definition 7.4 express the conditios46€’, C')
which we will use subsequently as follows. The significancgas that if £ (C, C'),
then some event i¥(C) (equals or) happens causally after some everft(ifi’). If
we can choos€ andC’ appropriately to correspond t§ andY, for any R(X,Y),
for R € Table 1, then we have a reexpression for the relaioifhen the evaluation
of R(X,Y’) which requires at leagiVx| x |Ny| checks for causality reduces to the
evaluation of&(C, C') which taked P| evaluations in the general case. BuandC’
are not arbitrary cuts; rather, they are the cuts identified tandY and are structured
based on the membership &f andY . Therefore, the number of checks for causality
can be further reduced.

~— —
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2.2 Past and Future Cuts of a Poset Event

For atomic event, there are two special cutz andet. | e is the maximal set of events

that happen before or equal| e denotes theausal @st (CP) ofe. et is the union of

a downward-closed subset of events at each node, such that the maximum element of
the downward-closed subset at any nodethe earliest event atfor which e happens

before or equals the eventt is the_ @mplement of the ausal fiture (CCF) ofe and
denotes the execution prefix upto and including the beginning of the causal futeire of

at each node.



Definition8. [CP:]le={e'| e’ < e}

Definition9. [CCF:]et={e'|e' # e} U {ei,i € P | e; = e (Ve
e; Ze)}

The cuts| e andet have the property that cty has a uniqgue maximal event and
cutz 1 has a unique minimal event. Alspe is downward-closed iKE, <); e is not.

Given a poset event, we define certain cuts that represent the past and the future of
the execution associated with the poset event; each cut has a different significance.

e, <e =

!
7

| Label | Definition || Timestamp, derived from Defn. 15 and Lemma 16
1(X) 0 Ny X|Nyye @ H|T(6X) = Vi € PI(Nu X[ = minvaex (L))
C2(X) or Uy X |Uy,ex 142 T (U X) Uy X)[z] = mazveex (T} )]s
C3(X)ornyX queX{mT} T(MyX)=Vie P T(ﬂﬂ i) = minyzex( )[e
(X) orUp XUy, e x {21 HIT( ) =Vie P, T(UyX)[i] = mazveex(

Table 2. Definitions of special sets of posat. These sets are shown to be cuts. Timestamps of
the cuts are given in the third column.

time ® EventinX

Fig. 2. Cuts of poseX which contains 8 atomic events.

Definition 10. The second column of Table 2 defines certain sets associated with poset
eventX.

Lemmall. The sets defined in Definition 10 are cuts.

Figure 2 illustrates the cuts C1-C4 defined in Table 2 for a p¥isgintaining eight
elements that are marked by shaded circles. The four horizontal lines are the time lines
of four nodes. There is a computation event (not shown) at the intersection of each
horizontal time line and a cut C1-C4. The surface of each cut is marked and labeled as



follows: S(C1), S(C2), S(C3), andS(C4) are marked by a thick line, a thick dashed
line, a dashed line, and a far-spaced dashed line, respectively.

The cutsny X andUy X which are determined by the set of cdtsz | z € X}
condense the causality information in each cut in the set, i.e., information about the
past of the execution associated with eventXinThe cutsn, X andUy X which are
determined by the setof cufg 1 | z € X} condense the causality information in each
cut in the set, i.e., information about the future of the execution associated with events
in X. Observe thahy X anduy X are downward-closed subsets(&f, <); N, X and
Uy X are not.

Lemma 12. The members of a poset are related to the cuts associated with the poset,
defined in Definition 10, as follows.

12.1Ve' € S(MyX)Ve € X, ' <z
122Ve' € S(UyX)Tz € X, ' <z
123Ve' e S(MyX)Iz € X, z <€
12.4Ve' € S(UyX)Vz € X, z <€

The cuts of a nonatomic poset event defined in Definition 10 represent various
execution prefixes associated with the nonatomic event. Cuts C1(X) and C2(X) are
about the past of the nonatomic event and cuts C3(X) and C4(X) are about the future
of the nonatomic event. The significance of these cuts is discussed and expressed in
knowledge-theoretic terminology next [3]. We will use notatin and®..,; to repre-
sent knowledge about nonatomic evéhtand cutcut, respectivelyK, (@) is a predi-
cate that is true if event has knowledge of. ¥* represents the knowledge available
at eventr.

1. Ny X is the maximum set of events that causally precede everyX . It represents
the maximum execution prefix about which all eventXitave knowledge.
I;zknowledge—theoretictermﬁxeX, K, @ﬂuX) =true. Also,VzeX, éﬂuX C

2. Uy X is the maximum set of events such that each event causally precedes some
X. Itrepresents the maximum execution prefix about which only all the eveAtsin
collectively have knowledge, but no one evenkirmay have complete knowledge.

In knowledge-theoretic termg),, . x (¥*) = QSUUX- Also,Ve; € S(UyX) Jz €
X, 0% Dy,

3. Ny X is a cut such thaf (N, X) is the set of earliest events on each node that are
causally preceded by somec X. It represents the minimum execution prefix such
that all the maximum events of this prefix are preceded by at least one ev&nt in
In knowledge-theoretic term¥e; € S(NyX) Jz € X, K¢, ($;) = true. Also,

Ve; € S(ﬂﬂX) dr € X,0*C Pei,

4. Uy X is a cut such thas (U X) is the set of earliest events on each node that are
causally preceded by eveny € X. It represents the minimum execution prefix
such that all the maximum events of this prefix are causally preceded by all the
events inX.

In knowledge-theoretictermge;€.S(Uy X), Ke, (Px) = true. Also,Ve; € S(UyX)
Ve € X, 0*C Pei,



Key Idea 1: The cutsny X, Uy X, Ny X, andu, X aggregate the causality information
about allz in a nonatomic evenX in a condensed form, as described above. Once
identified at a one-time cost, these cuts can be reused at a low cost to evaluate causality
relations with respect to all other nonatomic events.

We now informally show the equivalence of (i) the relatiddsX, Y), for R in the
second column of Table 1, and (i) the relatignon appropriately identified cuts1,
C2, C3, and(C4 associated withX andY as given in the third column of Table 1,
using Lemma 12 and the knowledge-theoretic analysis of the cuts. (See [8] for a formal
proof.) Note that if& (C, C'), then some event i§(C') happens before (or equals)
some eventir§(C). But, in the following discussion, we assume thatifC, C'), then
some event it (C') happens before some eventS(C).

R1(X,Y): This relation holds iffvz € X, &£ (",Y,z1), i.e.,,Vz € X, some event
in S(NyY') happens causally after some eventSifx: 1), implying by the use of
a transitive argument and Lemma 12.1 that for all evenits X, all events inY’
happen causally after.

R1'(X,Y): This relation holds iffvy € Y, € (ly,UyX), i.e.,Vy € Y, some event
in S({y) happens causally after some evenfifu, X ), implying by the use of a
transitive argument and Lemma 12.4 that for all evenitsY, y happens causally
after all events inX.

R2(X,Y): This relation holds iffvz € X, £(UyY,z1), i.e.,,Vz € X, some event
in S(UyY’) happens causally after some evenSifx 1), implying by the use of a
transitive argument and Lemma 12.2 that for all evenis X, some event i’
happens causally after

R2'(X,Y): This relation holds iff& (UyY, Uy X), i.e., some event it¥(UyY) hap-
pens causally after some event$tiU, X), implying by the use of a transitive
argument and Lemmas 12.2 and 12.4 that some evénttiappens causally after
all the events inX.

R3(X,Y): Thisrelation holds ifi&(n,Y, N, X), i.e., some eventif(N,Y) happens
causally after some event 8N4, X)), implying by the use of a transitive argument
and Lemmas 12.1 and 12.3 that for some evernXirall the events irt” happen
causally after that event iX .

R3'(X,Y): This relation holds iffvy € Y, £ (ly,NyX), i.e.,Vy € Y, some event
in S(ly) happens causally after some evenfim,X), implying by the use of a
transitive argument and Lemma 12.3 that for all evenitsY, y happens causally
after some eventiX .

R4(X,Y), R4'(X,Y): This relation holds iff& (UyY,NyX), i.e., some event in
S(UyY') happens causally after some eventSifng,X), implying by the use of
a transitive argument and Lemmas 12.2 and 12.3 that some ev&hthappens
causally after some event iXi.

2.3 Timestamps

Timestamps of Atomic Events. Each atomic event is assigned a timestamp which is
the clock value when the event occurs. Clocks are such that the timestamps of events
have the following property<e' iff T'(e) < T'(e') [4, 16]. The canonical vector clocks



in [4, 16] have the above property. Each primitive atomic evéntissigned a timestamp

T (e) thatis a vector of sizgP|, whereP is the set of all process/node partitions. This is
the minimum size of a clock/timestamp that is required to capture the above property of
timestamps. Assuming that the identifier of a process/rasléitself, T'(e) is defined

as follows.

Definition 13. T'(e) =Vi € P, T(e)[i] = |{ei | e < e }|, i.e.,T(e)[z] is the number of
events on nodéthat causally precede or equal

Let 7 be the se{T'(e)|e € E}. Note that(E, <) is isomorphic to( 7, <).
Analogous to the timestanip(e), the reverse timestanip’®(e) of an event indi-
cates the number of events in the future that are causally affected by the current event.

Definition 14. T®(e) =Vi € P,TE(e)[i] =|{ei | e; = e }|,i.e.,TE(e)[i] is the number
of events on nodéthat causally happen after or eqeal

Observe that once the timestamp structure is established for the entire computation, the
“reverse” timestamp structure can also be established.

Given two distinct atomic eventg ande;,, the causality between them can be tested
as follows:e; < e}, iff T(e;)[5] < T(e})[J]-

Timestamps of Cuts and Nonatomic Events.For a cutC, we define its timestamp
T(C) such that théth component of the timestamp is the maximum ofihecompo-
nents of the timestamps of all the event€ithat occur at nodé

Definition 15. T'(C) = Vi € P, T(C)[i] = mazvs,ec (T (z)[i])

Observe thal'(C)[¢] is the same a&' ([S(C)];)[¢], i.e., T (C)[é] is theith component of
the timestamp of the latest eventlhthat occurs at.

Lemma 16. The timestamp of a cut composed by the union or intersection of other cuts
is as follows.

— If C =,y C* thenT (C) = Vi € P, T(C)[i] = miny—1,4(T(C*)[i])
— 1 C =, , C* thenT(C) = Vi € P, T(C)[i] = maz,—14(T(C?)]i])

Corollary 17. The timestamps of the cuts of a poset defined in the second column of
Table 2 are given in the third column of the table.

Causality between nonatomic poset evexitandY” is determined as follows. Com-
pare the timestamp of an appropriately chosen cut associatedwiith the timestamp
of an appropriately chosen cut associated Witto test for the< relation between the
two cuts. Then formally show that this test (possibly multiple such tests) is equivalent
to the test for causality (Section 2.5).
From Defns. 8 and 13, observe tHat| =), the timestamp of cutx associated with
any event: is simply7'(xz). From Defns. 9 and 14, observe ti&tz 1), the timestamp
of cutz 1 associated with any eventis as follows:T (z1)[i] = | E;| — TE(x)[i] — 1.
(This expression accounts for the two dummy eventg;in Using timestamps of cuts
lz andz 1, the overhead of computing timestamps of the cuts given in Table 2 for each



X is as follows. Thet" component of the timestamp of each@f(X) andC2(X) is

amin andmazx function, respectively, of T([S({ z)];)[i] | = € X }. Similarly, thei"
component of the timestamp of each(8(X ) andC4(X) is amin andmazx function,
respectively, of T([S(z1)];)[¢] | = € X }. Observe that fo€'1(X) andC3(X), it suf-

fices to consider only the least elemenfdii) E;, for eachi € Nx. Similarly, observe

that forC2(X) andC4(X), it suffices to consider only the latest element¥if) E;,

for eachi € Nx. Hence, theit® component of the timestamp of each @1(X),
C2(X), C3(X), andC4(X) is amin or maz function over thei** components of

| Nx | timestamps, which has|& x | computational complexity. F¢P| components of

the timestamp, the computational complexityMx| x |P|. Fortunately, we show in
Theorem 19 (using Key Idea 2) that all the]| components of the timestamps of the
cuts are not required for computing tke relation between the cuts. Rather, for event
X, only the| Nx | components for the nodes ¥y are relevant, and hence, only these
need to be computed. So the computational complexity of computing the timestamp of
acutC1(X), C2(X), C3(X), or C4(X) is |[Nx|?. Observe that this computation of

the timestamps of the above cuts is a one-time cost (analyzed in [8] and shown to be
negligible). Once computed, the timestamp of a cut associatedXvitan be reused

in the evaluation of the relatio between this cut and cuts associated with multiple
other nonatomic events.

2.4 Efficient Evaluation of < between Past and Future Cuts of Posets

Notation: We use| X andX 1 to denote cuts about the past and future associated with
any nonempty subset @, respectively.

Definition 18. For any nonatomic poset evekit,
¢ | X denotes eithe€'1(X) or C2(X). ¢ X 1 denotes eithe€'3(X) or C4(X).

We showed at the end of Section 2.2 that each of the 8 relaR¢AsY") in Table 1
can be expressed a& (C,C'), whereC and C' are appropriately identified in that
section. Thus, we have a reexpression for the relatidgm terms of<. Then the eval-
uation of R(X,Y") which requires at leagiVx| x |Ny| checks for causality reduces
to the evaluation o (C, C') which takeg P| evaluations in the general case. But
and(C’ are not arbitrary cuts; rather, they are the cuts identifiedkbgndY and are
structured based on the membershigadndY . Specifically,C andC’ are the cut§ Y’
andX 1 which are determined by the setsof cify) | y € Y} and{zt | z € X},
respectively, which have the property that each|euhas a unique maximal event and
each cutzt has a unique minimal event. This property suggests that sufficient causal
information aboutX andY is condensed into th&/x and Ny components, respec-
tively, of each of the above cuts and their surfaces, and leads to the following idea.

Key ldea 2: If <(]Y, X 1) is violated, then some event (] Y') equals or happens
causally after some event (X 1). This violation must occur at a node My because
the event$S(X 1), are the earliest possible events among everi§ i), in terms
of causality. Using analogous reasoning, this violation must occur at a nollg in
because the eventS(1Y)]n, are the latest possible events among even(j),
in terms of causality.



Therefore, the violation o& (1Y, X 1) can be detected W x | checks for causal-
ity between atomic events, by comparing for eaéh Nx, [S(X 1)]; and[S(LY)];.
Analogously, the violation o& (1Y, X 1) can be detected by | checks for causal-
ity between atomic events, by comparing for eadéh Ny, [S(X 1)]; and[S(LY)];.
Therefore, the violation o& (] Y, X 1) can be detected imin(|Nx|, | Ny|) checks
for causality between atomic events.

As noted in Section 2.2, the cu€1(X), C2(X), C3(X), andC4(X) represent
condensed forms of causality information abduti.e., information about the past and
future of the distributed execution associated with using the timestamps of these
condensed forms of causality information allows the use of timestamps with condensed
causality information to derive efficient tests for the relations in Table 1.

Detecting violation of (1Y, X 1): Applying the timestamps of cutsY and X 1 to
Key Idea 2, we have the following. The violation &f (] Y, X 1) can be detected by
comparing theVx components of the timestamps 8| Y) andS(X 1), or by com-
paring theNy components of the timestamps$f| Y) and.S(X 1). This leads to the
following result. See [8] for proof.

Theorem 19. £(1Y, X 1) can be tested imin(|Nx|, | Ny|) integer comparisons.

2.5 Evaluating Causality between Nonatomic Poset Events

As shown informally in Section 2.2, the test fB( X, Y), whereR € Table 1, is equiv-
alent to a test (in some cases, multiple tests)4dq Y, X 1), as indicated in the third
column of Table 1. Combining this result with Theorem 19, we have the following re-
sult (formally proved in [8]).

Theorem 20. Each relationR(X,Y) in Table 1 can be evaluated with the following
complexity: relations®1, R1', R2', R3, R4, andR4' can be evaluated imin(|Nx|, | Ny|)
integer comparisons, relatio®2 in |Nx| integer comparisons, and relatioR3’ in

| Ny | integer comparisons.

Proof: As shown informally in Section 2.2, the test fB{ X, Y), whereR € Table 1,
is equivalent to a test (in some cases, multiple tests¥fof Y, X 1), as indicated in
the third column of Table 1. The complexity of testing #x] Y, X 1) is as follows.

Relations R2', R3, R4, R4': These relations can be evaluated using a single|tEst
< X 1. By Theorem 19, these relations can be evaluatedin(|Nx|, | Ny|) in-
teger comparisons.

Relation R2: This relation can be evaluated usifigx | tests of the forml Y <« X" 1,
where|Nx|= 1. (By using reasoning similar to that at the end of Section |X3,
tests are not needed; testing with only the latest ever¥ @t each node ilVx
suffices.) By Theorem 19, each test can be evaluatédriteger comparison. So
the relation can be evaluated|iNx | integer comparisons.

Relation R3': This relation can be evaluated usidgy | tests of the forn} Y <« X 1,
where| Ny~ |= 1. (By using reasoning similar to that at the end of Section |8,
tests are not needed; testing with only the earliest eveht af each node vy
suffices.) By Theorem 19, each test can be evaluatédriteger comparison. So
the relation can be evaluated|iNy | integer comparisons.



RelationsR1, R1": By reasoning similar to that foR2 and R3’, these relations can
be evaluated inNx | and also i Ny | integer comparisons, i.enin(|Nx|, |[Ny|)
integer comparisons. O

Recall that each of the 32 relationgX,Y), for » € R, is equivalent to a relation
R(X, Y), whereR belongs to Table 1, by using a suitable quantificatioXoandY
in Table 1 to represent their various proxi&sandY instead. Each of the 2 proxies
of a nonatomic event has 4 cuts associated with it. Thus, Fig. 3 illustrates the four cuts
associated with the two proxies of the evéniof Fig. 2. The surfaces of the cuts are
marked as in Fig. 2. These cuts are used in Theorem 19 upon which Theorem 20 is
based. Therefore, Theorem 20 gives the evaluation complexity of each refagiéh

Ux
time ® EventinX

Fig. 3. Cuts of proxiesL x andUx . X contains 8 atomic events.

Itis shown in [8] that the overhead of setting up the timestamp structure is negligible
in comparison with the overhead of the evaluation conditions themselves. To address
Problem 1, we simply apply the linear-time evaluation conditions in the third column
of Table 1 to the various causality relations in the second column, after quantifying
andY by their appropriate proxies, to evaluate relation®in

3 Conclusion
The set of causality relations between nonatomic poset events proposed in [11, 12] is
useful to distributed real-time applications that need a fine level of discrimination in
specifying synchronization conditions. We derived efficient evaluation conditions for
these causality relations between nonatomic poset evemisdY ; most relations can
be evaluated immin(|Nx|,|Ny|) integer comparisons, some|iNx | integer compar-
isons, and the others [Ny | integer comparisons, whef& x| and| Ny |, respectively,
are the number of nodes on which the two nonatomic evErasidY occur. The sim-
plified evaluation conditions for the relations have only a linear complexity of testing,
whereas a naive evaluation of the relations as per their definitions has a polynomial
complexity (Nx| x |Ny|) of testing.

During the derivation of our efficient testing conditions, we also defined special
system execution prefixes associated with nonatomic poset events. We also saw how to



capture causality information associated with a nonatomic event, i.e., information about
the past and future execution associated with the nonatomic event, in a condensed and
aggregated form via the definition of special execution prefixes associated with the
nonatomic event. Furthermore, we provided a mechanism to capture such condensed
information about causality of a nonatomic event using a timestamp that has the same
size as the timestamp of a single atomic event. As distributed real-time applications be-
come more widespread [11, 12], the proposed theory will be useful to evaluate causality
relations between distributed nonatomic events.
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