
Migration and Rollback Transparency for Arbitrary
Distributed Applications in Workstation Clusters ?

Stefan Petri1??, Matthias Bolz2, Horst Langend¨orfer2

1 Institute for Computer Engineering, Medical University at L¨ubeck
petri@iti.mu-luebeck.de

2 Institute for Operating Systems and Computer Networks,
Technical University Braunschweig

Abstract. Programmers and users of compute intensive scientific applications
often do not want to (or even cannot) code load balancing and fault tolerance into
their programs.
The P BEAM system [18] uses a global virtual name space to provide migration
and rollback transparency in user space for distributed groups of processes on
workstations. Applications always use the same virtual names for the operating
system objects, independent of their current real location. The system calls are
interposed and their parameters translated between the name spaces. Unlike other
migration mechanisms, P BEAM does not require the applications to be written for
a specific programming model or communication library.
The first approach to execute applications in the virtual name space was to link
the programs with a modified system library. Now, In this paper we describe
design and implementation of a separate system call interposition process [3]
that accesses the application via the debugging interface. The main advantage of
this approach is that it can handle even unmodified (e. g. commercially bought)
application programs. We compare measured performance figures with previous
similar approaches [15, 20] and the modified system library.

1 Motivation and Introduction

Networks of Workstations (NOWs) become increasingly attractive as platforms for par-
allel compute intensive applications, because their price/performance ratio is signifi-
cantly better than that of massively parallel systems (MPPs) [10].

However, in contrast to MPPs most NOWs operate in multi user mode, the nodes
are shared between applications, and interactive users may not be disturbed by resource
hungry background computations. These constraints make it desirable to use a dynamic
load balancing facility that moves work from overloaded to idle nodes, or evacuates
machines that are claimed for other purposes, e. g. interactive users. Additionally, the
high probability of machine failures [14, 6] necessitates fault tolerance measures for
long running applications.

Programmers and users of compute intensive scientific applications are mainly in-
terested in getting their problem solved. They expect load balancing and fault tolerance
as services of the underlying operating or run time system and do not want to care

? extended CD-ROM version
?? At the time of writing funded by DFG contract SFB 342 at Institute for Computer Science,

Technical University Munich

about them in their application code. Unfortunately, off-the-shelf workstation platforms
provide these services only minimally, if at all.

In the next section, we give a brief overview of our P BEAM load balancing system
for distributed applications on clusters of workstations. Because the basic problems of
“freezing” the application’s state and reviving it afterwards is the same in both cases,
checkpointing or migration, P BEAM, like other systems (e. g. [13, 22]), handles them
both. After that we focus on our approach to apply P BEAM transparently to unmodified
binary application programs, and show some performance figures. We conclude after a
short comparison to related work.
For a broader discussion of concepts and more technical details beyond this paper we
refer to [18, 20, 17].

2 Overview of P BEAM

The goals of this project are to provide application transparent process migration and
checkpointing / rollback for distributed applications on clusters of workstations, run-
ning in user space on unmodified Unix systems.

The state of a distributed computation consists of the states of its processes and the
states of the communication links between them. We distinguish between a process’
internal state (address space and register contents), and itsexternalstate, the process’
relation to the world outside its address space, the allocated resources, related processes
and the communication peers. A process can manipulate its external state only through
services of the system kernel. These services operate on objects like files, processes,
communication endpoints, etc. They are invoked through system calls, whose argu-
ments name the objects to operate on (file names, process numbers, transport addresses,
etc.).

Unix Kernel Unix Kernel

ApplicationApplication

virtual name space virtual name space

Fig. 1.The virtual name space between kernel and application.

These names depend on the current location and time of the process execution. If a pro-
cess is moved from one node to another, or an application is restarted from a checkpoint,
the names for the objects will change. However, to provide transparency, the applica-
tion must be able to work with the same names regardless of being moved in space or
time. Therefore, P BEAM introduces a system wide virtual name space for process IDs,
transport addresses and file names. A virtual process table and virtual address tables are
maintained for mapping between the virtual and current real names. The applications’
system calls are interposed, the parameters are translated from the virtual into the un-
derlying current real name space, and then the real system service is executed. In the

same manner the return values are translated back from the real into the virtual name
space. Through the system call interposition also the changes to the external state are
tracked.

An early design decision was to not do any system kernel modifications [18, 9].
Basically, there are two possibilities to perform the system call interposition outside
the kernel. Our first approach was a modified system call library. The system call func-
tions are replaced by or wrapped into our own versions [4, 13, 9]. It requires that the
application can be linked with the modified library.

The other possibility is to control the application processes by a separate controller
process via the debugging interface. The main advantage of this approach is that it can
work with applications that are available in binary form only, already completely linked,
e. g. commercially bought programs.

In the P BEAM system we have separated the system call interposition component
from the name space administration (P BEAM demonpbeamd in fig. 2), thus making it
easy to switch between different versions of both. To explore scalability, we have also
implemented a centralized and a distributed version of the name space administration
[19].

The system call interposition component has three main tasks: (i) During normal
operation, it does the name space translations, as described above. (ii) When doing a
checkpoint or migration, it has to capture the internal and external state, save it, or trans-
fer it for a migration. (iii) Read a saved state from disk or from a network connection
and reconstruct a running process from this state information.

3 Operation of the System Call Interposition Process (SCIP)

System Call

Interface

System Kernel

S

I
P

S
C
I
P

Application Application

Debugging Interface Debugging Interface

space
name

space
name

service service

System Kernel

pbeamdpbeamd

libclibc

C

Fig. 2.The SCIP in P BEAM.

The debugging interface offers services toaccess the internal state of another process
and to control its execution. We exploit this to transparently let applications run in our
virtual name space. The original Unix debugging interfaceptrace() only allows the
inferior process to be halted at breakpoints, continued, and the memory contents be
read or written word-wise. These services are sufficient to save the internal state for
checkpointing, although they are inefficient. They are insufficient for performing the
described name space translations. However, in most modern Unix versions the debug-
ging interface was extended by services to access entire ranges of the inferior’s memory,
and to let it stop at entry and exit of system calls. Also they offer extensions that can
help to overcome the performance bottlenecks that have been reported in previous work

for similar approaches [15]. These extensions range from enrichedptrace() variants
to different kinds of process file systems and combinations of both [23, 7].

In the following subsections, after a short discussion of the eligible debugging inter-
faces, we take a closer look at the problems raised by the above mentioned three tasks
of the SCIP, and their possible solutions.

3.1 Controlling Another Process

Since the application program – at least in the beginning – contains neither code for
exchanging information with its control process nor for being controlled, SCIP depends
on the services the system kernel provides for debugging. The only debugging facil-
ity found on all Unix systems is theptrace() system call. But the standard Unix
ptrace() facility offers only minimal support for breakpoint debugging. So using
theptrace() interface for SCIP is only possible by using machine dependent exten-
sions to this call. This makes the implementation more difficult and less portable than
the modified system library. Besides that it imposes bad performance: eachptrace()
request causes a context switch to the controlled process, while traditionally the amount
of data being transfered by oneptrace() call is only one word.

Another standardized Unix debugging interface is the/proc file system defined
in System V Release 4 [7]. This virtual file system provides access to another process’
address space by means of standardread() andwrite() operations and a variety
of ioctl() requests to control its execution. It promises better performance, more so-
phisticated control and a good chance of being portable, but a complete implementation
of a /proc file system is only rarely (if at all) found in the Unix systems in use today.

In the design of the SCIP, we have considered the specifics of SunOS, Solaris, Linux
and Irix. Currently, our main implementation platform is a cluster of workstations run-
ning SunOS 4.1.x, which does not have a/proc file system but severalptrace()
extensions. Work on Solaris 2.x has just begun.

3.2 System Call Interposition

In our terms, the system call interposition consists of several phases:

1. Executing the process until the next system call entry.
2. Notification of a system call entry. It must be stoppedbefore the system call is

performed. The system call arguments including the system call number must be
read.

3. Changing the arguments, i. e. the virtual names among the arguments must be trans-
lated into the real name space.

4. Performing the system call.
5. Notification of the system call exitand its return values, i. e. the process has just

exited kernel mode.
6. Changing the return valuesagain from real to virtual names.
7. Restarting the last system callif necessary.

As noted before, steps 2, 4 and 5 are supported by most modern Unix flavors. SunOS
offers a specialptrace() request indicating each system call entry and exit. The
/proc file system even allows for naming a set of system calls to be observed, leaving
uninteresting calls untouched. The popular debugging toolsstrace and truss are
based on this feature. The important difference between SCIP and a tool that just wants
to show which system calls are executed with which arguments and results, is that the
former also wants to perform the system call with changed arguments, or even not to
perform it at all. This is a task the debugging interfaces obviously were not designed
for.

On SunOS, when SCIP gets notified about a system call entry, the arguments cannot
be changed. Also there is no way of forcing the process to leave kernel mode without
performing the system call. The implementation via the/proc file system does not
encounter this problem.

On the other hand, changing the results after the process has left kernel mode simply
works as one would assume. Also, if an argument in fact is a pointer to a memory area
in user address space holding the actual data, then the pointer cannot be changed, but
the memory contents can. This is true, e. g., for socket addresses.

For these reasons we distinguish between several classes of system calls. In the
simplest case the arguments can (or do not have to) be changed in user space, the traced
process may safely perform the system call and the return value is adjusted. Examples
in this class aregetpid() or gettimeofday() .

Other calls, likesigblock() , cause effects that can and must be changed or re-
verted afterwards, in most cases by placing some code into the inferior’s address space
and forcing it to execute this code, thus patching the application at run time.

Things get even more difficult with non-idempotent calls causing unwanted effects
that cannot be reverted, e. g. most I/O operations. Here we must be a bit inventive. In
case of I/O operations, successful execution can be prevented by immediately closing
any file (or socket) descriptor each time one is opened by the application. Subsequent
operations on this descriptor will fail, giving SCIP the opportunity to perform the ac-
tions with translated arguments. Because doing I/O operations on the SCIP side involves
transferring relative large amounts of data between SCIP and the inferior, we will dis-
cuss several optimizations along with the performance figures in section 4.

If the application forks a child process, also a new SCIP is spawned that attaches
itself to the application’s child.

3.3 Freezing the Application

After the P BEAM demon has requested SCIP to initiate a checkpoint or migration, the
traced process must be stopped. If a system call is in progress, that must be finished
first, possibly interrupting a blocking call likesigpause() . Such an unintended in-
terrupted system call must be repeated when restarting the checkpoint.

Next all the external state information must be read that was not already recorded
by the interposition of system calls, e. g. the contents of the interval timers, the set of
pending signals and installed signal handlers. Only some of this could be read from
the process’ user page using aptrace() extension, so SCIP again uses a relocatable
compiled function that the traced process is forced to execute.

At last the process’ address space must be saved, i. e. written into a file descriptor.
One possibility is to copy the whole address space piece by piece into SCIP’s address
space, then write it. Even if there is aptrace() extension as in SunOS for transferring
a large piece of memory with only one call, there is a remarkable overhead, which
should be avoided – especially if we consider that migration is most probably initiated
when the current machine is overloaded.

A more complex, but faster alternative is to use the Unix file descriptor passing fea-
ture. SCIP passes the access rights to its checkpoint/migration file descriptor to a func-
tion again patched into the inferior process. This can then efficiently write the whole
address space down from “inside” without any detouring.

A significant part of information about the external state is contained in SCIP’s own
data structures. Therefore, SCIP in fact does a checkpoint of, respective migrates, itself
using the checkpoint mechanism provided by our modified system library. In the middle
of freezing itself, it freezes the application state and hides the second process image in
its own checkpoint.

To save a checkpoint, a new executable file is built from the text and data parts of
the process, while the stack contents are written into a separate file. The files are written
either locally or via TCP to a server process. In case of migration, the server process
does not write the data to files, but overlays its own address space with the executable
image sent on TCP, and then passes control to the restart mechanism.

3.4 Restarting the Application

In both cases, whether restarting from a checkpoint executable or after migration, the
first step is to revive the saved SCIP image on the new host, which then in turn restarts
the application process from the data contained in its address space image. To restore the
application’s stack contents, a function containing a call to theread() kernel service
is patched into the running process.

Thus when restoring the application’s process image no (slow) memory transfer via
the debugging interface is necessary. This is rather important because theptrace()
extension in the used SunOS version that should write larger pieces of memory from
the controlling to the controlled process does not work correctly, and the alternative
of poking the stack image withptrace() word by word into place has shown to be
unacceptably slow (> 10 min / 8 MB on Sparc IPC).

After the application is restarted, the SCIP restores the I/O state, that is open files
and network connections. Once more the signal status and the interval timers are re-
stored using a relocatable function patched into the application. Signals that had been
sent to the process before checkpointing but had not been delivered because they were
blocked, are resent to the process withkill() .

After SCIP has restored the saved set of registers via the debugging interface, it
continues with controlling the application exactly where it had been interrupted.

Note that, while all that function code, that we patch into the controlled process,
is of course machine dependent, thefunctionalityof them is not. In order to construct
them merely a compiler that can produce relocatable code (e. g. GCC) and several as-
sembler instructions encapsulated in preprocessor macros are needed. In fact, the use
of code patching instead of accessing kernel data structures decreases porting effort.

The architecture, operation principle and most of the code of SCIP can be kept when
porting.

4 Performance Figures

In this section we summarize performance for interposing selected system calls and the
costs of migration/checkpointing.

All figures show the averaged data of 5 repetitions of the benchmark runs, done at
night on an idle but not dedicated cluster of different Sun workstationswith SunOS 4.1.4
and a 10 Mbit/s Ethernet. Since there is no/proc file system, the traditionalptrace()
interface plus the SunOS-specific extensions are used.

We used small self-made programs to measure the various aspects of interposing
system calls during normal program execution, and of migration respectively check-
pointing.

4.1 Costs for Interposing System Calls

There is no constant factor by which the real execution time of an application could be
multiplied when running with SCIP and/or the virtual name space. The degree an ap-
plication is slowed down by the interposition depends heavily on the number of system
calls it does. If it does almost no system calls (e. g. only in the beginning and in the end)
or if it sets itself asleep frequently, there will be almost no slow down. If it does a lot of
system calls, the slow down still depends on the types of the calls.

We have measured the costs for doing system calls when the application is running
in the real name space (without any system call interposition),with the modified system
library (“libmod”), and with SCIP.

Calls Without Interaction with the Name Space Times for such system calls when
interposed by SCIP are between 0.002 and 0.02 seconds, depending on the complexity
of the interposition and the CPU speed. In all cases they are much longer than the
times without interposition (factor 50. . . 100). The corresponding times without any
interposition or with interposition through the modified system library were identical
and almost zero, because no interposition and no communication with thepbeamd is
needed in these cases. However, even in the worst case the times are still short enough
to be neglected, assuming a system call is a rather rare event.

One main cause for the overhead imposed by interposing via the debugging inter-
face is the number of additional context switches between controlling and controlled
process. It shows that this number is an important performance factor. So all unneces-
saryptrace() requests should be avoided (see also below, figure 5).

Calls Requiring Interaction with the Name Space ServiceNow we look at some
system calls that require interaction with the virtual name space administration in the
P BEAM demon.

0

0.002

0.004

0.006

0.008

0.01

0.012

realSCIP/libmod libmodSCIP

T
ot

al
 e

la
ps

ed
 ti

m
es

 [s
ec

]

getppid/Sparc 20
getppid/SLC

getpid/Sparc 20
getpid/SLC

Fig. 3. Times for getting the process identifier
and the parent process identifier.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

realSCIP/libmod libmodSCIP

T
ot

al
 e

la
ps

ed
 ti

m
es

 [s
ec

]

fork/Sparc 20
fork/SLC

Fig. 4. Times for forking a child process.

Figure 3 shows times for querying a process’ own identifier (getpid()), and that of
its parent process (getppid()), measured on two machine types. The process’ own
virtual PID remains constant during its life time, while the parent’s virtual PID may
change (to 1, when the parent exits) and thus must be looked up from the name space
service. The column labeled “SCIP/pbeamd” shows the times for the interposition
and, if needed, lookup operation. In contrast, the column simply labeled “SCIP” shows
the times for just interposing the system callwithoutinteraction with thepbeamd. The
“ libmod” and “real” curves again show the numbers for using the other respectively no
interposition component.

It also shows that, because the C library functionsgetpid() andgetppid()
under SunOS are implemented using the same system call, SCIP cannot distinguish
them and must always perform the expensive action of looking up the parent ID.

The most expensive system call under SCIP is creating a new process withfork() ,
since it requires forking two processes, attaching them and registering to the name
space. Figure 4 shows the times needed for this, again for two different machine types
and the four different kinds of interposition.

Communicating ProcessesTo handle parallel and distributed applications, it is im-
portant to support the system calls for I/O and inter-process communication. In contrast
to other system calls, whose arguments are either integers or structures of only sev-
eral words, the data area to be read or written by an I/O operation is typically much
larger – regarding streams, in theory, of almost arbitrary size. Nonetheless they must be
considered as arguments respectively return values.

One simple approach would be to let the controlled application perform these op-
erations, if necessary after translating any virtual to real addresses. Unfortunately, this
does not work for operations that have to conform to a certain protocol in order to cope
with migration and global checkpointing of distributed applications [20], i. e. especially
for interprocess communication.

So another simple approach would be to let SCIP maintain these file descriptors and
perform these operation on behalf of the application. This involves exchanging all the

0

10

20

30

40

50

60

70

80

100 200 300 400 500 600 700 800 900 1000

T
o
ta

l e
la

p
se

d
 t
im

e
s

fo
r

e
ch

o
in

g
 [
se

c]

number of packets (for each method/packet size)

SCIP/fd/2000
SCIP/fd/50
SCIP/fd/shared mem/2000
SCIP/fd/shared mem/50
libmod/2000
libmod/50

0

20000

40000

60000

80000

100000

120000

140000

160000

100 200 300 400 500 600 700 800 900 1000

T
o
ta

l n
u
m

b
e
r

o
f
co

n
te

xt
 s

w
itc

h
e
s

number of packets (for each method/packet size)

SCIP/fd/2000
SCIP/fd/50
SCIP/fd/shared mem/2000
SCIP/fd/shared mem/50
libmod/2000
libmod/50

Fig. 5.Results of the pingpong benchmark: using Shared Memory saves almost half the time and
most context switches.

data read or written between SCIP and the application.

Figure 5 shows times and number of context switches for a “pingpong” benchmark
program. In these tests, two Sun IPCs are echoing back and forth a certain number
of messages using UDP datagrams, without working on these messages. This is not a
typical behavior of distributed applications, but a good example to show the cost of
interposing the communication operations. Thesendto() andrecvfrom() opera-
tions used in the “pingpong” require to look up the real destination respectively virtual
sender address in the name space service. They can send and receive messages of vari-
able size. The figures show the benchmark results for two different packet sizes (50 and
2000 Bytes) and four different interposition methods.

Our first approach (not in the figure) was to let SCIP perform all communication
on behalf of the application process. It turned out to be very expensive because the
received messages must bepoked word by word into pingpong’s target buffer. Now, we
have implemented two optimized versions of SCIP. The first one (“SCIP/fd”) avoids
copying the received message by passing the access rights to its own file descriptor
to the pingpong program, that can then receive the message on its own. This involves
patching and executing a short function in the application each timerecvfrom() is
called. For large packets the time savings compared to the first version are immense,
but poking this function again and again onto the application’s stack is expensive, too.

Therefore, the second experimental version (“SCIP/fd/shared mem” in figure 5)
puts this function into a shared memory segment, so that it can at any time be called
without any overhead. This again saves most context switches and almost half the time.
The measured data shows that if – and only if – such mechanisms are used where pos-
sible, the performance of SCIP can get close to that of the modified system library,
that does not encounter any problems with involuntary context switches. The advantage
seems worth the more difficult implementation.

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000 8000

To
ta

l e
la

ps
ed

 ti
m

es
 [s

ec
]

Total process size [KB]

SCIP/Checkp. to local disk
SCIP/Checkp. via TCP

libmod/Checkp. via TCP
SCIP/Migration

libmod/Migration

Fig. 6.Times for checkpointing/migration between two Sun IPCs.

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000 5000 6000 7000 8000

To
ta

l e
la

ps
ed

 ti
m

es
 [s

ec
]

Total process size [KB]

SCIP/Ckpt /dev/null
SCIP/Ckpt local disk
SCIP/Ckpt via TCP

SCIP/Migration

Fig. 7.Times for checkpointing/migration from a SPARCstation 10 to a SPARCstation20.

4.2 Costs for Migration and Checkpointing

Figures 6 and 7 show the total elapsed times for checkpointing and migrating processes
of varying size up to eight MB of data and stack memory. The state image is either writ-
ten to a local disk file, or sent via TCP to a server process running on the target machine
and written to the local disk there. This is much faster than using NFS. Migration is
likewise done via TCP, as described in section 3.3.

For figure 6, both source and target machines were Sun IPC workstations. Check-
pointing and migration are done using SCIP as well as the modified system library
(“libmod”). As described in sections 3.3 and 3.4, the same mechanisms for reading and
writing the process image are used by both methods, and the measured data confirms
that both take almost the same time, with SCIP causing only a little and constant over-
head. Here, the bottleneck was a slow hard disk and very low memory on the server
machine.

For figure 7 the same was repeated with SCIP between an SPARCstation10 and
a SPARCstation 20. The figure shows also values for writing to the local null device
for comparison. In this experiment, the bottleneck was the network bandwith. These
times, about ten seconds for eight MB process image via TCP, are only a few percent
slower than with the modified system library [18], and thus SCIP still yieldsacceptable
performance.

5 Related Work

In the last years, several process migration and checkpointing systems have been devel-
oped, which run outside the system kernel in user space only.

Condor [13, 12] provides migration and rollback transparency for sequential appli-
cations through a modified system library that forwards the system call arguments back
to a shadow process on the application’s home node to invoke the real service there.
It does not support signals, timers or communication operations, which are needed for
distributed applications.

Mandelberg and Sunderam [15] read the internal state viaptrace() for creating
checkpoints. Information about the external state is read from kernel memory. They do
not use a modified system library, thus they can handle unmodified binary programs.
Applications are allowed to access files on NFS-mounted file systems only. They do
not interpose system calls but collect information from kernel data structures and cre-
ate links to the files by faking NFS link calls. They report that migration is slow be-
cause for one reading the address space with the “traditional”ptrace() facility is
expensive, and because they transferred the state information via NFS. They need 3
seconds per 100 KB process image size on Sun3 machines, while SCIP achieves about
0.12. . . 0.22 s / 100 KB.

In the ARTEMIS project [21], the operating system’s shared library mechanism
is exploited to link commercial applications with a modified system library. This, ob-
viously, requires the applications to be dynamically linked, and is not applicable to
statically linked programs. In P BEAM and SCIP we did not yet implement support for
shared memory and thus not for dynamically linked applications.

Other migration systems require the applications to be based on some specific par-
allel programming environment like PVM [8] or MPI [16]. They provide transparency
for the objects’ names (e.g. task IDs) that are defined by the programming environment.
They all require the applications to be linked with special versions of the parallel pro-
gramming library [22, 5, 11, 25, 2]. For P BEAM, these programming environments are
part of the application.

Trinitis is integrating an external checkpointer into CoCheck [24, 22] to do the sin-
gle process checkpointing via the debugging interface. However, this is insufficient to
achieve migration transparency for the message passing layer, beyond the internal state.
Here, P BEAM/SCIP has the advantage of working at the system call level.

A very similar technique to SCIP is used by Alexandrov et al. for a different pur-
pose [1]. Their Ufo file system extends the operating system functionality at user level
with user-installable file systems. The file operation system calls are intercepted via the
/proc file system and their arguments and return codes changed.

6 Conclusions

We conclude that the separation between the system call interposition component and
the administrative components of P BEAM makes it possible to choose that interposition
component that is suited best for the specific task at hand. Besides the modified system
library we have explored ways to transparently handle arbitrary binaries, that are al-
ready linked. The tradeoff, apart from implementation issues, is between transparency
and performance. Although the approach via the debugging interface is more difficult
to implement than the modified system library, we can still achieve some degree of
portability with it (see also the remarks about portability of Ufo [1]).

The presented measurements show that also an acceptable performance almost sim-
ilar to that of the modified system library approach can be gained. The performance
is significantly better than what we initially expected from the numbers reported in
the literature for previous work [15]. The main reasons for this improvement are the
exploitation of the debugging interface extensions of modern Unix flavors, and even
more the avoidance of as many context switches between application and interposition
process as possible.

References

Many of the cited documents and some more are available online in the Internet. We
have set up a World-Wide-Web page with references onhttp://wwwbode.
informatik.tu-muenchen.de/˜petri/pbeamrefs.html .

1. A.D. Alexandrov, M. Ibel, K.E. Schauser, and C.J. Scheiman. Extending the Operating Sys-
tem at the User Level: the Ufo Global File System. InUSENIX Technical Conference Pro-
ceedings, pages 77–90, Anaheim, CA, January 1997.

2. D. Andres, C. Elford, B. Fin, and L. Smith. Dynamic load balancing in PVM. Technical
report, University of Illinois at Urbanna-Champaign, April 1993.

3. M. Bolz. Transparent Redirection of System Calls for Unmodified Programs in P BEAM.
Master’s thesis, Institut f¨ur Betriebssysteme und Rechnerverbund, TU Braunschweig,
November 1997. (In German).

4. J. Cargille and B.P. Miller. Binary Wrapping: A Technique for Instrumenting Object Code.
ACM Sigplan Notices, 27(6):17–18, June 1992.

5. J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M. Prouty, and J. Walpole. MPVM: A migra-
tion transparent version of PVM.Computing Systems, 8(2):171–216, 1995.

6. CCS Annual Report. WWW page, Center for Computational Sciences, Oak Ridge National
Laboratory, 1995.http://www.ccs.ornl.org/AnRep95/CCS95.html .

7. R. Faulkner and R. Gomes. The Process File System and Process Model in UNIX System V.
In USENIX Technical Conference Proceedings, pages 243–252, Dallas, TX, January 1991.

8. Al Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.PVM: Paral-
lel Virtual Machine – A Users’ Guide and Tutorial for Networked Parallel Computing. The
MIT Press, Cambridge, Massachusetts, 1994.

9. M.B. Jones. Transparently Interposing User Code at the System Interface. PhD thesis,
CMU, September 1992.

10. A.H. Karp, M. Heath, and Al Geist. 1995 Gordon Bell Prize Winners.IEEE Computer,
29(1):79–85, January 1996.

11. J. León, A.L. Fisher, and P. Steenkiste. Fail-save PVM: A portable package for distributed
programming with Transparent Recovery. Report CMU-CS-93-124, Carnegie Mellon Uni-
versity, February 1993.

12. M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpointing and Migration of
UNIX Processes in the Condor Distributed Processing System. Report 1346, University of
Wisconsin-Madison Computer Sciences, April 1997.

13. M.J. Litzkow and M. Solomon. Supporting Checkpointing and Process Migration Outside
the UNIX Kernel. InUSENIX Technical Conference Proceedings,pages 283–290, San Fran-
cisco, CA, January 1992.

14. D. Long, J. Caroll, and C. Park. A Study of the Reliability of Internet Sites. InProceedings
of the 10th Symposium on Reliable Distributed Systems, pages 177–186, 1991.

15. K.I. Mandelberg and V.S. Sunderam. Process Migration in UNIX Networks. InUSENIX
Technical Conference Proceedings, pages 357–363, Dallas, TX, February 1988.

16. Message Passing Interface Forum MPIF. MPI-2: Extensions to the Message-Passing In-
terface. Technical report, University of Tennessee, Knoxville, July 1997. http://www.
mpi-forum.org .

17. S. Petri, M. Bolz, and H. Langend¨orfer. Transparent Migration and Rollback for Unmod-
ified Applications in Workstation Clusters. Informatik-Bericht 98-02, TU Braunschweig,
April 1998. To appear.

18. S. Petri and H. Langend¨orfer. Load Balancing and Fault Tolerance in Workstation Clusters –
Migrating Groups of Communicating Processes.Operating Systems Review, 29(4):25–36,
October 1995.

19. S. Petri, B. Schnor, M. Becker, B. Hinrichs, T. Tscharntke, and H. Langend¨orfer. Evalua-
tion of Multicast Methods to Maintain a Global Name Space for Transparent Process Mi-
gration in Workstation Clusters. InKommunikation in Verteilten Systemen, pages 224–234.
GI/ITG Fachtagung KIVS’97, Springer, February 1997.

20. S. Petri, B. Schnor, H. Langend¨orfer, and J. Steinborn. Consistent Global Checkpoints for
Distributed Applications on Clusters of Unix Workstations. InParalleles und Verteiltes
Rechnen – Beitr¨age zum 4. Workshop ¨uber Wissenschaftliches Rechnen, pages 77–86,
Aachen, October 1996. TU Braunschweig, Shaker.

21. T. Shirakihara, H. Hirayama, K. Sato, and T. Kanai. ARTEMIS: Advanced Reliable dis-
Tributed Environment Middleware System. InProceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications, PDPTA’97, pages 97–
106, Las Vegas, NV, July 1997.

22. G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. InProceedings of
the 10th International Parallel Processing Symposium (IPPS ’96), Honolulu, Hawaii, April
1996.

23. Sun Microsystems.SunOS Reference Manual, 1990. Revision A.
24. J. Trinitis. An External Checkpointing Technique for Integration into a Parallel Tool Envi-

ronment. In preparation.trinitis@informatik.tu-muenchen.de , 1998.
25. J.J.J. Vesseur, R.N. Heederik, B.J. Overeinder, and P.M.A. Sloot. Experiments in Dynamic

Load Balancing for Parallel Cluster Computing. InProceedings of the Workshop on Par-
allel Programming and Computation (ZEUS’95) and the 4th Nordic Transputer Conference
(NTUG’95), pages 189–194, Amsterdam, June 1995. IOS Press.

This article was processed using the LATEX macro package with LLNCS style

