
Efficient Runtime Thread Management for the
Nano-Threads Programming Model

Dimitrios S. Nikolopoulos, Eleftherios D. Polychronopoulos
and Theodore S. Papatheodorou

High Performance Computing Architectures Laboratory
Department of Computer Engineering and Informatics

University of Patras
Rio 26500, Patras, Greece

Abstract. The nano-threads programming model was proposed to effectively in-
tegrate multiprogramming on shared-memory multiprocessors, with the exploita-
tion of fine-grain parallelism from standard applications. A prerequisite for the
applicability of the nano-threads programming model is the ability of the runtime
environment to manage parallelism at any level of granularity with minimal over-
heads. In this paper, we introduce runtime techniques for efficient memory man-
agement and user-level scheduling in an experimental runtime system designed
to support the nano-threads programming model. We evaluate the exploitation
of processor affinity for the management of nano-thread contexts, and the use
of hierarchical queues to implement user-level scheduling strategies for applica-
tions with inherent multilevel parallelism. The proposed mechanisms attempt to
obtain maximum benefits from data locality on cache-coherent NUMA multipro-
cessors. Through the use of synthetic benchmarks, we find that our mechanism
for memory management in the runtime system reduces overheads by 52% on
average, compared to other known mechanisms. The use of hierarchical queues
gives significant performance improvements between 17% and 40%, compared
to scheduling strategies that use local queues.

1 Introduction

The nano-threads programming model, introduced in [Poly93], integrates parallelizing
compilers technology, user-level multithreading, and operating system support, to pro-
vide an efficient execution environment for parallel jobs on multiprogrammed shared-
memory multiprocessors. The model uses lightweight user-level threads for the effec-
tive exploitation of fine-grain parallelism at different levels of granularity. Multithread-
ing is considered not only as a way to express parallelism, but also as a mechanism to
support multiprogramming. The model introduces the concept ofscalable binaries, i.e.,
autoscheduled applications, which adapt to changes of the resources allocated to them
from the operating system. Applications adapt dynamically at runtime, by adjusting
their degree of parallelism. Construction and efficient execution of scalable binaries is
achieved through close coordination between the compiler, the multithreading runtime
system, and the operating system.

This work was supported by the NANOS project (ESPRIT No. 21907)



The execution environment of the nano-threads programming model provides run-
time support to create and schedule parallel threads of execution called nano-threads.
Runtime support can be provided either by a runtime library used at the compiler back-
end, or by a mechanism which directly injects multithreading code into applications.
Both approaches should use mechanisms that introduce minimal overheads for nano-
threads management, since exploitation of fine-grain parallelism is desirable. Further-
more, the runtime system should provide a convenient framework for implementing
efficient user-level schedulers. Among other properties, like preserving data locality
and load balancing, the user-level schedulers should be able to handle multilevel and
unstructured parallelism.

Martorell et.al. [Mart95, Mart96], have recently presented NthLib, a prototype run-
time library that supports the nano-threads programming model. NthLib implements
user-level multithreading and provides primitives to translate and schedule task graphs.
In this paper, we propose two efficient thread management alternatives, which we im-
plemented in the context of NthLib. The first alternative aims at reducing the overheads
of memory management in the runtime system. We introduce a technique that exploits
the affinity of threads for processors during the initialization of nano-thread contexts.
The second alternative provides a framework for the development of efficient schedul-
ing strategies for parallel applications running in the nano-threads execution environ-
ment. We introduce a mechanism for user-level scheduling, based on hierarchical ready
queues. This mechanism can be used to efficiently schedule coarse and fine-grain nano-
threads, derived from the exploitation of different levels of parallelism from different
sources within the same program. We evaluate our approaches on a Silicon Graphics
Origin2000 with synthetic benchmarks. The results show that our memory manage-
ment technique reduces the runtime system overheads by 41% on average when local
memory pools are used, and by 52% on average when a hierarchy of memory pools is
used. The proposed user-level scheduling mechanism gives performance gains between
17% and 41%, compared to mechanisms that use local ready queues. The overall results
of this work show that memory locality can be exploited to improve not only the perfor-
mance of a parallel computation, but also the performance of the runtime mechanisms
that execute this computation.

The rest of this paper is organized as follows: Section 2 gives a brief overview of
NthLib. Section 3 presents our thread management alternatives. Section 4 describes our
evaluation methodology and Section 5 presents experimental results. Section 6 summa-
rizes our conclusions and presents future work.

2 NthLib: The Nano-Threads Library

NthLib [Mart95, Mart96] provides a runtime execution environment for applications
written in standard C or FORTRAN. The runtime environment assumes that appli-
cations are automatically parallelized by a compiler, which produces an intermediate
representation called the Hierarchical Task Graph (HTG)[Girk92]. The HTG represen-
tation has the ability to capture different levels of both structured (loop-level) and un-
structured (task-level) parallelism. The runtime system uses the HTG representation
to apply anautoschedulingexecution mechanism [More95]. This mechanism gener-



atesdrive code, which creates and schedules nano-threads that execute the parallel
tasks represented by the HTG. The runtime system operates in close coordination with
the operating system, in order to dynamically control the granularity of the generated
nano-threads. Granularity control is based on information like the number of proces-
sors available to the application, estimations of the runtime system overheads, and the
critical task size.

NthLib implements nano-threads with private contexts, which are kept in nano-
thread stacks. The library uses the mechanisms provided by QuickThreads [Kepp93],
a portable tool for building multithreading packages. An important aspect of NthLib is
that it uses the C runtime stack to execute nano-threads. This means that nano-threads
use standard mechanisms to access local and global data. These mechanisms can be
highly optimized by existing C compilers. Moreover, they avoid the overhead of explicit
memory allocation of activation frames from the heap and the maintenance of a cactus
stack [More95]. Therefore, they simplify memory management at user-level. NthLib
allocates memory from the heap only for nano-thread stacks. Stacks are recycled in a
memory pool, in order to avoid the overhead of invoking the operating system memory
allocator each time a new nano-thread is created. Context switching and blocking of
nano-threads is implemented with the QuickThreads primitives.

NthLib uses local (per-processor1) ready queues and a global ready queue, where
nano-threads can be submitted for execution. The queues provide a framework for im-
plementing user-level scheduling policies in the context of NthLib. Local queues can
be employed mainly to schedule parallel loops for maintaining locality. The global
queue can be used for coarse-grain tasks and load balancing. The processors execute
a scheduling loop throughout the lifetime of the application. In each iteration of the
scheduling loop, a processor tries to dispatch a nano-thread for execution by visiting
the ready queues in a predefined order. Dispatching of nano-threads is performed in-
ternally in NthLib. However, creation and enqueuing of nano-threads in ready queues
is left entirely to the application. These actions can be performed either by the com-
piler, or directly by the programmer, who may provide scheduling hints to the runtime
system. This approach increases flexibility, since user-level scheduling is often depen-
dent on the application characteristics. Several scheduling algorithms for parallel loops
implemented in Nthlib, can be found in [Mart97, Poly97].

3 Thread Management Alternatives

In this section we introduce two thread management techniques which we have imple-
mented in NthLib. The first technique performs efficient memory management in the
runtime system, by exploiting the affinity of nano-threads for processors. The proposed
mechanism aims at reducing the overhead of initializing and managing nano-thread
contexts at user-level. The second technique uses hierarchical ready queues for user-
level scheduling in the runtime system. This technique provides a scheduling frame-
work for applications with multilevel parallelism. The idea is to execute nested paral-

1 Throughout this paper the termprocessorsrefers to kernel threads with a shared address space,
that the operating system provides to parallel applications.



lelism that originates from different sources in the same program, in different clusters
of the multiprocessor, in order to exploit memory locality to the extent possible. Our
techniques can be effectively combined to handle efficiently fine-grain, multilevel par-
allelism in NUMA multiprocessors.

3.1 Memory Management

Before presenting our mechanism, we provide some background on memory manage-
ment in NthLib and other multithreading runtime systems.

In order to implement the semantics of the autoscheduling model of execution, Nth-
Lib makes a clear distinction between nano-thread creation and nano-thread submission
for execution (enqueing). A nano-thread is created as soon as the incoming control de-
pendences of the corresponding HTG task are satisfied. Therefore, nano-threads are
created when it is explicitly known that they are going to be executed. However, if
the corresponding HTG task has pending incoming data dependences, the nano-thread
cannot be inserted in a ready queue before these data dependences are resolved.

Creation of a nano-thread consists of allocating and initializing a nano-threadde-
scriptor. The descriptor is a data structure with fixed size, that contains the nano-thread
stack, the successors of the nano-thread in the HTG and the number of unresolved in-
coming data dependences. The function that the nano-thread is going to execute and the
arguments of this function are passed to the nano-thread stack. Memory for the stacks
is allocated from the heap and stacks are recycled in order to avoid the overheads of
memory allocation by the operating system. Recycling is performed with a central pool
of free stacks. The runtime system adds a stack to the pool when the corresponding
nano-thread finishes execution. When a new nano-thread is created, the runtime system
tries to obtain a stack from the pool, before attempting to allocate memory from the
heap. Recycling of stacks is a common approach for reducing overheads and memory
consumption in multithreading runtime systems.

General-purpose multithreading runtime systems do not necessarily use the above
mechanism to create threads. One alternative approach is to create threads without pri-
vate contexts. The applicability of this approach in the nano-threads library is limited,
since the library must provide a way to maintain the scope of variables, as well as the
context of blocked nano-threads. An additional drawback is that the number of nano-
threads and hence the number of contexts that will be created during program execution
remains unknown until runtime, due to the dynamic control of nano-threads granular-
ity by the runtime library. Lazy stack allocation is another approach which decouples
the initialization of the thread descriptor from the allocation of the thread stack. The
stack allocation in this case is postponed until the thread is ready for execution. Due
to efficiency reasons, we prefer to perform a single memory allocation of a fixed data
structure for the nano-thread descriptor and the nano-thread stack, instead of two dis-
tinct allocations. In this way, we also avoid adding the overhead of initializing the stack
in context-switch time. Stackless threads are used in the Filaments package [Free96].
The ELiTE runtime system [Bell96] uses lazy stack allocation. A thorough investiga-
tion of these techniques can be found in [Niko97].

Using a central memory pool for stack recycling does not always minimize the over-



heads of memory allocation in the nano-threads library. If, at a certain point during pro-
gram execution, several processors create nano-threads simultaneously, accesses to the
memory pool may cause high contention and result to a bottleneck. A simple solution
is to use local pools of stacks as proposed in [Ande89]. Although this solution reduces
contention, it should satisfy a set of criteria in order to be practically applicable. Local
pools must be kept balanced in order to avoid situations where some processors always
find free stacks in their local pools, while others invoke repeatedly the operating sys-
tem memory allocator. Furthermore, local pools should enable the exploitation of data
locality, particularly in NUMA multiprocessors where locality is a performance-critical
factor. In this case, locality can be exploited when the nano-thread descriptor and the
nano-thread stack are initialized. If the memory addresses accessed during initialization
reside in the cache of the intializing processor, or as close to the processor as possible
in the memory hierarchy, the initialization time will be significantly reduced.

In order to meet the above criteria we introduce a stack allocation scheme that uses
local pools of stacks and a central pool. Pools are implemented as LIFO buffers with
fixed size. Our experimentation with buffer sizes showed that buffers of 4 to 8 entries
are adequate for stack recycling. The buffers operate in the following way: Whenever
a processor finishes the execution of a nano-thread, it puts the nano-thread stack in the
front of its local LIFO. When the same processor creates a new nano-thread, it tries to
obtain a stack from the front of its local LIFO. In this way, we increase the probability
that the processor will access recently touched addresses, that may still reside in the
cache. The mechanism establishes a form of affinity of newly created nano-threads for
processors. Nano-threads prefer to obtain their contexts from other nano-threads that
ran recently on the same processor. This form of affinity can be exploited to reduce
the overheads of managing the nano-thread contexts. In order to keep the local pools
balanced we use the central pool, where processors can find stacks if their local pools
are empty. Stacks are inserted in the central pool by a processor whose local pool is full,
in order to be used by other processors.

The previously described technique is very simple and the results in Sect. 5 indicate
that it has significant gains compared to the scheme proposed in [Mart96]. An inter-
esting alternative, is to use the same mechanism with a hierarchy of pools. Intuitively,
this hierarchy may correspond to the actual memory hierarchy of a NUMA system. We
evaluate this approach in conjuction with the use of hierarchical ready queues, which is
discussed in the next subsection.

3.2 Hierarchical Ready Queues

Dandamundi and Cheng [Dand95] have recently evaluated through simulations the ef-
ficiency of using hierarchical ready queues for scheduling on shared memory multi-
processors. In the proposed scheme, ready queues are organized as a tree which has
a central ready queue at the root and local ready queues at the leaves. Each processor
may access the queues that reside along the path that starts from the root and ends at the
processor local queue. However, a processor may dispatch threads for execution only
from the local queue. When accessing a ready queue at a higher level, the processor
simply transfers a fraction of the number of threads in the ready queue one level down



in the tree. Ready threads are always enqueued at the root of the hierarchy. Hierarchical
queues combine the load balancing properties of the central ready queue, with the data
locality properties of local ready queues. A drawback of this scheme is that the average
number of accesses needed to dispatch a thread for execution, is always higher than that
needed when using a central ready queue, local ready queues, or a combination of both.

In this work we consider hierarchical queues as an effective alternative for schedul-
ing nano-threads on NUMA multiprocessors. The idea is to map the hierarchy of ready
queues to the memory hierarchy of the multiprocessor and try to exploit locality. We
present a concrete example using the Silicon Graphics Origin2000 [Laud97] as a refer-
ence NUMA architecture.

The block diagram of a 32-processor Origin2000 system is outlined in Fig. 1. The
basic building block of Origin2000 is a dual-processor node, which contains up to 4
gigabytes of main memory, the directory and the I/O subsystem. These components
are connected to a hub and hubs in turn, are connected to six-ported routers that form
a high-speed interconnection network with a hypercube topology. A straightforward
mapping of hierarchical ready queues to the Origin2000 architecture, is to assign ready
queues to individual processors, nodes, routers and finally the whole system. This leads
to a complete hierarchy shown in Fig. 2(a) for a 16-processor system. Alternatively, in
order to reduce the average number of queue accesses needed for dispatching a thread,
we can consider only local queues, router queues and a central system queue, and build
the three-level hierarchy shown in Fig. 2(b). Hierarchies for other NUMA architectures
can be easily built in a similar manner.

Hub
Chip

Proc BProc A

Mem &
Dir

I/O
Xbar

Node 0

I/O Ctls

Node
 1

Node
 15

Scalable Interconnection Network

Router 0 Router 1 Router 7

Fig. 1. Origin2000 block diagram

We modify the scheme proposed in [Dand95], to adapt it to the nano-threads pro-
gramming model. Our goal is to use the hierarchical queues to schedule nano-threads,
given the following facts:

– The runtime system may decide to exploit nested parallelism.
– The runtime system may decide to exploit parallelism that may originate from dif-

ferent sources within the same program.



level 0 level 1 level 2 level 3 level 0 level 1 level 2

(a) (b)

Fig. 2. Two hierarchical queue organizations for a 16-processor Origin2000 system

– Parallel tasks that originate from different sources access different data sets and
may have different synchronization patterns.

We allow processors to enqueue threads arbitrarily in any queue that resides in the
path from the root to their local queue. Furthermore, we let processors dispatch and
execute threads from any queue along the same path, starting from their local queue
and moving up the hierarchy to the root of the tree, in each iteration of their scheduling
loop.

The intuition behind this approach is that nested parallel nano-threads should be ex-
ecuted in the same cluster of the machine, in order to preserve data locality. At the same
time, parallelism that originates from different sources can be executed on different
clusters, in order to avoid the undesirable interferences between nano-threads that ac-
cess different data sets. A cluster can be arbitrarily defined as amemory locality domain
of the underlying machine architecture. Each level of the queues hierarchy represents
a partitioning of the machine in memory locality domains. If levell of the hierarchy
containsn ready queuesQli; i = 1 : : : n, then this level represents a partitioning of the
machine inton domains. Each domaini contains the processors whose local queues
are at the leaves of the subtree emanating fromQli. Our mechanism lets the application
map the generated parallelism to memory locality domains. The number of domains
used depends on the application characteristics and determines the level of the hierar-
chy selected to schedule the computation. Furthermore, if nano-threads scheduled at a
given level of the hierarchy create nested nano-threads, the innermost nano-threads are
scheduled in the same domains with their outermost counterparts.

As an example, consider an instance of a program where two processors gener-
ate threads to execute two distinct nested parallel loops, that reference diffrent data. A
scheduling scheme that uses local queues would suggest to schedule both loops con-
currently across all executing processors. Although this scheme maximizes the degree
of parallelism for the execution of the loops, it may not actually be the best alternative.
Nano-threads from the first loop pollute the cache footprints of nano-threads from the



second loop and vice versa. This interference may lead to poor cache performance, even
if each individual loop exhibits good data locality. Following the hierarchical scheme,
we can remedy this problem by assigning the loops to two distinct clusters of the ma-
chine. This approach maximizes data locality and avoids cache interferences, at the
expense of reducing the degree of parallelism for each loop. In addition, the hierarchi-
cal scheme lets iterations from the innermost loops execute in the same clusters with
their outermost counterparts. This strategy allows the computation to establish proces-
sor affinity and exploit cache reuse.

There are two more observations concerning hierarchical queues. The first obser-
vation, is that the scheme that we propose does not lack flexibility compared to other
schemes that use a central queue and/or local queues. Generation and enqueuing of
nano-threads are left entirely to the application or the compiler. Both are able to sched-
ule the computation according to application-specific characteristics. The second ob-
servation, is that the proposed mechanism needs some additional support from the op-
erating system, when used in a multiprogramming environment. The basic requirement
is that the processor allocation policy of the operating system should establish physical
partitions of the machine that can be mapped to hierarchies. Algorithms for partitioning
can be found in [Feit97].

4 Evaluation Methodology

We evaluate our approaches with synthetic benchmarks, which we coded in C using the
NthLib interface. We conducted our experiments on a 32-processor Silicon Graphics
Origin2000. Our performance evaluation is based on the comparison of the following
thread management alternatives.

– Base: This scheme uses a global ready queue and local ready queues for scheduling,
and a central memory pool for stack allocation and recycling. This is the scheme
currently implemented in NthLib and we use it as the base for our comparisons.

– Stackaff: This scheme uses a global ready queue and local ready queues for
scheduling, and the mechanism presented in Sect. 3.1 for allocation and recycling
of nano-thread contexts. The size of the local LIFOs is experimentally set to 8.

– Hier: This scheme uses the hierarchy of ready queues shown in Fig. 2(b). We in-
corporate the affinity mechanism for stack initialization presented in Sect. 3.1, by
using a hierarchy of LIFOs with a one-to-one mapping between LIFOs and ready
queues. The affinity mechanism used in this case is identical to the mechanism used
in Stackaff, with the exception that processors scan one more level of LIFOs for
free stacks.

We use two synthetic benchmarks to evaluate our approaches. Our primary goal is to
evaluate the efficiency of the proposed schemes, with respect to the following criteria:

– Exploitation of parallelism at the finest level of granularity at any instance during
program execution.

– Exploitation of multilevel and nested parallelism, that may originate from different
sources within a program.



We use two benchmarks that capture different models of parallelism, which can be
met in a wide range of applications.

The first benchmark follows the fork/join model. The benchmark creates 1 million
empty nano-threads. Nano-threads are created in parallel by all processors participating
in the execution. Each processor creates an equal number of nano-threads in bursts.
After creating a burst, a processor blocks and waits for the execution of the burst to
terminate. In theBaseandStackaff alternatives, the number of nano-threads in each
burst is set to be equal to the number of processors, in order to model a computation
with frequent synchronization between processors. In theHier alternative, the machine
is divided in clusters and each burst is executed in a single cluster. The burst size used
in this case is equal to the number of processors in the cluster. The implementation of
Hier preserves locality, at the expense of increasing the synchronization costs for thread
management. In all schemes nano-threads within a burst are scheduled in an interleaved
manner across the available processors.

This benchmark is appropriate for estimating the pure runtime overheads of the
nano-thread management alternatives, since nano-threads perform no useful computa-
tion. We use this benchmark to evaluate the performance of the memory management
mechanism presented in Sect. 3.1.

The second synthetic benchmark is represented by the task graph shown in Fig. 3.
Each taskTi; i = 1 : : : 8 corresponds to a parallel loop. TasksT1 : : : T4 correspond to
scalar-by-vector products, computed for four different vectors of double precision num-
bers. TasksT5 : : : T8 correspond to dot products, computed with the outputs of tasks
T1 : : : T4. The arcs indicate precedence relationships between the tasks that result from
inherent data dependences. The sizes of the vectors are varied from 2048 to 16384 el-
ements in subsequent executions of the benchmark. In each execution, the whole task
graph is traversed repeatedly.

T1 T2 T3 T4

T6 T7 T8T5

Fig. 3. Task graph for the second benchmark

This benchmark has some desirable properties. The benchmark allows the exploita-
tion of two levels of parallelism. At the first level, tasksT1 : : : T4 can be executed in
parallel, followed by tasksT5 : : : T8. At the second level, the loops inside each task
can be parallelized with a loop translation scheme. TasksT1; T4; T6; andT7 access the



same vectors, so scheduling these tasks and the generated loops locally in the machine
is beneficial. The same holds for tasksT2; T3; T5; andT8. Repeated execution of the
task graph allows tasks to establish affinity for certain processors.

For the parallelization of loops we use the adaptive-size chunking algorithm pro-
posed in [Mart97]. This algorithm executes loops with bursts of nano-threads. In the
implementation for theBaseandStackaff alternatives, loop parallelization is done us-
ing all the available processors. In theHier version, parallelization is done by partition-
ing the machine and correspondingly the queues hierarchy in two symmetric clusters.
TasksT1; T4; T6; andT7 are scheduled in the first cluster, whileT2; T3; T5; andT8 are
scheduled in the second. Partitioning is performed to maximize locality of references,
since tasks scheduled in the same cluster reference the same vectors. TasksTi are sched-
uled directly in router queues. The parallel loop generated from each taskTi is sched-
uled with adaptive-size chunking in the cluster to which the processor that executesTi

belongs.
The structure of this benchmark is representative for many scientific codes with

multilevel and irregular parallelism. The SWIM and HYDRO2D codes from the
SPECfp benchmark suite, as well as Computational Fluid Dynamics (CFD) codes are
indicative examples.

5 Experimental Results

In this section, we present detailed experimental results, derived from experiments with
the thread management alternatives presented in Sect. 3.

Figure 4(a) plots the execution time for the first benchmark, using 4, 8, 16 and 32
processors. Each group of bars corresponds to the three alternativesBase, Stackaff and
Hier. Execution time in this benchmark is dominated by runtime system overheads and
the cost of synchronization between processors. Therefore, it is not expected to give
significant speedups, if any. ComparingBasewith Stackaff we see that the use of our
memory management mechanism gives performance gains between 13% and 63% with
an average gain of 41%.Baseperforms worse because of the frequent synchronization
between processors for the access of the central memory pool.Hier performs better
than bothBaseandStackaff, with 8 or more processors. Note that when 4 processors
are used,Hier performs no partitioning, therefore it is not able to obtain significant
benefits from locality. Compared toStackaff, Hier reduces execution time by 5%-67%.
The average gain ofHier compared toBaseis 52%. This indicates that incorporating
our memory management mechanism in a hierarchical scheme is highly effective. The
benefits ofHier overStackaffare justified by the fact thatHier clusters the management
of parallelism (including initialization, scheduling, synchronization and recycling of
nano-thread contexts) in memory locality domains. This allows better exploitation of
locality.

In order to evaluate the ability of the proposed mechanisms to handle efficiently
parallelism of very fine granularity, we ran the first benchmark on 32 processors and
let the nano-threads execute a small amount of work ranging from 0 to 2000 floating
point multiplications. The execution time is plotted in Fig. 4(b). We observe that de-
spite the increase of granularity, which implies an increase of the ratio of computation



to overheads, the performance of the three approaches is practically unaffected.Hier
remains the best alternative for fine nano-thread granularities and the performance of
the alternatives does not converge as granularity remains at low levels.

Execution time for Benchmark 1

0

10

20

30

40

50

60

4 8 16 32

processors

se
co

n
d
s

Base

Stack_aff

Hier

0 200 400 600 800 1000 1200 1400 1600 1800 2000
15

20

25

30

35

40

45

50

55

Granularity (Floating point Multiplications)

se
co

nd
s

Benchmark 1 execution time vs. thread granularity

−−o−− Base

−−x−− Stack_aff

−−+−− Hier

(a) (b)

Fig. 4. Execution time for the first benchmark with zero and varying thread granularity

Figures 5(a) through (d) plot the execution time of the second benchmark for dif-
ferent vector sizes ranging from 2048 to 16384 elements. Each chart plots execution
time versus the number of processors forBase, Stackaff, andHier, for executions on
up to 16 processors. The results verify our intuition that hierarchical queues exploit
better nested parallelism.Hier outperforms clearly the other approaches. The gains of
Hier compared toBaseon 16 processors, range between 17% and 41%.Stackaff has
only marginal gains overBase. These gains can be attributed to the use of our memory
management mechanism.

The main advantage ofHier, is that it performs efficient partitioning and mapping
of the computation to the machine architecture, in order to maximize locality and avoid
interferences between nano-threads with different data access traces. BothBaseand
Stackaff have poorer cache performance thanHier, despite the fact that they use all the
available processors to execute the parallel loops. Note that the benchmark suffers from
performance degradation when executed on more than 8 processors. Futhermore, the
benchmark exhibits reasonable speedups with all three alternatives, only when vector
sizes of 16384 are used. The exception isHier, that achieves speedup with a vector
size of 8192 too. This problem is progressively alleviated when the size of the vectors
and the nano-threads granularity are adequately increased. However, we experimented
with small vector sizes, in order to measure the ability of our mechanisms to handle
effectively fine-grain parallelism.

Preliminary results from experiments with application benchmarks (not shown here)
verify the validiy of our approaches.Hier gives average performance gains of 48% and
17% compared toBase, with the kernel of a Fourier-Chebyshev spectral computational



2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

Processors

se
co

nd
s

Benchmark 2 execution time (n=2048)

−−o−− Base

−−x−− Stack_aff

−−+−− Hier

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

Processors

se
co

nd
s

Benchmark 2 execution time (n=4096)

−−o−− Base

−−x−− Stack_aff

−−+−− Hier

(a) (b)

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

Processors

se
co

nd
s

Benchmark 2 execution time (n=8192)

−−o−− Base

−−x−− Stack_aff

−−+−− Hier

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

Processors

se
co

nd
s

Benchmark 2 execution time (n=16384)

−−o−− Base

−−x−− Stack_aff

−−+−− Hier

(c) (d)

Fig. 5.Execution times for the second benchmark with different problem sizes.

fluid dynamics code and a complex matrix multiplication kernel respectively.
Summarizing, we conclude that the use of hierarchical schemes for scheduling

and memory management in the runtime system gives substantial performance gains
on NUMA multiprocessors. This is a direct consequence of the way that hierarchical
schemes decompose the management and execution of parallelism in memory locality
domains.

6 Conclusions and Future Work

In this paper, we introduced thread management alternatives, which we applied in a run-
time system designed to support the nano-threads programming model. We proposed a
mechanism that exploits affinity of threads for processors, in order to reduce the over-
head of managing nano-thread contexts in the runtime system. We also proposed a
scheduling framework based on hierarchical ready queues, which allows effective par-
titioning of parallel computations by taking into account the platform architecture. Our
results show that the use of hierarchical schemes in NUMA machines are highly effec-



tive, because of their ability to take full advantage of data locality. We recommend the
use of these schemes in the nano-threads programming model for two reasons: First,
they are able to manage parallelism of very fine granularity with minimal overheads.
Second, they are appropriate for scheduling unstructured and nested parallelism, which
may be extracted from different sources within an application.

We currently investigate the effectiveness of further optimizations in the nano-
threads library, including the use of parallel-access queues and software prefetching.
We also investigate concrete user-level partitioning algorithms with hierarchical queues,
which we evaluate with scientific application codes.

Acknowledgements

We would like to thank Constantine Polychronopoulos for his support of this work,
Xavier Martorell for his help in conducting the experiments, the European Center for
Parallelism in Barcelona (CEPBA) for providing us access to their Origin2000 system
and the referees for their helpful comments.

References

[Ande89] T. Anderson, E. Lazowska and H. Levy,The Performance Implications of Thread
Management Alternatives for Shared-Memory Multiprocessors, IEEE Transactions
on Computers, vol. 38(12), pp. 1632–1644, December 1989.

[Bell96] F. Bellosa and M. Steckermeier,The Performance Implications of Locality Informa-
tion Usage in Shared-Memory Multiprocessors, Journal of Parallel and Distributed
Computing, vol. 37(1), pp. 113–121, August 1996.

[Dand95] S. Dandamundi and P. Cheng,A Hierarchical Task Queue Organization for Shared-
Memory Multiprocessor Systems, IEEE Transactions on Parallel and Distributed
Systems, vol. 6(1), pp. 1–16, January 1995.

[Feit97] D. Feitelson,Job Scheduling in Multiprogrammed Parallel Systems, IBM Research
Report 19790, Second Revision, August 1997.

[Free96] V. Freeh, D. Lowenthal, and G. Andrews,Efficient Support for Fine-Grain Paral-
lelism on Shared-Memory Machines, Technical Report TR96-1, Univeristy of Ari-
zona, January 1996.

[Girk92] M. Girkar and C. Polychronopoulos,Automatic Extraction of Functional Paral-
lelism from Ordinary Programs, IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 3(2), pp. 166–178, March 1992.

[Kepp93] D. Keppel,Tools and Techniques for Building Fast Portable Threads Packages,
Technical Report UWCSE 93-05-06, University of Washington at Seattle, May
1993.

[Laud97] J. Laudon and D. Lenoski,The SGI Origin: A ccNUMA Highly Scalable Server,
Proceedings of the 24th International Symposium on Computer Architecture,
pp. 241–251, Denver, Colorado, June 1997.

[Mart95] X. Martorell, J. Labarta, N. Navarro and E. Ayguad´e, Nano-Threads Library De-
sign, Implementation and Evaluation, Technical Report UPC-DAC-1995-33, Uni-
versitat Politècnica de Catalunya, November 1995.



[Mart96] X. Martorell, J. Labarta, N. Navarro and E. Ayguad´e, A Library Implementation of
the Nano-Threads Programming Model, Proceedings of the 2nd International Euro-
Par Conference, pp. 644–649, Lyon, France, August 1996.

[Mart97] X. Martorell, J. Labarta, N. Navarro and E. Ayguad´e,Analysis of Several Scheduling
Algorithms under the Nano-threads Programming Model, Proceedings of the 11th
International Parallel Processing Symposium, pp. 281–287, Geneva, Switzerland,
April 1997.

[More95] J. Moreira,On the Implementation and Effectiveness of Autoscheduling for Shared-
Memory Multiprocessors, PhD Thesis, University of Illinois at Urbana-Champaign,
Department of Electrical and Computer Engineering, 1995.

[Niko97] D. Nikolopoulos, E. Polychronopoulos, I. Tsolakis and T. Papatheodorou,A Com-
parative Study of Multithreading Runtime Systems for Parallel Programming, Tech-
nical Report HPCAL-TR-010797, University of Patras, Department of Computer
Engineering and Informatics, July 1997.

[Poly93] C. Polychronopoulos, N. Bitar and S. Kleiman,Nano-Threads: A User-Level
Threads Architecture, Technical Report 1297, Center for Supercomputing Research
and Development, University of Illinois at Urbana-Champaign, 1993.

[Poly97] E. Polychronopoulos and T. Papatheodorou,Dynamic Bisectioning Scheduling for
Scalable Shared-Memory Multiprocessors based on the Nano-Threads Program-
ming Model, Technical Report HPCAL-TR-010697, University of Patras, Depart-
ment of Computer Engineering and Informatics, June 1997.

This article was processed using the LATEX macro package with LLNCS style


