
A Configurable Computing Approach
Towards Real-time Target Tracking

Bharadwaj Pudipeddi, A. Lynn Abbott, and Peter M. Athanas
The Bradley Department of Electrical and Computer Engineering

Virginia Tech
Blacksburg, Virginia 24061-0111, USA

Abstract. Traditionally, tracking systems require dedicated hardware to handle
the computational demands and input/output rates imposed by real-time video
sources.  An alternative presented in this paper uses configurable computing
machines, which use interconnected FPGAs to provide fine-grain parallelism
and reconfigurability so that high-speed performance is possible for many
different applications.  The efficacy of such architectures to image-based
computing is illustrated here through the implementation of a tracking system
that consists of two parts:  a Gaussian pyramid generator and a correlation-based
tracker.  The pyramid generator converts each input image to a hierarchy of
images, each representing the original image at a different resolution.  An object
is tracked on successive frames by a coarse-to-fine search through this image
hierarchy, using the sum of absolute differences as the matching criterion.
Splash 2 performs these operations at rates of 15 or 30 frames per second.  Its
performance therefore rivals that of application-specific systems, although the
architecture is inherently general-purpose in nature.

1. Introduction
The purpose of a visual tracking system is to follow a moving object through a
sequence of images.  Visual tracking is needed in many applications, including
surveillance, autonomous vehicle navigation, robotic gaze control, and missile
guidance.  Unfortunately, most of these tasks require large amounts of image data to
be processed at high speeds.  Because typical general-purpose computing platforms are
not capable of meeting these demands, system designers have traditionally developed
special-purpose hardware that is carefully tailored to meet the needs of a specific task.
The problems associated with the use of application-specific hardware are well known,
however: lengthy design cycles, high cost, and inability to accommodate problems that
are not specifically addressed in the design.

Configurable computing machines (CCMs) have emerged as an attractive
alternative to high-performance embedded computing.  CCMs retain a general-purpose
nature, yet can be configured to offer performance that rivals application-specific
hardware.  A single CCM platform can be quickly reconfigured to implement such
vastly different operations as median filtering [Abbo95], genetic database search, the



two-dimensional Fourier transform, or even control-driven processing. CCMs are
typically characterized by high-capacity data paths and programmable interconnects
between processing elements (PEs).  Example CCMs are Splash 2 [Atha95], and
Spyder [Isel95].

This paper describes the implementation of a real-time visual tracking system
using the Splash 2 configurable computing machine.  The system generates image
pyramids for 512 × 512 images at 30 frames per second, and performs a coarse-to-fine
search to track the movement of an object in the field of view.  The implementation
combines pipelining, data recirculation, and SIMD operation to demonstrate the utility
of the configurable computing approach on data-intensive image-analysis tasks.

2. Coarse-to-fine tracking
The visual tracking problem may be stated as follows: given an image I n  obtained at

time n, and given the row and column location (r, c) for a target of interest in that
image, determine the new row and column location for the same target in the
subsequent image.  Typically, this requires a search within I n+1 that begins near

location (r, c), and this process repeats for each successive image using the most recent
knowledge of target position to select the starting point for the new search.

For the implementation described here, a simple area-based matching method is
used for searching.  A sub-image S of size w × w (here, w = 16) is extracted from the

reference image I n , and is compared with w × w windows within 1+nI .  For each

window that is chosen, the sum of absolute differences (SAD) of pixel values are
computed, and the window minimizing this criterion indicates the new target location
within.  This may be represented as

                          ( ) ( ) ( )d x y S r c I r x c yn
c

w

r

w
, , ,= − − −∑∑ +

=

−

=

−
1

0

1

0

1

where the offset (x, y) that minimizes d determines the best-match location.  In this
implementation, x and y are both constrained to lie in a small range which yields a
total search window in I n+1 of size 32 × 32.

A problem with this simple matching method is that false matches may result
because of noise, rapid object movement, or a host of other problems.  To combat this,
a common approach is to employ a hierarchical search method that begins with an
initial search over the entire image at very coarse resolution, and then progresses
through increasingly finer levels of resolution (but over smaller extent) for the same
image.  This coarse-to-fine approach is well known in the computer vision community
(e.g., see [Hall76, Tani78]), but is often prohibitively expensive from a computational
perspective.

For the implementation presented here, we use the popular Gaussian pyramid
decomposition to obtain a hierarchy of images at different resolutions [Burt83].
Briefly, the original image is taken to be the base of the pyramid.  The next higher
level of the pyramid is an image with half the spatial resolution in both directions.
Each pixel value for this level is computed as a weighted average of pixels from a 5 ×
5 neighborhood of the previous level.  Each higher level of the pyramid is computed in
the same way form the previous level, resulting in increasingly coarse levels of
resolution.  An example pyramid, as computed by Splash 2, is given in Figure 2.



The system described in this paper performs both Gaussian pyramid generation
and coarse-to-fine search through successive image pyramids.  The following is a
summary of the complete algorithm.  More details are provided in [Abbo94, Pudi96].

1. Extract the reference subimage S from the current image I n .

2. Capture the next image 1+nI  and compute its 5-level Gaussian pyramid.

3. For each level of the pyramid, beginning at the coarsest level, compute
the sum of absolute differences over a 32 × 32 search area.  At the
coarsest level, in this implementation, this implies a search over the
entire image.  At finer levels, the search is conducted only near the best
match that was detected at the previous (coarser) level.
4. Report (r-x, c-y) as the target location in the full-resolution image I n+1.

5. Increment n, and repeat from Step 1.

3. Hierarchical image matching on Splash 2
Figure 1 illustrates a complete pyramid generation and tracking system that has been
implemented on Splash 2.  This design utilizes all 17 FPGAs on one Splash processor
board, which are designated X0 to X16 and are colloquially referred to as PEs.  The
main duty of X0 is to accept and format input pixels, and to control crossbar
interconnections between the PEs.  The upper half of the figure represents the portion
of the system that generates Gaussian pyramids, and the lower half performs tracking
using those image pyramids. This design generates 5-level Gaussian pyramids at a rate
of 30 per second.  It is also possible to use a single 4-chip recirculating block to
generate 5-level pyramids at a rate of 15 per second.  Details on pyramid formation
can be found in [Abbo95].

The lower half of Figure 1 represents the tracking system, which is subdivided
into four separate stages.  For the system discussed here, only levels 256 × 256 and
smaller are processed, performing the tracking operation at a rate of 30 images per
second.  A second design, which is not discussed here in detail, performs tracking also
using the full-resolution 512 × 512 images, but at the slower rate of 15 images per
second.

The first stage of the tracking system, comprising X9 only, receives each
incoming pyramid from X4 and X8.  It passes the 256 × 256 image to stage 4, and
simultaneously sends the lower-resolution levels to stage 2.  Stage 2, consisting of PEs
X10-X11, stores the pyramids in its memory and furnishes image data to stage 3 for
processing.  It sends both reference-window pixels and search-window pixels to stage
3 as needed.  Stage 3 (X12-X13) performs the SAD computation and transfers the
row/column locations of the winning matches to stages 2 and 4.  Stage 4 (X14-X15)
computes the final target position within the 256 × 256 image, highlights the target
location, and transfers the resulting image to X16 for final formatting and display.

Because image matching begins at the coarsest level, tracking computations do
not commence until a complete pyramid has been received.  To accommodate this, 2
chips each within stages 2 and 4 store and process alternate image pyramids in the
sequence.  Using the convention that image frames are numbered beginning with 0 at
system initialization, the first chip (X10 and X14) stores all odd-numbered pyramids
while the second chip (X11 and X15) stores all even-numbered pyramids.  As one
pyramid is being stored, the other PE in these blocks facilitates image matching on the



other pyramid.
The actual matching computations performed in stage 3 are compute-intensive,

and utilize two FPGA chips in an SIMD mode to achieve real-time operation.  The
first chip (X12) performs computations for 16 × 16 image windows that begin on even
columns, and the second chip (X13) simultaneously performs the same computations
for windows that begin on odd columns.  This is a form of SIMD computing because
the same operations occur on different PEs, but with different data.

4. Results
This system has been tested at full speed on Splash 2, and at slower speeds to aid in
design verification.  Sample results are shown in Figure 3, and are identical to results
obtained using a software implementation on a Sun workstation.

A timing analysis, as performed by the Xilinx design tools, indicates a worst-
case maximum clock frequency for the FPGAs of the tracking stages of 8.7 MHz for
the XC4010-5 parts.  This is higher than the minimum 7.86 MHz clock frequency
required to transfer 512 × 512 images at a rate of 30 images/second.  The current
Splash implementation operates at a clock frequency of 10 MHz, however, and the
design of two of the chips will need to be improved before correct operation can be
guaranteed at this frequency.  However, no speed-related problems were observed at
this higher clock frequency.

5. Conclusion
This paper has described the design and implementation of a real-time visual tracking
system on the Splash 2 architecture.  The use of Splash 2 (or other CCMs) for such
image-based tasks is attractive because dedicated hardware is not needed, although the
system delivers performance approaching fully custom hardware (such as that
described in [Burt88, vand92, Zhan93]).  This is possible because the fine-grain
configurability of the system permits designs that utilize high-level pipelining coupled
with lower-level data recirculation and SIMD-like processing.  A drawback of this
approach is that the designer faces a fairly steep learning curve, although this may be
due largely to the limitations of current design tools.  Based on the lessons learned
using Splash, some newer CCMs are under development that incorporate such helpful
features as a mixture of local and global memory, dual-port access to some of the
memory elements, and increased I/O capability on the FPGAs.

Without great difficulty, the tracking system can be scaled to work for
pyramids constructed from images of very large sizes. For larger images, the number
of chips used for correlation can be increased to reduce the number of processing
cycles for this operation. For instance, correlation has been partitioned such that all
search blocks beginning on even columns of the search window are processed by one
chip while simultaneously, all the search blocks beginning on odd columns are
processed by another pyramid. This can be extended to four chips by letting a pair of
chips process all search blocks that begin on even rows and another pair of chips
process all search blocks that begin on odd rows so that the time taken for performing
correlation will be reduced by half.



References
[Abbo94]  A. L. Abbott, P. M. Athanas, L. Chen, and R. L. Elliott:  "Finding Lines and
Building Pyramids with Splash 2," Proceedings: IEEE Workshop on FPGAs for
Custom Computing Machines, Napa, CA, April 1994, pp. 155-163.

[Atha95]  P. M. Athanas and A. L. Abbott:  "Real-Time Image Processing on a
Custom Computing Platform," IEEE Computer, vol. 28, no. 2, Feb. 1995, pp. 16-25.

[Burt83]  P. J. Burt and E. H. Adelson:  "The Laplacian Pyramid as a Compact Image
Code," IEEE Transactions on Communications, vol. COM-31, pp. 532-540, 1983.

[Hall76]  E. L. Hall, J. Rouge, and R. Y. Wong:  "Hierarchical Search for Image
Matching," Proceedings:  IEEE Conference on Decision and Control,  Dec. 1976, pp.
791-796.

[Isel95]  C. Iseli and E. Sanchez, "Spyder, a SURE, SUperscalar and REconfigurable,
Processor," Journal of Supercomputing, vol. 9, pp. 231-252, 1995.

[Pudi96]  B. Pudipeddi:  "Implementation of Coarse-to-Fine Visual Tracking on a
Custom Computing Machine," M. S. Thesis, Bradley Dept. of Electrical Engineering,
Virginia Tech, 1996.

[Tani78]  S. L. Tanimoto, "A Comparison of Some Image Searching Methods,"
Proceedings: IEEE Conference on Pattern Recognition and Image Processing, June
1978, pp. 280-286.

[vand92]  G. S. van der Wal and P. J. Burt, "A VLSI Pyramid Chip for Multiresolution
Image Analysis," International Journal of Computer Vision, vol. 8, no. 3, 1992, pp.
177-189.

[Zhan93]  Z.-Y. Zhang and B.-Z. Yuan, "Multiresolution Target Detection and
Tracking through a parallel Coarse-to-Fine Search Approach," Proceedings:  IEEE
TENCON '93, Beijing, P. R. China, 1993, pp. 1198-1202.

X0 X1 X2 X3 X4 X5 X6 X7 X8

X16 X15 X14 X13 X12 X11 X10 X9

Filter
by Gx

Filter by Gy Store

Output image

Input
image

Tracking stage 2
Tracking 
stage 1

Tracking stage 4 Tracking stage 3

Filter
by Gx

Filter by Gy Combine

Format
output

Fig. 1.  Block diagram of a tracking system on Splash 2.  Chips X0 - X16 represent the XC4010
FPGAs of one processor board, and they are connected as a linear array.  The other connections
are made though a crossbar switch.  The top half of the figure is the Gaussian pyramid
generator, and the bottom half performs image matching.



Fig. 2.  Four levels of a Gaussian pyramid.  These were computed by Splash 2 from a
512 × 512 image which is not shown.  The image sizes here are 256 × 256, 128 × 128,
64 × 64, and finally 32 × 32, which serves as the coarsest level in this implementation.

  

Fig. 3. Three frames of a test image sequence, in which a taxi is seen turning a corner
at an intersection.  The target to be tracked was taken from the center of the first frame
(not shown).  White rectangles of size 16×16 represent the best matches found in each
image, relative to the target's appearance in the previous image.

     


