
Pupa: A Low-Latency Communication System for Fast Ethernet

Manish Verma
�

Tzi-cker Chiueh
?

� Silicon Graphics Inc.
mverma@engr.sgi.com

? Computer Science Department
State University of New York at Stony Brook

Stony Brook, NY 11794-4400
chiueh@cs.sunysb.edu

Abstract

Pupa is a low-latency communication system that provides the same quality of message delivery as TCP but
is designed speci�cally for a parallel computing cluster connected by a 100 Mbits/sec Fast Ethernet. The
implementation has been operational for over a year, and several systems have been built on top of Pupa,
including a compiler-directed distributed shared virtual memory system, Locust , and a parallel multimedia
index server, PAMIS . To minimize bu�er management overhead, Pupa uses per-sender/per-receiver �xed-
sized FIFO bu�ers to optimize for the common case, rather than a shared variable-length linked-list bu�er
pool. In addition, Pupa features a sender-controlled acknowledgement and an optimistic ow control scheme
to reduce the overhead of providing reliable in-order message delivery. Our performance results show that
Pupa is twice as fast as the fast path of TCP in terms of latency, and is about 1.5 times better in terms
of throughput. This paper presents the design decisions during the development of Pupa, the results of a
detailed performance study of the Pupa prototype, as well as the implementation experiences from Pupa-
based applications development.

1 Introduction

Pupa is a communication system speci�cally designed to turn a NOW (Network of Workstations) into a
parallel computing platform by reducing the message latency to the minimum. It is currently implemented
in the FreeBSD Unix kernel, and the hardware platform of the prototype is a set of Pentium PCs connected
by a 100 Mbits/sec Fast Ethernet. Pupa is positioned in parallel with the TCP/IP stack, such that existing
workstation applications can still work without modi�cation, while parallel programs developed on the PC
cluster can enjoy low-latency message passing.

Many of previous communication systems for NOWs [17] [13] [14] [16] [1] made the assumption that
the network hardware is directly accessible from the user mode and/or there are no other communication
systems in operation on the hosts so that they can completely bypass existing device drivers. This eliminates
most of the OS and device driver overheads. Pupa , on the other hand, is designed to work with o�-the-self
network cards and to co-exist with legacy communication software such as TCP/IP. Many earlier systems
also only implemented a rudimentary bu�er management scheme and expect either higher level systems
or user applications to implement full edged bu�er management services. This arti�cially reduces the
reported message latency measurements. However, the overheads associated with more advanced services
such as reliability reappear once they are supported by the higher layer systems. Some of the systems rely
on the underlying hardware to provide reliability guarantee to reduce protocol processing overheads. Yet
other systems rely on smart network adapters to reduce the number of data copy operations at the receiver.
Pupa does not have this luxury since it is designed to work with o�-the-shelf Ethernet cards. Another that is
similar in goal to Pupa is Beowulf [2], which focuses mainly on the use of multiple Ethernet links for higher
throughput, but not on optimizing the message passing software. It uses Linux's communication subsystem
and existing MPI or PVM implementations for message delivery. Some other implementations [19] [15] that
in many ways are similar in architecture to Pupa and have been implemented over o�-the-shelf network
hardware have achieved even better results in terms of latency and throughput. We believe there is further
scope for optimizing the Pupa implementation.

Fundamentally, a communication system for parallel computing is required to provide a reliable in-order
delivery of messages from one process on one machine to another process on another machine. The studies
performed by Karamcheti, Chien and Plevyak [4] [9] [10] [14] demonstrated that the support for reliable
and ordered delivery is best provided at the lowest level of the communication layer. Parallel programs
require low latency for small message and high bandwidth for large messages Small messages are often
generated by time critical operations such as barrier synchronization, reduction operations, request for locks,
etc. Small message latency is reduced by optimizing the fast path of the message transfer routine. Large
messages are primarily due to bulk data transfers, whose transfer time is mainly determined by the e�ective
bandwidth. Previous studies on the performance problems associated with TCP/IP [7] [11] found that it is
not protocol processing, but the overheads associated with bu�er management, data copying, checksumming,
and operating systems supports such as interrupt scheduling, context switch, timer management etc. that
causes the performance problem.

To optimize for both low latency and high bandwidth, we base Pupa's design on the following assump-
tions: the physical network hardware is relatively reliable and therefore software error checksumming can
be eliminated, the main memory capacity of each cluster node is comparatively large and can be traded for
high performance, and the Ethernet architecture doesn't allow multipath routing between any two network
nodes and therefore packets rarely arrive out of order at the receiver. In particular, Pupa chooses a simple
and fast receive message bu�ering scheme that is optimized for the common case: small messages arriving
in order. The bu�ering scheme uses a FIFO queue, each entry of which is of �xed size that can accommo-
date most small messages. Therefore both allocation and deallocation take only a pointer update. When a
message arrives out of order, it is immediately dropped and a negative acknowledgment is sent to the sender
to request for re-transmission. In the case that received messages are too large to �t into the FIFO queue
entry, they are allocated from a shared secondary bu�er, with its pointer stored into the corresponding FIFO
queue entry.

Other techniques used in Pupa include an optimistic ow control policy to maximize the network through-
put, and a sender-controlled acknowledgment scheme to reduce both the number of control messages and
the interrupt and context switch overheads. Pupa also exploits Ethernet's broadcast mechanism to support
multicast and broadcast communication primitives e�ciently.

2 Software Architecture

Figure 1 shows how Pupa interacts with the device driver and user applications. Pupa exposes di�erent
programming interfaces to message passing programs and shared memory programs. The architecture cleanly
separates interface-dependent functionalities from interface-independent functionalities.

Ethernet Device Driver

Physical Media

TCP UDP

Socket Interface

IP

Application

Subsystem
TCP/IP

Communication
Interface

Pupa Message Passing
Communication

Interface

Pupa Shared Memory

Locust Shared Memory

System

Communication
Pupa

Interface-Specific Layer

Interface-Independent Layer

Figure 1: The organization of Pupa with respect to the network device driver and user applications.

2.1 Bu�er Management

Because previous studies have shown that the e�ciency of bu�er management dictates the performance
of the message passing system, Pupa's bu�er management scheme is highly optimized by fast-pathing the
common case: small messages that arrive error-free and in order. Each node participating in a parallel
computation has a set of primary bu�ers, some of which are primary send bu�ers and others are primary

receive bu�ers. These bu�ers are not system wide bu�ers but are allocated to each parallel program at the
start and deallocated when the program terminates. Primary bu�ers are FIFO queues with �xed size entries
and are used to store the message headers of the messages that are in transit. These bu�ers also hold the
bodies of small messages. In addition, there are two secondary bu�er pools, again allocated to each program,
from which large message bodies are stored, one for outgoing messages and one for incoming messages.

Each node participating in a parallel computation has one primary send bu�er for every other node,
which stores the headers for messages destined to that particular node. The organization of the primary
receive bu�ers, however, is dependent on the high-level system that builds on top of Pupa . For a message
passing subsystem, each node has one primary receive bu�er for every other node and stores the headers of
messages arriving from that particular node. In a shared memory subsystem the receive bu�ers are organized
according to generation numbers [5] [18]. In this paper, we will focus only on the message passing system.

When arriving messages are small, free of errors and in order, they are inserted in to the receive FIFO
queue associated with the sender. Sending a small message involves nothing but pushing the message to
the receiver's send FIFO queue. Consequently, the bu�er management overhead associated with sending or
receiving messages can be as little as one pointer update. More bu�er management work is required in the
case of large messages or messages that arrive out of order.

Primary and secondary bu�ers are preallocated at the beginning of a parallel program. These bu�ers
are mapped into both kernel and user address spaces and are pinned in the physical memory. Bu�ers are
mapped into both address spaces so that they can be accessed from both user and kernel modes of execution
directly. Pinning bu�ers in memory is necessary because the bu�ers need to be manipulated by network
interrupt handlers when a message or an acknowledgment arrives.

2.1.1 Primary Bu�ers

Primary bu�ers store the headers of the messages in transit, and are organized as �xed size circular FIFO
queues. There are four pointers low, high, next and sent for each primary send bu�er to keep track of the
status of the messages in the bu�ers:

low points to the beginning of the �rst message in the send bu�er.

high points to the end of the last message in the send bu�er

next points to the beginning of the next message to be transmitted,

sent points to end of the last message that has been transmitted at least once.

The high pointer is incremented by the library after it inserts a message to the send bu�er. The low pointer
is advanced by the interrupt handler when a message previously sent is acknowledged, thus indicating to
the user library that more space has become free in the send bu�er. The library is not allowed to modify
this pointer. The next pointer points to the next message to be transmitted. The sent pointer is used by
the acknowledgment processing routine to determine if an arriving acknowledgment actually acknowledges
a valid message. The sent and next pointers are updated when a send call is made or when a message is
re-transmitted after a timeout. The next pointer can also be updated in an acknowledgment processing
routine called by the interrupt handler if an acknowledgment is received for a message that was marked to
be retransmitted. The next and sent pointers are maintained by the kernel and are always updated in critical
sections where network interrupts are disabled. Figure 2 shows several possible states of the primary send
bu�er. Similarly, two pointers low and high are used to keep track of the state of messages in each primary
receive bu�er.

low points to the beginning of the �rst message in the bu�er.

high points to the end of the last message in the bu�er.

The area between the low and high pointers holds the headers of the messages that have been received by
Pupa but have not yet been retrieved by the user application. The high pointer is advanced by the receive
network interrupt handler when it adds a message to the receive bu�er, thus indicating to the user library
the availability of more data. The library increments the low pointer when it extracts a message from the
receive bu�er, thus indicating to the interrupt handler of the availability of more free space in the bu�er.

(a) : All messages in the buffer have been sent once, waiting for acknowledgements

(a) (b) (c) (d) (e)

lowlow

high, sent, next

high

low, next, sent

low

next, sent

high

next

sent

high

low, next, sent, high

(b) There are several messages in the buffer yet to be sent. No unacknowledged messages.
(c) : Some sent (unacknowledged) and some unsent messages
(d) : Some sent and some unsent messages. Retrasmitting previously sent messages.
(e) : No messages in the send buffer.

Figure 2: Di�erent states of a primary send bu�er. Shaded regions represent the parts of the bu�er that
hold messages that are either yet to be transmitted or that have been transmitted but have not yet been
acknowledged.

When a primary bu�er pointer reaches the end of the bu�er, it wraps around to the beginning of the
bu�er. The system maintains a separate ag for each bu�er to distinguish between the completely full and
completely free bu�ers.

In both primary send and receive bu�ers, each of the low and high pointers is modi�ed exclusively by
either the network interrupt handler or the user library but not by both. As a result, the user library can
update send messages to or receive messages from the primary bu�ers without entering any critical section
to disable network interrupts. This make it possible for applications to receive messages without crossing
the user-kernel boundary.

In the current implementation each primary bu�er along with the above mentioned pointers and other
metadata takes 4Kbytes, out of which 4064 bytes are used for storing messages and 32 bytes are used to
maintain the state information.

2.1.2 Secondary Bu�er Pools

Secondary bu�ers are used to store large messages that can not �t into the FIFO queues directly. Each node
participating in a parallel program maintains two secondary bu�er pools - a send and a receive pool. Bu�ers
from these pools are shared among all nodes, and are allocated on demand. Pupa keeps track of free bu�ers
from each pool with a free list. The free lists are accessible by both the kernel and the user library. Send
bu�ers are allocated from the send pool by the user library during a send operation and are returned back
to the pool by the network interrupt handler when the message held in that bu�er is acknowledged. Receive
bu�ers are allocated from the receive pool by the network interrupt handler when a packet arrives at the
receiver and are returned back to the pool by the user library when the user process consumes the message.
Allocating a bu�er from a pool involves removing the bu�er from the corresponding free list and returning
the bu�er to the pool involves adding that bu�er to the corresponding free list. Pupa keeps at least one
bu�er in the free list at all times. Since at any time there can be at most one thread adding a bu�er to the
a free list and at most one thread removing a bu�er from the same free list, it is guaranteed that allocating
and returning bu�ers from and to the secondary bu�er pools can be done without entering a critical section.

The number of bu�ers in each pool and size of each bu�er is a tunable system parameter that can be
set at the beginning of the program and they do not change during a particular run. By default the system
allocates 128 send bu�ers each 512 bytes in size and 512 receive bu�ers each 128 bytes in size.

2.1.3 Use of mbufs at Receiver End

The SMC EtherPower 10/100 card used in the prototype does not have any on board receive bu�ers. Packets
arriving from the network are transferred directly into the main memory using DMA before interrupting the
CPU. The bu�ers in which the packet would be transferred must be preallocated and registered with the
card. The original driver for this card uses preallocated 2Kbyte mbufs for this purpose. The mbufs are then
passed on to the upper network layers such as IP. Pupa uses the same organization for simplicity. We have
modi�ed the device driver so that a Pupa packet is passed to the RC layer instead of IP. If the messages in
the packet pass the acceptability tests � such as they are not duplicates and have not arrived out-of-order
� message headers are copied into the primary receive bu�ers. Small message bodies are copied into the
primary bu�ers also. We have chosen 32 bytes as the cuto� length � the choice is rather arbitrary and is
driven by the goal of reserving approximately 50% of the primary bu�er space for message headers which are
28 bytes in length. Larger message bodies are either retained in the mbufs or are copied into bu�ers allocated
from the secondary bu�er pools. Since the message headers are copied into the right primary bu�ers in all
cases, the user program �nds the message of interest at the head of the expected primary bu�er even when
the message body actually resides in an mbuf or in the secondary bu�er pool.

Retaining the message body in the mbuf has the advantage that it avoids an additional data copy and
the secondary bu�er allocation overhead. But messages stored in the mbuf can only be accessed through a
system call, whereas messages stored in the secondary bu�ers are directly retrievable from the user level. For
relatively small message bodies, the copy overhead is not too large and is compensated for to some extent by
the elimination of the system call overhead otherwise required to access an mbuf. The mbufs used to receive
a packet are 2Kbytes and occupy physical memory. Using a large mbuf to store modest sized messages is
a waste of physical memory and hence we have chosen to copy message bodies smaller than a threshold,
the default being 128 bytes, to secondary bu�ers and then free the mbufs. The threshold is again a tunable
parameter.

In summary, when the user program sends a message, it makes a call to the Pupa library, which creates a
message header and stores it in the primary bu�er associated with the destination node. If the message body
is small (<32 bytes) the message body is also copied in the primary bu�er. Otherwise, a list of secondary
send bu�ers are allocated and the message body is copied into them. The library then makes a system call
to send the message. The device driver reads the message from the bu�ers and packs them into an Ethernet
packet and hands the packet to the card.

When the packet arrives at the receiver, the card DMAs it into a 2Kbyte mbuf pre-registered with the
card by the device driver. The RC layer examines the message header and copies it into the appropriate
primary receive bu�er. If the message body is small (<32 bytes), it is also copied into the primary bu�er
after the header. Otherwise, if the message body is larger than 32 bytes and smaller than or equal to 128
bytes, a secondary bu�er is allocated from the secondary bu�er pool and the message body is stored there
with a pointer to it in the primary bu�er. If the message body is larger than 128 bytes, it is retained in the
mbuf and a pointer to it is stored in the primary bu�er. When the user program makes a receive library call
the message is copied from the Pupa bu�ers to the user address space and the bu�ers are freed.

2.2 Reliability Guarantee

Reliability guarantee is provided by the RC layer through sequence numbers, positive and negative acknowl-
edgments and retransmissions. The RC layer at the sender attaches a sequence number to each message
transmitted, which is examined by the receiver to detect lost messages. Each node maintains an expected

sequence number for every other node to determine which sequence number to expect from that node next.
Senders are noti�ed of acceptance of messages through acknowledgments. To conform with the FIFO bu�er
management scheme, receivers accept only in-order messages. When messages are dropped at the receiver
or when they are lost in the network, the RC layer at the sender times out and retransmits them.

2.2.1 Acknowledgment Management

Acknowledgments are required to provide a reliable data stream. Every message sent by a node is retained in
the send bu�ers at that node until the receiver acknowledges the receipt of that message. If a message is not
acknowledged within a certain interval, the sender retransmits it assuming that the previous transmission

was lost in the network or dropped by the receiver. To maintain a constant stream of data between a pair of
nodes, it is necessary that acknowledgments arrive fast enough so that the message pipeline is not stalled due
to send bu�er overow. However, each acknowledgment sent has its own cost - the receiver needs to assemble
the acknowledgment packet and transmit it, and the sender has to process the acknowledgment packet on its
receipt. If the receiver sends the acknowledgment before delivering the packet to the application program,
the time to assemble the acknowledgment packet and to send it is added to the critical path of message
transfer. In addition, acknowledgment packets consume network bandwidth without actually transferring
useful data.

A widely used solution to reduce acknowledgment overhead is to piggy-back acknowledgments with out-
going messages. This solution works well when the communication tra�c volume is symmetric in both
directions between each pair of nodes. In the case of largely one-way data transfers, piggy-back acknowledg-
ments alone cannot provide good performance. Usually the piggy-back acknowledgment scheme is augmented
with timer controlled acknowledgments at the receiver end [12]. A timer expires at regular intervals and
acknowledgments are sent on all live connections. Although, this protocol alleviates some of the de�ciencies
of the vanilla piggy-backed scheme, it is not responsive enough in the sense that it is up to the receiver to
decide the right time to send acknowledgments. Since the receiver does not have an idea of when the sender
actually needs an acknowledgment, it might end up sending too many acknowledgments or it might not be
able to send acknowledgments immediately when the send bu�er overows.

Pupa augments the piggy-back scheme with sender-controlled acknowledgments. When the amount of free
space in a primary sends bu�er falls below a low water mark, the sender enters an acknowledgment required

state with respect to that receiver. Every subsequent message is sent with an acknowledgment requested ag
on until the arrival of an acknowledgment that lifts the free space in the send bu�er above a high water
mark. On receipt of this acknowledgment, the sender leaves the acknowledgment required state with respect
to that receiver. When a message with the acknowledgment requested ag arrives at a receiver, the receiver
sends an acknowledgment immediately. This acknowledgment informs the sender of the successful delivery
of all messages accepted so far. When the number of free bu�ers in the send secondary bu�er pool falls below
a certain low water mark, acknowledgment requests are sent to all receivers from which acknowledgments
are pending for messages stored in the secondary bu�er pool.

When an arriving message is rejected at the receiver because of bu�er overow or due to out-of-order
arrival, the receiver sends a negative acknowledgment to notify the sender. The negative acknowledgment
carries the sequence number of the next message that the receiver expects from that sender.

To accommodate the case of lost acknowledgments and lost acknowledgment requests, an acknowledg-
ment timer is also implemented. The timer expires every 10ms. Every time this timer expires all pending
acknowledgment request and acknowledgments are sent to the respective nodes. After every 50 timer expi-
ration intervals, each node sends broadcast acknowledgments to all nodes participating in the computation
to refresh acknowledgment pending and acknowledgment required states.

In summary, acknowledgments are sent to the sender in one of the following �ve ways.

� Every data packet carries a piggy-backed acknowledgment.

� Whenever a node receives a packet with the acknowledgment requested ag on, an acknowledgment is
sent immediately.

� When a message is dropped due to a bu�er overow or when an out-of-order message arrives at a node,
a negative acknowledgment is sent immediately.

� After every 10ms an acknowledgment timer expires and all pending acknowledgment requests and
acknowledgments are sent.

� Broadcast acknowledgments to all nodes are also sent after every 50 timer expirations.

2.2.2 Flow Control

The purpose of ow control is to control tra�c between pairs of nodes so that senders do not overwhelm
the receivers. A receiver might temporarily run out of bu�ers and may not be able to accept any further
messages from the sender. Flow control is also needed to ensure that senders do not ood the network with

messages that will be dropped anyway. A ow control scheme that allows senders to transmit only when it
has de�nite information about availability of bu�ers at the receiver avoids wasting bandwidth. However, it
is overly conservative and might result in reduced network throughput if it cannot keep the data transfer
pipeline full at all time.

Pupa implements an optimistic ow control scheme. Each node has a send credit associated with it
for every other node participating in the parallel computation. The send credit speci�es the number of
messages that the sender can send to the receiver at any point of time. Every time a message is sent this
credit is decremented by one. Initially each node gives an unlimited credit to every other sender node,
essentially turning o� ow control. When a primary bu�er overow occurs at a receiver, a credit update
with available credit of zero is sent to the sender. From this point on the sender will not transmit any
data destined to that receiver until it receives a subsequent positive credit update. When the receive bu�ers
become free again, the receiver sends credit updates based on the amount of free space available in the
primary bu�ers to the sender. Once the free space in the primary receive bu�ers rises above a high water
mark, the receiver sends an unlimited credit update to the sender. Credit updates are sent with all positive
and negative acknowledgments. Special credit update packets are also sent when credit information for a
particular sender changes but there are no acknowledgments due for that sender.

This ow control policy allows senders to send data at the maximum rate possible as long as no bu�er
overows occur. Only when a bu�er overow does occur, will the overheads of ow control become visible.
Additionally, users have the option of turning ow control o� completely. This option is useful in a high
bandwidth network with no other applications running so there is not much to be gained by trying to reduce
redundant network tra�c.

Pupa also takes advantage of the large MTU of the Ethernet hardware and packs multiple messages into
one packet whenever possible. This is accomplished by not sending small messages as soon as they are added
to the send bu�ers, but waiting till a su�cient number of messages are accumulated in the bu�ers. The
result is fewer packets on the network and hence less contention for the shared media and fewer collisions.
The disadvantage is of course longer message latency. An exception to this policy is made when the user
speci�es a fastpath option when adding the message to the send bu�ers.

3 Performance Evaluation

Our experimental setup consists a network of PCs connected by a single segment Fast Ethernet. Each PC
has a P90 CPU, 16 Mbytes of main memory and 256 Kbytes of external cache. The PCs are connected to
the network by SMC EtherPower 10/100 adapters which are based on DEC 21140 chipsets. The hub used to
connect the network is a SMC TigerHub 100. The PCs run FreeBSD 2.1.0 [8] which is an x86 implementation
of 4.4 BSD UNIX operating system [3]. The kernel has been modi�ed to include the Pupa module. There
are 12 PCs on the network which have been used for the experiments presented in this chapter. Another
similar PC on the same network serves as the NFS server for all the machines involved in the experiments.
During the experiments there were no other computation or communication activities on the nodes or in the
network. UNIX daemons.

To put the performance of Pupa in perspective, we have also compared the latency and bandwidth
characteristics of Pupa with those of TCP on the same platform. We do not perform any comparisons with
UDP because while both TCP and Pupa are reliable message delivery systems, UDP does not provide any
reliability guarantee. Reliable message delivery is important for parallel programming and UDP without any
reliability layer built on top it does not qualify as an usable programming platform.

3.1 Latency Measurements

The latency for messages to be sent from one user process at one node to another user process at another
node, and its breakdowns, are presented in Table 1. All timing measurements are in microseconds. The
library routine gettimeofday and the kernel routine microtime were inserted along the message transfer
path to perform the timing measurements. Gettimeofday and microtime take 6�s and 2�s respectively.
The presented numbers have been adjusted for these values.

Table 1 presents the total one-way latency of messages of di�erent sizes for Pupa and TCP. For small

Message size (bytes) 4 32 64 128 256 512 1024 1436

1. Sender end delay 77 89 93 95 102 109 126 140

2. Receiver end delay 101 106 122 126 119 129 147 165

3. Transimission & DMA 20 23 26 32 47 80 137 193

4. Pupa one way delay 198 208 241 253 268 318 410 492

5. TCP one way delay 405 411 422 438 451 482 564 645

Table 1: Breakdown of one-way latency for messages of di�erent sizes in Pupa and its comparison with TCP

latencies with the NO DELAY option. Message sizes are in bytes and times are in �secs.

messages Pupa 's latency is less than half of TCP's latencies1. Table 1 also presents the breakdown of Pupa
latencies into three main components, viz., the sender side delay, the receiver side delay and the transmission
and DMA overhead. The sender side delay refers to the time between the user making a Pupa library call to
send a message and the device driver handing the packet containing the message over to the network card.
The receiver side delay represents the time from the invocation of the Ethernet device driver at the receiver
until the data in the packet is available to the user program. The time listed under transmission and DMA

includes the time to transmit the message, the propagation delay, the time to DMA the packet into memory
at the receiver, the time taken by the Ethernet card at the receiver to interrupt the CPU, the context switch
overhead and the time to invoke the interrupt handler. The total one-way delay was computed as half of
the measured round-trip delay. The sender end delay and the receiver end delay were measured along the
message transfer path as the messages traversed it. The transmission and DMA time was computed as the
rest of the one-way delay not accounted for by the sender end delay and the receiver end delay.

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400

O
ne

 w
ay

 la
te

nc
y

in
 m

ic
ro

se
co

nd
s

Message size in bytes

Pupa
TCP

Figure 3: Pupa and TCP one-way latencies as functions of message size.

The transmission and DMA component is miniscule for small messages. However, it becomes the domi-
nant component for larger messages. As a result, use of faster networks and faster memory buses is expected
to reduce the latencies of large messages. However, it will have only a small impact on the latencies seen by
smaller messages. The software overhead at the two ends is signi�cant for both small and large messages.
Use of faster processors will reduce the software overhead and bene�t both small and large messages equally.
Since the transmission and DMA component is common to both Pupa and TCP, the di�erence between the
latencies in the two cases comes from the software overheads at the two ends. Consequently, faster networks

1The numbers for TCP connections were obtained with the TCP NODELAY option on. The TCP NODELAY option

disables the Nagle's optimization. Nagle's optimization makes TCP wait for a minimum number of bytes to be available in the

send queue before attempting to transmit.

are going to increase the gap between the relative latencies of the two system, whereas faster processors
will bring them closer. A graphical representation of the comparative Pupa and TCP latencies for various
message sizes is shown in Figure 3. We observe that initially the gap between the Pupa and TCP laten-
cies decreases as the message size increases. The main reason for this behavior is that as the message size
increases, Pupa adopts a more complicated bu�er management policy.

A detailed delay breakdown of one way message latency is shown in Table 2. to paragraph. The numbers
in parentheses are the latency components expressed as percentages of the total one way latency.

Message size (bytes) 4 32 64 128 256 512 1024 1436

1. Protocol processing 46 (23%) 46 (22%) 46 (19%) 46 (18%) 46 (17%) 46 (14%) 46 (11%) 46 (9%)
2. OS and driver overhead 53 (27%) 53 (25%) 53 (22%) 53 (21%) 59 (22%) 59(19%) 59 (14%) 59 (12%)
3. Transmission & DMA 20 (10%) 23 (11%) 26 (11%) 32 (13%) 47 (18%) 80 (25%) 137 (34%) 193 (39%)
4. Data copy 4 (2%) 9 (5%) 14 (6%) 20 (8%) 22 (8%) 40 (13%) 74 (18%) 101 (21%)
5. Bu�er and header management 75 (38%) 77 (37%) 102 (42%) 102 (40%) 94 (35%) 93 (29%) 94 (23%) 93 (19%)
6. Total 198 208 241 253 268 318 410 492

Table 2: A more high level breakdown of one way latency for messages of di�erent sizes in Pupa . Message

sizes are in bytes and times are in microseconds. Numbers in parentheses are the percentages of the latencies

accounted for by the corresponding components.

It is clear that OS and device driver overhead is one of most dominant costs for small messages. Even
for the largest message (1436 bytes), they account for as much as 12% of the total latency. As long as the
network of computers are based on o�-the-shelf hardware and are also expected to support general purpose
time shared computing, reducing this delay component is a di�cult problem. The overheads associated with
kernel-user boundary crossing, interrupt scheduling, device driver overheads etc. can not be eliminated. The
protocol processing overhead, which in itself is quite signi�cant for small messages, is less than the OS and
device driver overheads.

The largest part of the small message latency is contributed by the bu�er management and header
manipulation overhead. There is a signi�cant di�erence between the bu�er management overhead incurred
by small messages and that incurred by large messages. This di�erence supports the design decision of
keeping the bu�er management simple for small messages and by keeping the message bodies in primary
bu�ers. The bu�er management overhead for messages of sizes 64 bytes and 128 bytes is larger than those
for messages larger than 256 bytes. This is because in the current implementation 64 and 128 byte messages
are copied into the secondary bu�ers whereas larger messages are retained in the mbufs where they have
been put by the card.

Our measurements show that data copy overheads are insigni�cant for small messages but they account
for up to 21% of the total overhead for large messages. Currently our implementation requires a data copy
between user program bu�ers and the Pupa bu�ers at each end. The transmission and DMA overheads are
strictly dependent on hardware performance and communication software has no control over them. Our
measurements show that while they constitute only a minor part of the total overhead for small messages, they
become the most dominant overhead component for larger messages. Faster networks and faster memories
will bring this overhead down. But since CPU speed is expected to increase at a faster rate than network
and memory speed, this component is expected to continue to dominate the latency for larger messages.

3.2 Bandwidth Measurements

In this section we present the bandwidth characteristics of Pupa as compared to the bandwidth characteristics
of TCP. We have measured the maximum bandwidth achieved between a pair of user programs on a pair
of nodes communicating with each other using messages of varying sizes. For each message size, a constant
stream of 100000 messages was sent from a user program at one node to another user program at another
node. Total number of bytes transferred were divided by the time between the arrival of the �rst message
and the arrival of the last message at the receiver to compute the realized bandwidth. The TCP bandwidth
was measured using 16 Kbyte send and receive socket bu�ers which are the default parameters on our
system. Increasing the socket bu�er sizes did not have any impact on the realized bandwidth. There was
no other network activity while these experiments were conducted. Experiments with Pupa were conducted

in two modes. In one mode every message was individually acknowledged. In the other mode the receiver
sent acknowledgments only when the sender requested it or when the acknowledgment timer expired. Note
that since data communication was only in one direction there were no piggy-back acknowledgments. The
bandwidth achieved for each message size for three di�erent experiments are plotted in Figure 4. Pupa

can achieve up to 62Mbps bandwidth while operating in the sender-controlled acknowledgment mode. In
contrast, TCP can achieve only up to 44Mbps.

0

10

20

30

40

50

60

70

100 1000 10000

B
an

dw
id

th
 in

 m
eg

ab
its

 p
er

 s
ec

on
d

Message size in bytes (log scale)

Demand driven acknowledgment
Individual acknowledgment

TCP

Figure 4: Bandwidth as a function of message sizes.

As expected, the sustained bandwidth initially increases in all three cases with increasing message size.
As message size increases the �xed per-message overhead is amortized over a larger number of data bytes,
and thus leading to better performance. The sustained bandwidth saturates when the message size reaches 4
Kbytes, because larger messages are split into message fragments less than or equal to 1500 bytes (Ethernet
MTU) before transmission. The throughput di�erence between 2 Kbyte packets and 4 Kbyte packets in the
case of Pupa is much higher than that in the case of TCP. This is because Pupa is a message boundary
preserving system and it splits each message into sizes manageable by Ethernet individually. As a result
with 2 Kbyte messages every alternate Ethernet packet carries only a small amount of actual data. More
concretely, a 2 Kbyte message is sent in two Ethernet packets: one carries 1436 and the other 612 bytes. On
the other hand, TCP is a byte stream protocol and coalesces all pending messages together and thus can
pack as much real data into each Ethernet packet as available. Hence TCP bandwidth reaches close to peak
bandwidth with 2 Kbyte packets. However, even with TCP bandwidth being close to its peak, both Pupa

modes achieve better bandwidth than TCP with 2 Kbyte messages. The peak for Pupa is reached with a
message size of 4 Kbytes.

Pupa in both modes lags behind TCP when messages of size less than 256 bytes are used. This is because
TCP is a byte stream protocol and can coalesces all available data into one unit before sending. However,
Pupa is a message boundary preserving protocol and it must incur per message processing overhead for every
message sent even if some of the messages are transmitted in the same packet. As message size increases,
TCP loses this advantage and Pupa catches up with it.

The performance impact due to acknowledgments is shown through the performance di�erence between
the two Pupa modes. The Pupa mode with individual acknowledgments lags behind even TCP in perfor-
mance until message size becomes 1 Kbytes. This is because Pupa in the individual acknowledgment mode
sends more acknowledgments than TCP. But as the message size increases, Pupa sends fewer and fewer
acknowledgments whereas the number of acknowledgments for TCP remains more or less the same, and the
bandwidth gap closes down. Eventually Pupa with individual acknowledgments overtakes TCP because of
reduced per-message processing overhead.

3.3 Message Passing Programs Statistics on Pupa

In this subsection we present statistics gathered from production runs of four parallel program to examine the
validity of certain design decisions made during the development of Pupa and to investigate ways of further
improving Pupa . The main focus is on the performance tradeo� of FIFO bu�er management, optimistic
ow control, and sender-controlled acknowledgement.

The four programs were Laplace equation solver (LES), Gaussian Elimination (GEL), Long range particle
dynamics simulation (LRS), and Short range particle dynamics simulation (SRS). They are running on a 10-
node Pupa cluster. The results of these measurements have been presented in Table 3. The communication
statistics presented here are approximate as they were extracted from the kernel just before the termination
of the programs when the connections were not yet closed.

Program LES LRS SRS GEL

Comm. bu�er size 64K 48K 64K 48K 64K 48K 64K 48K

1. Packets sent 91008 91755 76771 105371 258176 261659 448811 492081

2. Packets lost 0 0 5 33 4 10 91 150

3. Ack packets sent 29173 29921 35434 61470 63115 66242 209998 249863

4. Ack packets lost 0 0 5 9 4 8 26 53

5. Total valid acks 32590 30198 16593 19888 77964 77443 165779 171804

6. Total valid nacks 0 0 11 23 35 119 486 578

7. Messages sent 61557 61557 38377 38389 194742 194846 231704 231721

8. Messages rexmitted 0 0 20 32 104 156 617 709

9. Messages received 75130 75130 41145 41153 210153 210220 369819 368908

10. Overow count 0 0 0 0 0 0 0 0

11. Out-of-order count 0 0 15 23 92 139 541 615

12. Message in primary 28120 28120 4120 4120 23161 23131 202343 201358

13. Message in secondary 0 0 0 0 129291 129167 14390 14390

14. Message in mbuf 47010 47010 37010 37010 57659 57783 151106 151106

Table 3: Communication statistics for the four parallel programs.

3.3.1 Lost Packets and Acknowledgments

First we ran the programs with the default communication system parameters. The measurements from these
runs are presented in the �rst two columns for each program. The �rst four rows in the table present statistics
about the number of packets put on the network and the number of packets carrying only acknowledgments.
The assumption about packets not getting lost in the network is validated, at least for these applications.
Among the packets that are lost, the fraction of acknowledgment packets is rather high. Despite implementing
a sender-controlled acknowledgment scheme, the number of packets carrying only acknowledgments is still
quite high. In the worst case (the LRS application) half of the packets carry only acknowledgments, and
in the best case (the SRS application) one fourth of the packets carry only acknowledgments. The large
number of acknowledgments are one of the reasons for the dropped packets due to excessive collisions on the
Ethernet.

The cause for this behavior is that the secondary send bu�er pool of 64 KBytes at each node is not
large enough to accommodate outgoing messages destined to all other nodes. Consequently, this bu�er is
always close to overow and the senders keep on sending acknowledgment requests to the receivers. This
explains why the fraction of packets carrying only acknowledgments is the highest for the LRS application,
since in this application every node exchanges its entire data set with every other node in every time step.
The kernel within which Pupa is implemented limits the size of the memory regions that are mapped to
both user space and kernel space to be 64 KBytes. To test this above conjecture, we changed the secondary
send bu�er pool to 48 KBytes, and re-run the experiments. The measurements for these runs have been
reported in the second of the two columns in Table 3. The number of lost packets and the total number of
acknowledgment packets have indeed increased, thus con�rming the theory that small secondary send bu�er
pool is the culprit of excessive acknowledgement tra�c.

3.3.2 Bu�er Overows and Out-of-order Arrivals

Rows 7-11 in Table 3 present statistics about the number of messages sent and received, the number of
messages retransmitted and the number of messages that were rejected at the receiver due to either bu�er
overow or out-of-order arrival. The number of messages received is greater than the number of messages
sent in all runs because some of the messages are multicast. We note that bu�er overow never occurred for
any of the four programs � thus supporting the the use of optimistic ow control as a default.

There were out-of-order arrivals. However, the messages arriving out-of-order were less than 0.2% of
the total number of messages in all runs. Messages arrive out-of-order if a previous message was lost in the
network or if messages that have already reached the receiver are retransmitted due to a lost acknowledgment.
If the total number of acknowledgments are reduced by using larger secondary send bu�er pool � thus
reducing the collisions on the network � the number of out-of-order message arrivals should be further
reduced.

4 Conclusion

This paper presents the design and implementation details of Pupa, and the results of a comprehensive
performance study on an operational Pupa prototype and their analysis. Despite the use of o�-the-shelf
networking hardware and the constraint that Pupa has to co-exist with existing communication systems, we
have shown that Pupa is at least twice as fast as TCP/IP in latency and 1.5 times better in throughput for
large message transfers.

The Pupa prototype has been operational for over a year, and we are porting it to a 16-node PentiumPro-
200 MHz cluster using a Fast Ethernet switch as the underlying interconnection fabric. Two signi�cant
systems have been developed on top of Pupa. One is a compiler-directed distributed shared virtual memory
system called Locust [18], which exploits the exibility of Pupa's bu�er organization to match the need of a
software-controlled cache consistency protocol. The other is a parallel multimedia index server called PAMIS

[6], which is a straightforward message passing program that achieves a linear speedup on the Pupa cluster.
The experience we had with these two applications and other message passing programs developed on Pupa

is that Pupa is surprisingly robust, and delivers a consistently good communication performance close to the
micro-benchmarking results as reported in the Performance section.

Acknowledgement

This research is supported by an NSF Career Award MIP-9502067, NSF MIP-9710622, NSF IRI-9711635,
and a contract 95F138600000 from Community Management Sta�'s Massive Digital Data System Program.

References

[1] Anindya Basu, Vineet Buch, Werner Vogels, and Thorsten von Eicken. U-Net: A user-level network
interface for parallel and distributed computing. In Proc. of the 15th ACM Symposium on Operating

Systems Principles, December 1995.

[2] Donald Becker, Thomas Sterling, Daniel Savarese, John Dorband, Udaya Ranawake, and Charles Packer.
Beowulf: A parallel workstation for scienti�c computation. In Proceedings of International Conference

on Parallel Processing, 1995.

[3] Marshall Kirk McKuisck Keith Bostic, Michael J Karels, and John Quarterman. The Design and

Implementation of the 4.4BSD UNIX Operating System. Addison-Wesley, 1996.

[4] Andrew Chen, Vijay Karamcheti, and John Plevyak. The Concert system - compiler and runtime
support for e�cient �ne-grained concurrent object-oriented programs. Technical Report UIUCDCS-R-
93-815, Department of Computer Science : University of Illinois at Urbana, June 1993.

[5] T. Chiueh and M. Verma. A compiler-directed distributed shared memory system. In Pro-

ceedings of the 9th International Conference on SuperComputing, July 1995. Also available at
http://www.cs.sunysb.edu/�manish/locust.

[6] Tzi cker Chiueh, Dimitris Margaritis, and Srinidhi Varadarajan. Design and implementation of a parallel
multimedia index server. In Proceedings of Visual 97 Conference, December 1997.

[7] David Clark, Van Jacobson, John Romkey, and Howard Salwen. An analysis of TCP processing overhead.
IEEE Communications Magazine, pages 23{39, June 1989.

[8] FreeBSD Documentation. http://www.freebsd.org.

[9] Vijay Karamcheti and Andrew Chen. Software overhead in messaging layers: Where does the time
go? In Proceedings of the Sixth Symposium on Architectural support for Programming Languages and

Operating Systems, 1994.

[10] Vijay Karamcheti and Andrew Chien. Do faster routers imply faster communication? In Proceedings

of the Parallel Computer Routing and Communication Workshop, pages 1{15, 1994.

[11] Jonathan Kay and Joseph Pasquale. A performance analysis of TCP/IP and UDP/IP networking
software for the DECstation 5000. Technical report, Department of Computer Science and Engineering
: University of California at San Diego, 1992.

[12] Samuel Le�er, Marshall Kirk McKuisck, Michael Karels, and John Quarterman. The Design and

Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, 1989.

[13] R. Martin. HPAM: An active message layer for a network of HP workstations. In Hot Interconnects II,
August 1994.

[14] Scott Pakin, Maurio Lauria, and Andrew Chien. High performance messaging on workstations: Illinois
fast messages (FM) for myrinet. In Proceedings of Supercomputing, 1995.

[15] Robert D Russell and Philip J Hatcher. E�cient kernel support for reliable communication. Technical
Report http://www.cs.unh.edu/Personal/pjh.html, University of New Hampshire.

[16] Mark Swanson and Leigh Stoller. Low latency workstation cluster communications using sender-based
protocols. Technical Report UUCS-96-001, Department of Computer Science: University of Utah, 1996.

[17] Chandramohan A. Thekkath, Henry M. Levy, and Edward D. Lazowska. Separating data and con-
trol transfer in distributed operating systems. In Proceedings of the 6th International Conference on

Architectural Support for Programming Languages and Operating Systems, October 1994.

[18] M. Verma. A Compiler-Directed Shared Memory System. PhD thesis, Computer Science Department,
State University of New York at
Stony Brook,, ECSL-TR-33, ftp://ftp.cs.sunysb.edu/Pub/TechReports/chiueh/TR33.ps.Z, December
1996.

[19] Matt Welsh, Anindya Basu, and Thorsten von Eicken. Low-latency communication over fast ethernet.
In Proceedings of Euro-Par, pages 27{29, August 1996.

