
Clustering and Reassignment-based Mapping Strategy for
Message-Passing Architectures

M.A. Senar, A. Ripoll, A. Cortés and E. Luque
Departament d’Informàtica

Unitat d’Arquitectura d’Ordinadors i Sistemes Operatius
Universitat Autònoma de Barcelona

08193 - Bellaterra (Barcelona), SPAIN
e-mail: iinfd@cc.uab.es

Abstract1

A fundamental issue affecting the performance of a
parallel program is the assignment of tasks to processors
in order to get the minimum completion time. In this
paper, we present a compilation-time two-stage mapping
strategy (denoted as CREMA) used for mapping arbitrary
programs (modeled as TIG graphs) onto message-passing
parallel systems with any architecture. In contrast to most
of the other approaches found in the literature, CREMA
is not tied to any particular architecture or any specific
algorithm. The first stage is based on task clustering and
task reassignment algorithms that contract the original
task graph. The second stage takes the contracted graph
and tries to successfully match the physical properties of
the target system. It has been evaluated for a wide range
of both regular and irregular graphs that correspond to
some well-known real applications. The results show that
CREMA provides a good trade-off between mapping
quality and computational complexity.

Keywords: Mapping problem; Task allocation; Task
assignment; Graph partitioning; Clustering Heuristics.

1. Introduction

The problem of assigning each task of a parallel
program to processors of a parallel system has a major
impact on the resulting performance. This problem arises
in all areas of parallel and distributed computation, where
programs are decomposed into tasks or processes which
must be assigned to processors for execution. In many
cases where persistent applications are used (applications
that will be used without modification for long periods of
time like those in embedded systems), a suitable amount

1 This work has been supported by CICYT under contract TIC 95-0868

of information on the program behavior can be deduced a
priori and, therefore, the user or the system (compiler)
can exert explicit control over the assignment of each
task. This static assignment needs only to be performed
once and it does not introduce any run-time overheads.

In this paper we present a compilation-time two-stage
mapping strategy called CREMA (Clustering-and-
REassignment based Mapping Algorithm). CREMA can
be used for mapping arbitrary parallel programs onto a
message-passing parallel system with any architecture. In
our approach, parallel programs are represented as a
collection of tasks that can be modeled by an undirected
graph (called Task Interaction Graph: TIG). In contrast to
most of the other strategies found in the literature [1][2],
the proposed strategy is not tied to any particular
architecture or any specific algorithm.

The paper is organized as follows. Section 2 describes
the models adopted in our work and formulates the
mapping problem considered in CREMA. Section 3
presents a detailed description of the proposed mapping
strategy. Section 4 presents the experimental results.
Finally, section 5 summarizes the main contributions of
this work.

2. Problem formulation

In the TIG model, Gp = {Np, Ep} is an undirected
graph where nodes, ti ∈ Np, correspond to parallel tasks
and edges, vij ∈ Ep, correspond to intertask
communication actions [3]. In this model, temporal
dependencies in the execution of tasks are not explicitly
addressed: all the tasks are considered simultaneously
executable and communications can take place at any
time during the computation.

Weights may be associated with nodes and edges. The
weight wi of each node ti describes the computational cost
of task ti and the weight ci,j of each edge vi,j describes the
communication cost between the tasks ti and tj. For this

IPPS/SPDP 1998
 1063-7133/98 $10.00 (c) 1998 IEEE

study we assume that the information about the
computation and communication costs are somehow
available and that these costs are expressible in some
common unit of measurement.

Parallel architectures with a direct interconnection
network are usually described by an undirected connected
graph Ga = {Na, Ea}, where each node pi ∈ Na denotes a
processor and each edge ei,j ∈ Ea denotes a bi-directional
physical communication link between two processors. For
such architectures, a distance function d(pi,pj) can be
defined for all pairs of processors that denotes the
communication cost between processor pi and pj. This cost
is considered to be the number of links that are traversed
by messages exchanged between pi and pj. Additionally,
we assume that the communication cost between two tasks
assigned to the same processor is negligible.

The objective in mapping a TIG graph to a Ga graph is
the minimization of the expected execution time of the
parallel program on the target architecture. Thus the
mapping problem can be seen as an optimization problem
by defining a cost function, cost_map, that is directly
related to the execution time and must be minimized.

We use a minimax cost function, where the cost
incurred by each processor (computation cost +
communication cost) for a certain mapping f is estimated,
and the maximum cost between all processors is to be
minimized. The cost of each processor pt (cost (pt)) is the
total cost due to computation and communication of all
tasks mapped onto it, and is defined as:

()
()

() ()()
()

()

cost pt = +
= =

≠

∑ ∑w c d f t f ti
t f t p

i j i j
t f t p

t f t p
i i t i i t

j j t

|
,

| ,

|

* ,

f(ti) being the processor to which ti is mapped and
d(f(ti), f(tj)) denotes the distance between processors to
which ti and tj are mapped respectively. This cost function
assumes that processors lack special hardware required
for a maximum overlap between communication and
computation. The minimax cost function used to evaluate
the quality of a mapping instance f is:

()()cost cost_ ()minimax f max p
i

i=
∀

According to the above definitions, the mapping
problem is defined as follows. Given a TIG graph Gp =
{N p, Ep} and a parallel architecture Ga = {Na, Ea}, the
question is to find a mapping function f: Gp → Ga which
assigns each node of the graph Gp to a unique node of the
graph Ga, and minimizes cost_minimax(f).

3. Clustering and REassignment based
Mapping Algorithm (CREMA)

Our approach mapping is achieved by using a two-
stage method (see figure 1):

Contraction of the task graph to a smaller graph
(when the number of tasks exceeds the number of
processors),

Physical mapping of the contracted graph to K
physical processors.

Contraction reduces the original task graph by means
of a clustering step followed by a reassignment step. As a
result of the contraction stage, the task graph is reduced to
a set of Q clusters (Q ≤ K, K being the number of
processors). Physical mapping assigns each cluster on one
processor in three steps: first the cluster graph is
embedded on the processor graph; then, a cluster
reassignment step follows in order to map intensively
communicating clusters closely to each other, i.e. trying to
match intensive communications (thick lines in figure 1)
with architecture links; finally, individual tasks in each
cluster are also reassigned to additionally improve the
cost of the final mapping (task reassignment step). We
describe our algorithms for each stage below.

CONTRACTION

PHYSICAL
 MAPPING

EMBEDDING CLUSTER
EXCHANGE

TASK
REASSIGNMENT

Task Graph Architecture Graph

Contracted GraphCLUSTERING TASK
REASSIGNMENT

Figure 1. CREMA mapping strategy overview

3.1. Contraction

Contraction is defined as a mapping of tasks onto
clusters, i. e., all tasks assigned in a cluster will execute in
the same processor in the target architecture. Our
contraction stage has been designed as a mixed strategy,
therefore, it consists of two steps: a greedy algorithm,
based in clustering, followed by an iterative algorithm,
based on task reassignment.

In general, mixed heuristics that appear in the
literature use either a greedy strategy that is too simple or
that do not always take into account the graph
connectivity in their decisions. These characteristics are
detrimental to the final assignments found by these
strategies because their results are far from optimum or
they have to spend a lot of time in the iterative phase. Our
clustering algorithm (CA) was designed to allow a
gradual reduction of those edges with the biggest
communication cost while, according to the minimax cost
function, keeping the obtained clusters balanced.

Step 1: Clustering

This initial step assumes that each task is its own
cluster. At each step, the algorithm reduces by one the
number of clusters by merging two of them. This greedy
process could end either when the number of clusters
obtained is equal to the number of processors or when the
number of tasks is less than the number of processors. A
merging operation implies zeroing an edge cost
connecting two clusters, and a zeroing is accepted as long
as the cost of the most loaded cluster is reduced. When
the most loaded cluster does not have such an edge, then
the edge chosen to be zeroed is the one that generates a
new cluster with minimum cost. The algorithm is able to
reduce the original graph in such a way that useless
parallelism exhibited by the application is removed. In
that case, the number of final clusters could be less than
the number of processors. Therefore, clustering steps are
performed while the cost function (cost_minimax(f)) is
further reduced at every step.

Step 2: Reassignment

After the clustering step, a reassignment algorithm will
refine the allocation already found. This algorithm looks
for the most loaded cluster and tries to shift individual
tasks from it to another cluster, in such a way that its
work-load is reduced and, as a consequence, the cost of
mapping is also reduced. This process is repeated until no
improvement is achieved in minimizing the load of the
most loaded cluster. When shifting tasks, two different
strategies have been followed: the first one (denoted as

Clustering and Reassignment by Movements: CRM) only
performs individual movements of tasks between clusters,
and the second one (denoted as Clustering and
Reassignment by Movements and Exchanges: CRME)
also exchanges pairs of tasks between different clusters.
The CRME algorithm works by iterating a sequence of
task movements followed by an iteration of task
exchanges. This sequence of movements and exchanges is
performed until no improvement is obtained in the cost
function.

Complexity of the clustering and the reassignment
algorithms are respectively O(NlogM) and O(N2), N being
the number of nodes in the graph and M being the
number of edges. A detailed description of the algorithms
and their complexity can be found in [4].

3. 2. Physical mapping

This stage is required when processors are not
completely connected (for instance, in architectures such
as hypercubes or meshes) because an increase of the cost
appears due to communications across some kind of direct
network. At this stage, we have Q clusters (or virtual
processors) and K physical processors. Three steps are
followed to achieve the physical mapping.

Step 1: Cluster Embedding (CE)

First, there is an embedding step that uses a greedy
algorithm to place highly communicating clusters on
adjacent neighbors in the architecture graph. Figure 2
shows a high-level description of the embedding
algorithm. Given a contracted graph, the embedding
algorithm first maps the cluster with the biggest
communication volume. Then it constructs a list of all the
edges of that cluster sorted by weight, it takes the first
edge in the list and assigns the cluster connected to the
other end point. The cluster is assigned to the closest free
processor. Once the cluster is assigned, its edges are
included in the sorted list of edges and, again, the first
edge in the list is picked up. The algorithm ends when the
list of edges is empty, i. e., all the clusters have been
assigned. Every cluster is mapped with a complexity
O(K), K being the number of processors. As the number
of clusters is equal to K, the overall complexity of the
embedding algorithm is O(K2).

The OREGAMI mapping tool [5] is an example of
where physical mapping is achieved by means only of an
embedding algorithm. However, OREGAMIS’s
embedding algorithm may assign nodes randomly at some
steps. This situation never occurs in our strategy because
our algorithm always tries to assign a node at each step as
closely as possible to the rest of nodes already assigned.

Figure 2. Cluster Embedding (CE) algorithm

Step 2: Cluster Reassignment (CR)

Once all the clusters are assigned, a second step is
followed. This step is based on an iterative reassignment
algorithm that is a modified version of the Bokhari’s
heuristic algorithm [6]. In contrast to Bokhari’s original
formulation, our algorithm takes into account the
communication of each edge and does not use
probabilistic jumps to skip local minima. Therefore, the
number of iterations done by our algorithm is
significantly reduced.

This step first sorts all the clusters according to their
communication volume and then it tries to reduce the
global communication cost (see figure 3). At each step, it
picks up the first cluster in the list as a candidate cluster.
Then, it searches among all the other clusters to find the
one (called max_cluster) that will provide a maximum
reduction of the global communication cost when the
candidate cluster and max_cluster are exchanged. When
no improvement is achieved by exchanging the first
cluster in the list, then the algorithm scans the list until a
candidate cluster is found that produces a secondary
exchange which also reduces the global communication
cost. The algorithm ends when there is no exchange that
reduces the global communication cost.

One cluster exchange is found in the inner loop with a
worst case complexity of O(K2). Therefore, if we assume
that the total number of cluster exchanges performed is
bound by a constant number of times, K, (which is
generally the case from experimental observations), the
time complexity of the CR algorithm is O(K3).

Figure 3. Cluster Reassignment (CR) algorithm

PYRROS [7] is a mapping tool in which physical
mapping is achieved by means of a reassignment
algorithm alone, and which also uses a modified version
of the Bokhari’s algorithm. The version of PYRROS
reduces the complexity of the algorithm by fixing the
number of iterations, but it still needs to start from a
random initial allocation. In our approach, the
reassignment algorithm reduces the number of iterations
because it starts from a rather good initial mapping
(coming from the embedding step) instead of an arbitrary
initial mapping. Moreover, the final mapping is further
improved by the task reassignment step (see step 3).
Therefore, the quality of the mappings obtained in our

Edge_list = ∅
Let Q0 be the cluster with the biggest

communication volume
Map Q0 to P0

For all edges vi,j of Q0 do
 Edge_list = Edge_list + { vi,.j}
While Edge_list ≠ ∅ do {
 Let vj,k be the biggest edge in Edge_list
 If Qk is not mapped then c_candidate = Qk

 else If Qj is not mapped then
 c_candidate = Qj
 Edge_list = Edge_list - {vj,k}
 If c_candidate ≠ NULL then {
 min_cost = ∞
 For all procesors pq not used {
 cost = evaluate communication cost
 of mapping c_candidate onto pq

 If (cost < min_cost) then {
 p_candidate = pq

 min_cost = cost
 }
 }
 Map c_candidate onto p_candidate
 For all edges vi,j of c_candidate do

 Edge_list = edge_list + {vi,j}
 }

Let f be the original mapping
Sort all the clusters in increasing order of

communication volume
Let global_comm be the sum of all communication

volumes
Let c_candidate be the first cluster in the list
End = FALSE
Do {
 best-cost = global_comm
 For all processors pq do {

cost-exchange = evaluate communication cost
of mapping when exchanging c_candidate and
the cluster of pq

 If (cost_exchange < best_cost) then {
 max_cluster = pq
 best_cost = cost_exchange
}

 If (best_cost < global_cost) then {
 Modify the current mapping f by

 exchanging max_cluster and c_candidate
 global_comm = best_cost
 c_candidate = first cluster in the list
 }
 else {

 c_candidate = next cluster in the list
 If (c_candidate = = NULL) then

 end = TRUE
 }

 }
}
while not (End)

approach will be better than those obtained using an
embedding algorithm alone, or a reassignment algorithm
alone, and the overall complexity will still be dominated
by the complexity of the contraction stage.

Step 3: Task Reassignment (TR)

The last step in the physical mapping stage is a task
reassignment algorithm similar to the reassignment
algorithm described in the contraction stage. In contrast
to the two previous steps that work with entire clusters,
this algorithm works with individual tasks within each
cluster and it tries to move them from the most loaded
cluster to another cluster. With these movements the
algorithm looks for a reduction in the cost of the most
loaded cluster and, therefore, a reduction of the cost of the
mapping. This algorithm is similar to that followed at
CRM that can be found in [4]. As in the contraction stage,
this task reassignment algorithm has a time complexity of
O(N2).

4. Experimental study

A set of experiments were developed to evaluate the
performance obtained by our CREMA strategy. The
evaluation was performed by considering several graphs
of different structures, sizes and granularities. In these
experiments we used regular and irregular task graphs.

The set of regular graphs corresponds to regular
structures (meshes, trees and rings) that usually appear in
real parallel applications. The number of tasks of these
TIG graphs ranged from 255 to 500 nodes. Moreover, we
introduced a parameter CCR (Computation
Communication Ratio) in order to analyze the algorithm
performances under different ratios that all the nodes of a
graph exhibit. Our simulations have been conducted for
two CCR values: CCR = [5, 15] characterizing
computation intensive applications (CR: CoaRse grain
graphs) and CCR = [0.8, 1.2] characterizing balanced
communication and computation applications (MD:
MeDium grain graphs). The node and edge weights were
uniformly distributed over [5,500].

The irregular graphs were obtained from a set of 9
Directed Acyclic Graphs (DAGs) that correspond to real
applications (systolic matrix multiplication, Gauss back-
substitution, Poisson’s equation, etc.). The DAG sizes
ranged from 365 to 3000 nodes and they were
transformed to Task Interaction Graphs (TIGs) applying
the DSC (Dominant Sequence Clustering) algorithm [7].
According to the previous definition, all irregular TIG
graphs belong to the category of medium grain graphs.
Both regular and irregular task graphs were mapped onto
8, 16 and 32 processors.

4.1. Evaluation of the contraction stage

We have evaluated the effectiveness of our contraction
stage by comparing CA, CRM and CRME algorithms to
other contraction strategies from the literature. The
strategies used in the comparison cover the range of
different complexity categories. There were two simple
greedy algorithms: LPTF (Largest Processing Time First)
and LGCF (Largest Global Cost First) with low
complexity [8]; two iterative heuristics: SA (Simulated
Annealing) and TS (Tabu Search) with the highest
complexity [8]; and a mixed heuristic: EDTR (Even
Distribution and Task Reassignment [9]) with an
intermediate complexity between the other two.

The LPTF strategy obtained the worst allocations in all
the examples (its mappings had the biggest costs).
Therefore, we used the results of LPTF as a reference
point to evaluate the improvement in the cost function
achieved by the other strategies.

Figure 4 summarizes the experimental study by
showing graphically the overall improvement achieved by
each heuristic versus LPTF (TLPTF/TP, TLPTF being the
mapping cost for LPTF and TP being the mapping cost for
the other heuristics), when mapping both regular and
irregular graphs. The average improvement ratio of
CRME and CRM mappings over LPTF mappings was,
respectively, 1.9 and 1.89 for regular graphs, and 1.46
and 1.41 for irregular. Compared to the best iterative
heuristic (SA) and to the mixed heuristic (EDTR), SA
obtained an improvement of 1.82 for regular graphs and
1.45 for irregular graphs, and EDTR obtained an
improvement, respectively, of 1.44 and 1.41. A more
detailed description of the algorithms of all the strategies
used in this comparison and the experimental framework
for performance assessment could be found in [4].

Additionally, table I shows the average running times (t
column) of all these strategies. The σN, Max and min
columns show, respectively, the standard deviation from
the average, the maximum time and the minimum time
measured for a given strategy. As is seen in Table I, both
CRM and CRME algorithms are faster than SA, TS and
EDTR, CRM being slightly slower than LPTF and LGCF.

As CRM provides the best trade-off between solution
quality and time complexity, it is the contraction
algorithm used in our global mapping strategy CREMA.

4.2. Evaluation of the physical mapping stage

To evaluate the effect of the physical mapping stage on
the mapping cost we used the same set of regular and
irregular graphs mentioned in the contraction stage. Once
they were contracted by the CRM algorithm, the
contracted graph passed through the three steps

mentioned above. Graphs were mapped onto three
different topologies: hypercube, wrap-around mesh and
ring. The number of processors was 8, 16 and 32.

For each step of the physical mapping we evaluated the
mapping cost achieved at that step and we compared it
with the cost obtained by the CRME algorithm. The
contraction result of the CRME algorithm was taken as a
reference cost and we evaluated the cost increase due to
the physical mapping stage. In that sense, the mapping
cost of the contracted graph is the cost for mapping the
task graph onto an “ideal” physical architecture. When we
have an actual architecture the mapping cost will be
increased once the contracted graph is mapped onto it.

Table II summarizes the results and shows the average
increase of the cost function obtained by the three steps.
These values have been computed using TP/TCRME, where
TP is the mapping cost found by each heuristic and TCRME

is the mapping cost for the CRME heuristic. The
acronyms CE, CR and TR denote respectively the three
steps followed at the physical mapping stage, namely
Cluster Embedding, Cluster Reassignment and Task
Reassignment. The AVG row gives the average increase
for all the regular graphs of a given category.

It can be observed that the increase of the mapping cost
is not very significant for regular graphs mapped to either
hypercubes or meshes. Additionally, for coarse grain
graphs, results tend to be slightly better than for medium

grain graphs because communication costs do not have
much influence on the cost function. On the one hand,
when medium grain graphs are contracted, the
computation and the communication cost terms in the cost
function are similar. On the other hand, when coarse
grain graphs are contracted, the computation cost term for
each cluster is relatively larger than its communication
cost term. As a consequence, when the contracted graph is
mapped physically, the increase of the mapping cost will
be relatively larger in medium grain graphs than in coarse
grain graphs because computation costs remain the same
but communication costs are eventually multiplied by
distances bigger than one. The increase for irregular
graphs is also bigger than for regular graphs because the
number of edges of the contracted graph of the former is
significantly bigger than the number of edges of the
contracted graph of the latter. Table III shows the average
number of edges of both regular and irregular contracted
graphs (column N. edg.). It also shows the average
number of edges of the cluster that has the biggest number
of edges because we derive from our experiments that the
final cost depends directly on this value (column Max.).
Finally, ring architectures obtain the worst results because
they have a small number of links, and distances between
processors are large.

Additionally, table IV shows the average execution
times (AVG column) as well as the maximum execution

LGCF TS SA ED EDTR CA CRM CRME

irreg. graphs
reg. graphs

0,6

1,1

1,6

LGCF TS SA ED EDTR CA CRM CRME

irreg. graphs
reg. graphs

Fig. 4. Perfo rmance comparison of ma pping strategies versus LPTF

REGULAR GRAPHS IRREGULAR GRAPHS

t σN Max. min. t σN Max. min.

LPTF 0.1 0.04 0.2 0.1 0.1 0.02 0.2 0.1
LGCF 0.16 0.04 0.2 0.1 0.3 0.1 0.5 0.1

TS 46.2 78.4 517 4 749.3 861.2 3691 75
SA 2682.4 699.9 4784 1778 2513.9 864 4136 1237
ED 1.3 0.33 1.5 0.6 2.18 1.04 3.9 0.4

EDTR 23.6 39.9 285 0.9 18.5 39.6 188 1.9
CA 0.8 0.39 1.3 0.4 1.4 0.7 2.2 0.3

CRM 1.5 0.5 2.2 0.6 2.1 0.3 2.6 1.2
CRME 4.3 3.4 13.9 0.6 13.6 23.7 72.4 1.7

Table I. Average time (in seconds) spent by the mapping strategies

time (MAX column) for all the steps at the physical
mapping stage when graphs were mapped onto all the 32
processor architectures. In general, the time complexity of
all the steps is lower than the total time spent at the
contraction stage (always less than 1 second), the overall
complexity of CREMA being moderate.

Mapping heuristics for TIGs have been evaluated
traditionally by means of cost functions. However, they
are a simplification of the real situation because data
dependencies, message latencies and network contentions
are neglected. An additional set of experiments was
conducted in order to assess the existence of a reasonable
correlation between mapping costs and actual execution
times. Our experiments were based on the set of DAGs
mentioned above, which were simulated in the following
architectures: fully-interconnected, wrap-around mesh,
hypercube and ring, with 8, 16 and 32 processors.

A linear regression was evaluated between the set of
cost function values for each graph and the set of
execution times obtained in the simulation of the
execution of the corresponding graph. Strong correlations
were obtained for 8 of the 9 examples; only for one
example the correlation was moderate. These results
suggest that the TIG model without, however, considering
dynamic parameters, provides an acceptable estimation of
the execution time.

5. Conclusions

We have presented a new task assignment strategy
(CREMA) for solving the mapping problem in message-
passing parallel computers when parallel applications are
modeled by a Task Interaction Graph (TIG).

The experiment results confirm that the quality of
solutions obtained by our atrategy was similar or even
superior to those obtained by the other heuristics for both
regular and irregular task graphs. Moreover, a correlation
study between the actual execution times of parallel
applications and the values of their corresponding
mapping costs was also performed. In most of the
examples used, a strong correlation was obtained. If a new
model combining dependences and the TIG is used, the
applicability of the strategy can thereby be extended.

References

[1] B. Robic and B. Vilfan, “Improved schemes for mapping
arbitrary algorithms onto processor meshes”, Paralle
Computing, 22, (1996), pp. 701-724.

[2] S. Lor, H. Shen and P. Maheshwari, “Divide-and-conquer
mapping of parallel programs onto hypercube computers”,
J. of Systems Architecture, 43 (1997), pp. 373-390.

[3] M. G. Norman & P. Thanish, “Models of machines and
computation for mapping in multicomputers”. ACM
Computer Surveys, 25 (3) (1993), pp. 263-302.

[4] M. A. Senar et alter, “Performance comparison of strategies
for static mapping of parallel programs”, Lecture Notes in
Comp. Sci. (1225), Springer Verlag, (1997), pp. 575-587.

[5] V. M. Lo et alter, “OREGAMI: tools for mapping parallel
computations to architectures”, Int’l J. of Parallel
Programming, Vol. 20, no. 3, pp. 237-270, 1991.

[6] S. H. Bokhari, “On the mapping problem”, IEEE Trans on
Computers, Vol. C-30 No. 3, (1981), pp. 207-214.

[7] T. Yang and A. Gerasoulis, “PYRROS: Static task
scheduling and code generation for message pasing
multiprocessors”, Proc. 6th ACM Int’l Conf.
Supercomputing (ICS92), ACM Press, New York, N. Y.,
pp. 428-437, 1992.

[8] J.P. Kitajima et alter, “ANDES: Evaluating Mapping
Strategies with Synthetic Programs”, J. of Systems
Architecture, 42 (1996), pp. 351-365.

[9] Shen Shen Wu & D. Sweeting, “Heuristic algorithms for
task assignment and scheduling in a processor network”.
Parallel Computing 20 (1994), pp. 1-14.

Number of clusters

8 16 32

TIG N.edg. Max. N.edg. Max. N.edg. Max

Reg. 9,6 3,8 19,3 4,4 45,4 5,3
Irre. 16,9 6 46,4 10,6 124,6 12,9

Table III. Connectivity characteristics of
contracted graphs

Arquit. Graph Granul. CE CR TR

MD 1.29 1.22 1.15
HYPER. Reg. CR 1.96 1.06 1.05

AVG 1.18 1.14 1.1

Irreg. MD 1.49 1.48 1.4

MD 1.32 1.21 1.16
MESH Reg. CR 1.08 1.06 1.06

AVG 1.2 1.13 1.11

Irreg. MD 1.57 1.45 1.44

MD 2.24 1.83 1.61
RING Reg. CR 1.29 1.27 1.18

AVG 1.76 1.55 1.39

Irreg. MD 3.00 2.78 2.5

Table II. Average increase of mapping cost in
the physical mapping stage (T p/TCRME)

Regular Graphs Irregular Graphs

AVG MAX AVG MAX

CE 0.01 0.02 0.01 0.02
CR 0.29 1.41 0.34 0.77
TR 0.42 1.45 0.57 2.64

Table IV. Computation time (in seconds) for
physical mapping steps

