
Memory Space Representation
for

Heterogeneous Network Process Migration

Kasidit Chanchio Xian-He Sun
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803-4020

sun@bit.csc.lsu.edu http://www.csc.lsu.edu/˜scs/

Abstract

A major difficulty of heterogeneous process migration
is how to collect advanced dynamic data-structures, trans-
form them into machine independent form, and restor them
appropriately in a different hardware and software environ-
ment. In this study we introduce a data model, the Mem-
ory Space Representation (MSR) model, to recognize com-
plex data structures in program address spaces. Support-
ing mechanisms of the MSR model are also developed for
collecting program data structures and restoring them in a
heterogeneous environment. The MSR design has been im-
plemented under a prototype heterogeneous process migra-
tion environment. Pointer-intensive programs with function
and recursion calls are tested. Experimental results confirm
that the newly proposed design is feasible and effective for
heterogeneous network process migration.

1. Introduction

As network computing becomes an increasingly popular
choice for computing, network process migration has re-
ceived unprecedented attention recently. One driving force
behind process migration is its support for fault tolerance
(fault-driven): to migrate processes from the faulted ma-
chine to other machines when a fault is detected. An-
other driving force of process migration is performance
(performance-driven): to migrate processes from one ma-
chine to another for better performance. Load balance is
one of the motivations of performance-driven migrations. It
is known that process migration is a necessity for achiev-
ing a guaranteed high performance in a non-dedicated en-
vironment [1]. More recent research shows process migra-
tion is also efficient for utilizing idle machines for parallel
processing. Given a one-to-two ratio of needed and exist-

ing machines on the network, there are always enough idle
machines available for parallel processing. Moreover, the
mean idle-time of the machines is sufficiently long for har-
vesting parallel processing and compensating for the migra-
tion overhead [2]. Efficient process migration is recognized
as a critical issue for next generation network environments
[3], however, due to its complexity, currently there are no
solutions for efficient heterogeneous process migration.

Fundamentally, there are three steps to making existing
code migratable in a heterogeneous environment.

1. Identify the subset of language features which is
migration-safe,i.e. features which theoretically can be
carried across a network

2. Invent a methodology to transform migration-safe
code into a “migratable” format so that it can be mi-
grated at run-time

3. Develop mechanisms to migrate the “migratable” pro-
cess reliably and efficiently

Smith and Hutchinson [4] have identified the migration-
unsafe features of the C language. With the help of a com-
piler, most of the migration-unsafe features can be detected
and avoided. Chanchio and Sun have given the procedures
and data structures for transforming a high-level program
into a migratable format via a precompiler, which includes
the migration-point analysis, data analysis, and the inser-
tion of migration macros, etc. [5]. The focus of this study
is on the last step, mechanisms for carrying out migration
correctly and efficiently. We have developed the Memory
Space Representation model and its associated mechanisms
to support heterogeneous process migration. This concept
can be employed with applications written in any stack-
based programming languages with the presence of pointers
and dynamic data structures.

IPPS/SPDP 1998
 1063-7133/98 $10.00 (c) 1998 IEEE

2. Memory Space Representations

In our design, we model asnapshotof the program mem-
ory space as a graphG, defined byG = (V;E)whereV and
E is the set of vertices and edges respectively. It is called the
Memory Space Representation (MSR)graph. Each vertex
in the graph represents a memory block; whereas, each edge
represents a relationship between two memory blocks when
a memory block contains pointers, defined as addresses that
point to memory locations of any memory block node in the
MSR graph.

2.1. Representation of Memory Blocks

A memory block is a piece of memory allocated during
the execution of a program. It contains an object or an ar-
ray of objects of a particular type. Each memory block is
represented by a vertexv in the MSR graph. The following
terminology is used in our study.

� head(v) : the starting address of the memory blockv

� type(v) : type of the object stored in the memory
block.

� elem(v) : Number of objects of typetype(v) in the
memory block.

When we refer to the address of the memory block, we
mean any address within the memory block. Letaddr be
an address in the program memory space. The predicate
Address of(x; v) is true if and only ifhead(v) � x �

head(v) + ((unit size� elem(v)) whereunit size is the
size of an object of typetype(v).

The memory blocks can reside in different areas of the
program memory space. If a memory block is created in
the global data segment, it is called aglobal memory block.
If it is created in the heap segment by dynamic memory
allocation instruction, we name it theheap memory block.
In case the memory block resides in the activation area for a
functionf in the stack segment of the program, it is called
thelocal memory block of functionf .

2.1.1. Data Type of Memory Blocks

A memory block consists of one or more objects of a par-
ticular type. Each type describes a set of properties for the
same kind of data and associates a set of functions to ma-
nipulate the data objects. To support the data collection and
restoration during process migration, we need to provide
certain information as well as additional operations to ma-
nipulate data of a specific type stored in the memory block.

At compile-time, we assign a unique number, namely the
Type Identification (Tid)number, to every type to be used

during the execution of the program. The information of ev-
ery type in the program will be stored in theType Informa-
tion (TI) table. The saving and restoring functions will be
created as parts of the TI table. They are used to transform
the contents of the memory block to and from the machine-
independent information stream. The TI table along with
these functions are attached to the global declaration sec-
tion of the program source code so that they can be globally
accessed during the execution of the program. The TI table
is indexed by the Tid number. Detail description of the TI
table can be found in [6].

The saving and restoring functions are the type-specific
to be used during the memory block collection and restora-
tion. Once process migration is started on the source ma-
chine, the memory collecting macros will identify the mem-
ory blocks to be collected [6]. The saving function will
be invoked according to the type of the memory block. It
will encode the contents of the memory blocks to machine-
independent format and make them a part of the machine-
independent information stream for process migration. Af-
ter transmitting the information to the new machine, the
restoring function will extract the information for the mem-
ory block from the stream, decode it, and store the results in
the appropriate place within the memory space of the new
process.

In case the memory block does not contain any point-
ers, we can apply techniques to encode and decode con-
tents of a memory block to and from the XDR infor-
mation stream as described in [7] to construct the sav-
ing and restoring functions. On the other hand, in case
the memory block contains pointers, we have to use
functions save_pointer(pointer_content, tid) and
restore_pointer(tid) , where pointer_content
represents the memory address stored in a pointer andtid
is the Tid number of the pointer, to save and restore the
pointers, respectively.save_pointer will initiate the
traversal through the connected components of the MSR
graph in a depth-first search manner. It will examine the
memory block that the pointer points to and then invoke an
appropriate saving function stored in the TI table to save
the contents of the memory block. The visited memory
blocks will be marked so that they are not saved again.
On the other hand,restore_pointer will recursively
rebuild the memory blocks on the memory space of the
destination machine according to the information saved by
save_pointer .

2.1.2. Significant and Trivial Memory Block Nodes

In practice, keeping track of all the memory blocks is
quite expensive and unnecessary. Only the memory blocks
that are visible to multiple functions and those that are or
may be pointed to by any pointers during the execution

of the program are needed to be recorded. In the MSR
graph these recorded vertices are calledsignificantnodes;
whereas, the others are calledtrivial nodes. The signifi-
cant nodes and their properties will be recorded in the MSR
Lookup Table (MSRLT) data structures. We classify nodes
in the MSR graph into two types because during process mi-
gration the significant nodes can be collected and restored
multiple times due to their multiple references; while the
trivial nodes will be collected and restored only once via
their variable names or memory addresses. To prevent mul-
tiple copies of significant memory blocks from being trans-
mitted during process migration, we need to keep track of
the significant nodes so that the status of the nodes can be
checked. In case the memory block is a global or local
variable, we can verify whether it is significant or trivial
at compile time. The compiler will insert special instruc-
tions to the source code to register the significant memory
blocks to the MSRLT data structures. In case of the dy-
namically allocated memory block, we replace the memory
allocation instruction by the wrapper function which will
register information of the newly allocated memory block
to the MSRLT data structure at run-time. More details can
be found in [6].

2.1.3. MSRLT Data Structure

The MSRLT data structure is, first, used to keep infor-
mation of every significant memory block in the program
memory space. Second, it is used as the search index for the
saving function during data collection operation. Finally,
it provides each memory block a logical identification that
can be used for reference between two machines during pro-
cess migration. Figure 1 shows the structure of the MSRLT
Data Structure. The structure consists of two tables: the

...........

Global

Heap

main

xxxx

mem_stack[i]

mem_set[j]

Program Memory Space

memory block

MSRLT Data Structure

Figure 1. A Diagram shows the MSRLT Data
Structures.

mem_stack andmem_set tables. Themem_stack ta-
ble is a table that keeps track of the function calls in the

program activation record. A record of themem_stack ta-
ble consists of two fields: a pointer to amem_set table and
the number of records in the pointedmem_set table.

Themem_set table is used to store information of every
significant memory block of a data segment of the program
represented by a record in themem_stack table. Each
record in themem_set table consists of important informa-
tion including a pointer to the starting address of the mem-
ory block and amarking flagused to check if the memory
block has been visited during the memory collecting opera-
tion.

When the program starts its execution, the first three
records of themem_stack table will be created to keep
track of significant memory blocks of global variables,
heap memory, and local variables of the main function,
respectively. Then, whenever a function call is made, a
mem_stack record will be added to themem_stack table
in stack-like manner. If there are any significant local vari-
ables in the function, they will be added to themem_set
table of the lastmem_stack record. After the function
finishes its execution, themem_stack record as well as
its mem_set table will be destroyed. In case of memory
blocks in heap segment, the information of the memory
block allocated by the functionmalloc will be added to
themem_set table of themem_stack[1] record. They
will be deleted from themem_set table when thefree
operation is called.

Every significant memory block can be identified by a
pair of index of itsmem_stack and mem_set records.
This identification scheme will be used as a logical iden-
tification of the significant memory blocks across differ-
ent machines. Letv, stack index(v), andset index(v)
be a significant MSR node, the index of itsmem_stack
record, and the index of itsmem_set record, respec-
tively. The logical representation ofv is given by
(stack index(v); set index(v)).

2.2. Representation of Pointer

As stated in the beginning of this section, in our design,
each edge in the MSR graph can be represented by a pair of
source memory addresses: the memory address of a pointer
and the memory address of the object to which the pointer
refers. The format is shown in Figure 2. There are three
edges between nodesv1 andv2 in Figure 2. For example,
edgee1 can be represented in the form of(addr1; addr4)
whereaddr1 andaddr4 are addresses that satisfy the predi-
cateAddress of for nodev1 andv2, respectively.addr1 is
a pointer object that contains the addressaddr4 in its mem-
ory space. Therefore, givenaddr1 we always getaddr4 as
its content. By taking a closer look ate1, we can also write
it in the form of(addr1; head(v2) + (addr4 � head(v2))).
The addresshead(v2) is called thepointer head, and the

v1 v2

addr2

addr1
e1

e2

e3
addr3

addr4

addr5

addr6

e1 = (addr1, addr4),
e2 = (addr2, addr6),
e3 = (addr5, addr3).

Figure 2. A representation of pointer between
two nodes of the MSR graph.

number(addr4 � head(v2)) is called theabsolute pointer
offset.

The representation of a pointer in machine-independent
format consists of the machine-independent representations
of the pointer head and the pointer offset. According to
the definition of the significant memory block, the node
that is pointed to is always a significant node. Thus, its
properties are stored in the MSRLT data structure. From
the example in Figure 2, the logical identification ofv2
can be represented by(stack index(v2); set index(v2)).
We use this logical identification to represent the pointer
head in the machine-independent information stream for
process migration. To represent the offset of the pointer
in machine-independent format, we have to transform the
absolute pointer offset into a sequence of (component po-
sition, array element position) pairs. The component po-
sition is the order of the components in the memory space
of a structure to which the pointer refers; whereas, the array
element position is the index to the array element that has
the pointer pointing to its memory space. More details are
given in [6].

3. Implementation and Experimental Results

We have developed theMSR Manipulation (MSRM) li-
brary on top of the XDR routines [7] to translate com-
plex data structures such as user-defined types and point-
ers into a stream of machine-independent migration infor-
mation and vise versa. To verify the correctness of the
proposed model and appropriate algorithms, we have con-
ducted process migrations on three experimental programs
with different kinds of data structures and execution behav-
iors. These programs are thetestpointer, thelinpack bench-
mark, and thebitonic sortprograms. They are migration-
safe. The program analysis and annotated migration opera-
tions [5, 6] are applied them migratable in a heterogeneous
environment. Thetestpointeris a program which contains
various data structures, including pointer to integer, pointer
to array of 10 integers, pointer to array of 10 pointers to
integers, and a tree-like data structure. The linpack bench-
mark from netlib repository at ORNL [8] is a computational

intensive program with arrays of double and arrays of inte-
ger data structures. Pointers are used to pass parameters be-
tween functions. Finally, the bitonic sort program [9] was
tested. In this program, a binary tree is used to store ran-
domly generated integer numbers. Dynamic memory allo-
cation operations and recursions are used extensively in this
program.

In each experiment, we originally run the test program
on a DEC 5000/120 workstation running Ultrix and then mi-
grate the processes to a SUN Sparc 20 workstation running
Solaris 2.5, so the migration is truly heterogeneous. Both
machines are connected via a 10 Mbit/s Ethernet network.
Each machine has its own file system. All the test programs
were compiled with optimization usinggccon the Sparc 20
workstation and usingcc on the DEC workstation.

Every experiment is performed in two modes: the di-
rect network process migration and the process migration
through file systems. In case of network migration, migra-
tion operations will scan program’s data structures and keep
the machine-independent migration information in a buffer.
After that, the buffer will be sent over the network via the
TCP transmission protocol. On the destination machine,
migration operations will use the received information to
restore the execution state and data structures of the pro-
gram. Thus, we estimate the migration time (Migrate) by
summation of memory scan time (Scan), data transmission
time (Tx), and memory restoration time (Restore). On the
other hand, in the situation of migration through file sys-
tems, migration operations will scan the program’s memory
and write the migration information to a file. After that,
we will remotely copy the file to the destination machine
of process migration using thercp utility. Then, the new
process will read migration information from the file and
restore the data structure on the destination machine. The
migration time (Migrate) is the summation of memory scan
and write time (Scan&Write), remote copy time (Rcp), and
the file read and memory restoration time (Read&Restore).
The results of our experiments are shown in Table 1.

We have found that the outputs of the implementation
with migration and the implementation without migration
are identical, for any testing input and testing program. The
design and implementation are correct. By the diversity of
the test programs, the process migration approach should be
feasible for any migration-safe C code. Apparently, direct
network process migration is significant faster than migra-
tion through file systems as shown by the difference of their
migration time (Diff) in Table 1.

We have observed that, in the pointer-intensive program,
costs of saving and restoring the program’s data structure
can be significant. The more the number of memory blocks
and pointers, the more the overheads needed for saving
and restoring operations. During the saving operation the
MSRM routines have to search every memory block, thus

Network
Program test pointer Linpack bitonic
Tx Size 1,165,680 3,242,480 325,232 8,021,232 46,704 182,248
Scan 2.678 14.296 0.303 5.591 0.150 0.419
Tx 1.200 4.296 0.357 9.815 0.053 0.191
Restore 2.271 4.563 0.095 2.962 0.077 0.278
Migrate 6.150 23.181 0.756 18.368 0.280 0.889

File
Scan&Write 18.533 69.032 0.997 45.243 0.803 4.896
Rcp 15.4 20.3 11.9 39.1 10.6 11.5
Read&Restore 8.693 17.602 0.124 3.654 0.303 1.234
Migrate 42.626 106.934 13.220 87.998 11.707 17.631

Comparison
Diff 36.48 83.75 12.46 69.63 11.43 16.74
Speed Up 6.93 4.61 17.48 4.79 41.72 19.82

Table 1. Timing results of heterogeneous process migration in seconds.

the cost of memory scanning is high for pointer-intensive
programs. Also, during restoration many memory alloca-
tion operations are used to recreate the data structure. The
searching and dynamic allocation costs depend mostly on
the number of memory blocks and pointers among them.
On the other hand, the array-based program such as linpack
only needs a trivial amount of time to search for memory
blocks during the memory scanning operations since most
data are stored in local or global variables. At the receiv-
ing end of the migration, the migration information will be
copied into the reserved memory space of the new process.
We do not need dynamic memory allocation for the restora-
tion process of the linpack program.

4. Conclusion and Future Works

In this study, a memory space representation and its
associated mechanisms are presented for data collection
and restoration under a heterogeneous environment. A
graph model, namely the Memory Space Representation
(MSR) graph, is proposed to identify needed data in mem-
ory spaces. Memory blocks and relationships among mem-
ory addresses indicated by pointers are represented in the
form of nodes and edges in the MSR graph, respectively.
Analytical and experimental results show that the proposed
data collection and restoration method is correct, efficient,
and general. While the current implementation is for C code
only, the proposed memory space representation and mem-
ory allocation mechanisms are independent of C and can be
extended to other languages as well.

References

[1] S. Leutenegger and X.-H. Sun, “Distributed com-
puting feasibility in a non-dedicated homogeneous

distributed system,” inProceedings of Supercomput-
ing’93, pp. 143–152, 1993.

[2] A. Acharya, G. Edjlali, and J. Saltz, “The utility of ex-
ploiting idel workstations for parallel computing,” in
Proc. of SIGMETRICS/Performance Conf., pp. 225–
236, May 1996.

[3] A. S. Grimshaw, W. A. Wulf, and the Legion team,
“The Legion vision of a worldwide virtual computer,”
Communications ACM, vol. 40, no. 1, pp. 39–45, 1997.

[4] P. Smith and N. Hutchinson, “Heterogeneous process
migration : The TUI system,” Tech. Rep. 96-04, Uni-
versity of British Columbia, Department of Computer
Science, Feb. 1996.

[5] K. Chanchio and X.-H. Sun, “MpPVM: A software sys-
tem for non–dedicated heterogeneous computing,” in
Proceeding of 1996 International Conference on Par-
allel Processing, Aug. 1996.

[6] K. Chanchio and X.-H. Sun, “Data collection and
restoration for heterogeneous network process migra-
tion,” Tech. Rep. 97-017, Louisiana State University,
Department of Computer Science, 1997.

[7] J. Corbin, The Art of Distributed Applications.
Springer-Verlag, 1990.

[8] Available at http:://www.netlib.org.

[9] J. R. Anne Rogers, Martin C. Carlisle and L. Hendren,
“Supporting dynamic data structures on distributed
memory machines,”ACM Transactions on Program-
ming Languages and Systems, vol. 17, pp. 233–263,
Mar. 1995.

