
Efficient Barrier Synchronization Mechanism
for the BSP Model on Message-Passing Architectures

Jin-Soo Kim Soonhoi Ha Chu Shik Jhon

Department of Computer Engineering
Seoul National University

Seoul 151-742, KOREA
fjinsoo, sha, csjhon g@comp.snu.ac.kr

Abstract

TheBulk Synchronous Parallel(BSP) model of computa-
tion can be used to develop efficient and portable programs
for a range of machines and applications. However, the cost
of the barrier synchronization used in the BSP model is rel-
atively expensive for message-passing architectures. In this
paper, we relax the barrier synchronization constraint in
the BSP model for the efficient implementation on message-
passing architectures.

In our relaxed barrier synchronization, the synchroniza-
tion occurs at the time of accessing non-local data only be-
tween the producer and the consumer processors, eliminat-
ing the exchange of global information. From the experi-
mental evaluations on IBM SP2, we have observed that the
relaxed barrier synchronization reduces the total synchro-
nization time by 45.2% to 61.5% in FT, and 28.6% to 49.0%
in LU with 32 processors.

1. Introduction

TheBulk Synchronous Parallel(BSP) model of compu-
tation [8] was first proposed by Valiant as a bridging model
between hardware and software for general-purpose parallel
computation. Goudreauet.al. [3] have already shown that
the BSP model can be used to develop efficient and portable
programs for a range of machines and applications.

A BSP abstract machine consists of a collection of iden-
tical processors, each with local memory, connected by a
communication network. The computation is structured as a
sequence ofsupersteps, each followed by a barrier synchro-
nization. In each superstep, a processor performs a number
of local operations on data present in its local memory and
sends messages to other processors. A message sent from
one processor during a superstep is not visible to the desti-
nation processor until the subsequent superstep.

The barrier synchronization used in the BSP model

can be implemented efficiently using locks, semaphores
or cache coherence protocols for shared-memory architec-
tures [5]. However, the cost of the barrier synchroniza-
tion in message-passing architectures is relatively expensive
because processors are synchronized by exchanging mes-
sages. The cost usually grows as the number of processors
increases.

In this paper, we relax the barrier synchronization con-
straint in the BSP model for the efficient implementation on
message-passing architectures. Direct implementation of
the barrier synchronization does not allow any processor to
proceed past the synchronization point until all processors
reach that point. Instead, in ourrelaxed barrier synchro-
nization, the synchronization occurs at the time of accessing
non-local data only between the producer and the consumer
processors, eliminating the exchange of global information.

2. The BSP Model on Message-Passing Archi-
tectures

Hill et.al.have proposed BSPlib [4] as a standard library
to integrate various approaches to BSP programming. Fig-
ure 1 shows a code fragment which uses BSPlib routines.
The program broadcasts the value ofv stored in processor
0 to all the other processors.

bsp sync() performs a barrier synchronization and
identifies the end of a superstep. One way of perform-
ing data communication in BSPlib is to use a Direct Re-
mote Memory Access (DRMA) facility that provides rou-
tines to put data into the local memory of a remote pro-
cessor (bsp put()), or to get data from a remote proces-
sor (bsp get()). Whenbsp put() in figure 1 is ex-
ecuted, the value of integerv is remotely stored into the
memory of other processors at address&x+0 . bsp pid()
andbsp nprocs() return the index of the processor and
the number of processors available in the system, respec-
tively.

IPPS/SPDP 1998

 1063-7133/98
$10.00 (c) 1998 IEEE

int i, v, x;
...
bsp_push_reg(&x, sizeof(int));
bsp_sync();

if (bsp_pid() == 0)
for (i = 0; i < bsp_nprocs(); i++)

bsp_put(i, &v, &x, 0, sizeof(int));
bsp_sync();

printf("broadcasted value = %d\n", x);

x

v

. . .
x x

P0 P1 PN-1

Figure 1. An example BSP program

Because the data structurex is not necessarily stored at
the same address in all processors,bsp push reg() reg-
istersthe address ofx to the system so that it can be a target
of data transfer in DRMA routines. Such registration maps
the local address of the variablex to a global index that is
the same in all processors.

For message-passing architectures, single-sided commu-
nication routines such asbsp put() and bsp get()
cannot be satisfied without the service of the destination
processor, because there is no facility to access the remote
memory directly1. On the other hand, a processor generally
does not know how many requests it has to serve for other
processors before proceeding to the next superstep.

To solve this problem, the current implementation of
bsp sync() for message-passing architectures consists of
two phases [7]. In the first phase, all processors exchange
information about the number, sizes, and destination ad-
dresses of messages. This exchange phase also serves as
a barrier synchronization for the superstep. After the first
phase, each processor knows how many messages to receive
from other processors. Actual data communication is per-
formed in the second phase.

The exchange phase generates a large number of mes-
sages in every superstep. Even when a processor does not
have any outgoing message, it should inform other proces-
sors of the fact explicitly. Therefore, the overhead of the
exchange phase is significant on message-passing architec-
tures, especially when there is a large number of processors
to synchronize and when the communication is slow com-
pared to the computation. Although postponing communi-
cation until the end of local computation may increase the
performance by making use of combining and reordering
messages [7], congestion in the communication network is
inevitable when large amounts of data are exchanged be-

1Cray T3D is an exception because it supports remote-memory ac-
cesses.

bsp_sync()

bsp_put(1,&v,&x,..)
 s

s+1

P0 P1

bsp_sync()

bsp_sync()

printf(...,x)

s-1

s

 s+1

(a) wrong

bsp_sync()

bsp_put(1,&v,&x,..)
 s

s+1

bsp_sync()

bsp_sync()

printf(...,x)

s-1

s

 s+1

req

ack

data
bsp_commit(&x,1)

delayed

(b) correct

Figure 2. When the destination is too slow

tween processors.

3. Relaxed Barrier Synchronization

In the BSP model, data accessed in a superstep should
be one either held locally or came from other processors in
the previous supersteps, which is defined as aconsistency
rule. The consistency rule should not be violated for the
correct execution of any BSP program. Traditional barrier
synchronization is a strict method to ensure the consistency
rule by proceeding to the next superstep only when all the
processors finish the current superstep. Instead, in ourre-
laxed barrier synchronization, we eliminate the exchange
phase of the barrier synchronization, but still make the exe-
cution of the BSP program produce consistent results.

Figure 2(a) and 3(a) illustrate two problematic cases that
the bsp put() request ofP0 arrives atP1 for the code
fragment in figure 1, whenbsp sync() does not per-
form global barrier synchronization. Now, processors may
stay in different supersteps. For the correct execution, the
bsp put() issued in the supersteps in P0 should make
the value ofv visible at the start of the supersteps+1 in P1.
Therefore, to be consistent in figure 2(a),P0 should be de-
layed inbsp sync() until the correspondingP1 reaches
the same supersteps.

The proposed scheme meets the consistency rule by
a handshaking mechanism using special control messages
called req and ack. Before sending adata message,P0
issues areq message to the destination processorP1, as
shown in figure 2(b). Areq message holds the current su-
perstep number of the sender.P1 compares the sender’s
superstep numbers with its own superstep numbers � 1,
and delays the acknowledgement since the request arrives
too early. At the start of everybsp sync() , processors
check if they have any request that is formerly delayed and
should be acknowledged in the current superstep. For such

bsp_sync()

bsp_put(1,&v,&x,..)
 s

s+1

P0 P1

bsp_sync()

bsp_sync()

printf(...,x)

s-1

s

 s+1

(a) wrong

bsp_sync()

bsp_put(1,&v,&x,..) s

s+1

bsp_sync()

bsp_sync()

s-1

s

 s+1

bsp_commit(&x,1)

req
ack
data

delayed

printf(...,x)

(b) correct

Figure 3. When the destination is too fast

requests, the processor sends anack message and then re-
ceives the corresponding data. Hence, in our relaxed barrier
synchronization, the superstep number is used as a time-
stamp which represents the speed of individual processors.

Unfortunately, this handshaking does not solve the prob-
lem shown in figure 3(a), where the request is delivered to
the destination too late.P1 should wait forP0 untilP0 sends
the needed data before actually using the value ofx . How-
ever,P1 does not knowx should be received before starting
the supersteps + 1, since no information is given. To rem-
edy this problem, we introduce a primitive operation called
bsp commit() , which has the following syntax.

� bsp_commit (void *addr, int n)

addr should be the address of a previously registered
data structure. We associate a count variable with each reg-
istered data structure, which is initially set to 0. As the con-
tent of the data structure is updated via messages, the count
variable is increased by 1. Thebsp commit() asserts that
the count variable ofaddr should ben before proceeding
to the next computation. The value ofn can be larger than 1
when a processor gathers data from more than one proces-
sors into the same data structure.

bsp commit() should be placed just before the state-
ment which accesses non-local data for all supersteps. By
insertingbsp_commit(&x, 1) before theprintf()
statement as shown in figure 3(b), it is explicitly specified
that the value ofx should be updated once. Therefore,P0
andP1 synchronize each other not on the basis of super-
steps, but on the basis of data dependency.

Most scientific and engineering applications have regular
communication patterns and the location and the message
count ofbsp commit() routine can be determined eas-
ily. BSPlib somewhat simplifies this task, as the destination
of bsp put() is always the address of the registered data
structure. Therefore, it is enough to insertbsp commit()

� bsp put(pid,src,dest,offset,size)
f add the request torequesttable;

send areqmessage topid; g

� bsp sync()
f for any request inacknowledgetablewhich should be

acknowledged in the current superstep
f send anackmessage and receivedatamessages;

count(data)++;
remove the request fromacknowledgetable; g

while there are pending requests inrequesttable
handle messages(IN SYNC);

sstepno++; g

� bsp commit(addr,n)
f while (count(addr) < n)

handle messages(IN COMMIT);
count(addr) 0; g

� handle messages(in)
f receive a message;

if (request message)
if ((req sstepno< sstepno) jj

((in == IN SYNC) && (req sstepno== sstepno)))
f send anackmessage and receivedatamessages;

count(data)++; g
else record the request inacknowledgetable;

else if (acknowledge message)
f senddatamessages;

remove the corresponding request fromrequesttable; g g

Figure 4. Implementation of the relaxed bar-
rier synchronization

just before the statement which accesses the registered data
structure in each superstep. Moreover, collective commu-
nication routines such as broadcast, fold, scan, gather, scat-
ter and sort, can be modified to usebsp commit() in-
side of their routines, which reduces the chance of man-
ual insertion to the program text. For the benchmark pro-
grams FT and LU used in section 4, it was enough to insert
bsp commit() to just one and twelve locations, respec-
tively, to make them work with the relaxed barrier synchro-
nization.

For some pointer-based applications, the destination pro-
cessor may not know the exact number of incoming mes-
sages in a certain superstep. In such cases, the relaxed bar-
rier synchronization can emulate the traditional implemen-
tation by explicitly exchanging the information on the num-
ber of messages before actual data communication.

Figure 4 outlines an implementation of the relaxed
barrier synchronization on message-passing architectures.
Each processor maintains two tables calledrequesttable
and acknowledgetable. They are used to record the re-
quests issued from the current superstep and the requests
from other processors that is being delayed, respectively.
count() is a macro which returns the count value of the
given registered data structure.sstepno and req sstepno
represent the superstep number of its own, and that of the
requester’s, respectively.

Incoming messages are handled either inbsp sync()

or in bsp commit() . The decision whether the request
should be accepted or not is also affected by the location
where the message is handled. Inbsp sync() , the re-
quest can be accepted if the requester’s superstep number
is less than or equal to the current superstep number. How-
ever,bsp commit() does not allow the request from the
same superstep.

So far, we have paid attention tobsp put() routine
only. We believe thatbsp get() can be replaced with
equivalentbsp put() routine without much effort.

4. Experimental Results

We have implemented and verified the relaxed barrier
synchronization by modifying the Oxford BSP toolset, ver-
sion 0.72�2. We used the BSP version of NAS Parallel
Benchmark (NPB) 2.1 [6] as benchmark programs. The
NPB suite consists of two kernels called MG and FT, and
three simulated computational fluid dynamics (CFD) codes
called LU, SP and BT. The BSP version is converted from
the original MPI version by Antoine Le Hyaric in Oxford
University3. Among those five programs, FT and LU in
class A are used for the experiments in this paper.

To evaluate the effect of the communication speed, we
run the same program on IBM SP2 using two different com-
munication subsystems, US (User Space) and IP (Internet
Protocol). When IP subsystem is used, theHigh Perfor-
mance Switch (HPS)of SP2 can be shared with other IP
jobs, but the communication cost is more expensive than
that of US.

Figure 5 shows the average time spent for the synchro-
nization in each processor (Tsync), where the left and the
right column denote the performance of the original imple-
mentation (ORG) and that of the relaxed barrier synchro-
nization (RBS), respectively. They are measured by the
sum of the time spent inbsp sync() for ORG, and in
bsp sync() and bsp commit() for RBS. For ORG,
we further divided the synchronization time intoTbarrier and
Tcomm to represent the time for the exchange phase and the
communication phase, respectively. In reality,Tbarrier in-
cludes not only the duration of the exchange phase (Txch),
but also the waiting time caused by the variation in the
completion times of the computation steps (Twait)4. In any
case, the synchronization times were significantly reduced
by using the relaxed barrier synchronization. For the system
consisting of 32 processors, 61.5% (US) and 45.2% (IP) of
the original synchronization time were reduced for FT, and

2It is freely available by anonymous ftp atftp://ftp.comlab.
ox.ac.uk/pub/Packages/BSP/ .

3For details, refer to http://merry.comlab.ox.ac.uk/
oucl/users/hyaric/doc/BSP/NASfromMPItoBSP/ .

4Practically,Txch andTwait cannot be measured separately. Likewise,
Tsyncin RBS is the sum ofTcommandTwait.

0

5

10

15

20

8 16 32

T
im

e
(s

ec
)

Number of Processors

Synchronization Time (FT, US)

Tbarrier (ORG)
Tcomm (ORG)

Tsync (RBS)

0

5

10

15

20

25

30

35

40

8 16 32

T
im

e
(s

ec
)

Number of Processors

Synchronization Time (FT, IP)

Tbarrier (ORG)
Tcomm (ORG)

Tsync (RBS)

0

20

40

60

80

100

120

140

160

180

8 16 32

T
im

e
(s

ec
)

Number of Processors

Synchronization Time (LU, US)

Tbarrier (ORG)
Tcomm (ORG)

Tsync (RBS)

0

50

100

150

200

250

300

350

400

450

500

8 16 32

T
im

e
(s

ec
)

Number of Processors

Synchronization Time (LU, IP)

Tbarrier (ORG)
Tcomm (ORG)

Tsync (RBS)

Figure 5. Changes in synchronization time

28.6% (US) and 49.0% (IP) for LU with the relaxed barrier
synchronization.

Figure 6 plots the relative speedup of the relaxed barrier
synchronization with respect to the total execution time of
the original implementation. In general, the computation
time is reduced by almost half as the number of processors
doubles. Therefore, as the number of processors increases,
we can expect much more speedup because the synchro-
nization time occupies the larger portion of the total execu-
tion time.

4.1 FT

Using the BSP cost model, we can estimateTcomm =
g �
PS�1

i=0 mi = g � M , wheremi denotes the maximum
size of messages generated for a superstepi, andS the total
number of supersteps5. In FT, all-to-all exchange is per-
formed to transpose an array, where each processor sends
part of its data to every other processors. This results in the
large value of M during a small number of supersteps.

In FT, the value ofM for N processors is roughly de-
creased toM=2 for 2 �N processors.g does not increase as
fast as that rate, and this is the reason thatTcommdecreases
asN increases. On the other hand,Tbarrier slightly increases
mainly due to the increase inTxch.

Because the relaxed barrier synchronization eliminates
the exchange phase, the upper bound of the difference in
Tsync should beTbarrier. However,Tsync in RBS is always
smaller thanTcommin ORG, even though it includes the wait-
ing time. This means that the relaxed barrier synchroniza-
tion not only eliminatesTxch, but also reduces the actual
data transfer time,Tcomm. The reason would be that the re-
laxed barrier synchronization reduces the possibility of con-

5Here, we do not normalizeg with respect to processor speed.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

8 16 32

R
el

at
iv

e
sp

ee
du

p

Number of Processors

Improvements in Total Execution Time (FT)

US
IP

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

8 16 32

R
el

at
iv

e
sp

ee
du

p

Number of Processors

Improvements in Total Execution Time (LU)

US
IP

Figure 6. The relative speedup

gestion in the communication network by distributing the
communication according to the relative speed of individ-
ual processors.

4.2 LU

The communication characteristics of LU is that small
messages are generated and these messages are sent to east
and south neighbors in a pipelined style. LU organizes a
2D grid of processors and each processorPij belongs to the
rank(i + j). The first processorP00 should finish its own
local computations before sending the results to the proces-
sors of rank 1. In a second stage,P00 computes another
block of data whileP01 andP10 compute their first block
and send it to rank 2 processors.

Unlike FT, Tsync increases as the number of processors
increases andTbarrier occupies most ofTsync in ORG. This
is because that the number of supersteps and the pipeline
depth increase as the number of processors increases. The
increase in the number of supersteps results in the increase
in Txch. Also, the longer latency to fill the pipeline is added
to Twait as the pipeline depth increases.

The relaxed barrier synchronization improves the perfor-
mance of LU by eliminatingTxch, which is substantial due to
the large number of supersteps. In addition, it reducesTwait

as the synchronization occurs only between the processors
which have data dependencies. For example, in the original
implementation,P01 should be idle until all the processors
finish the computation of the current stage. Instead, in the
relaxed barrier synchronization,P01 can begin its own com-
putation as soon asP00 finishes its computation.

5. Concluding Remarks

In this paper, we have introduced relaxed barrier syn-
chronization for the efficient implementation of the BSP
model on message-passing architectures. The proposed re-
laxed barrier synchronization preserves the consistency of a
BSP program without global barrier synchronization.

Our approach is similar to [2] and [1], where they also
employ a message counting scheme to trigger the begin-
ning of new supersteps. However, a simple message count-

ing scheme has a potential to produce inconsistent results
if it just counts the number of incoming messages without
controlling them based on their superstep numbers. Con-
sider a situation whereP0 expects a message fromP1 at the
supersteps and another fromP2 at the supersteps + 2. If
the message ofP2 arrives atP0 before the message ofP1,
the simple message counting scheme will fail to preserve
the consistency. This issue has not been addressed in the
previous works. Another important distinction is that the
previous works still synchronize on the basis of supersteps,
while the relaxed barrier synchronization does on the basis
of each data structure, which can maximize the overlap of
communication and computation. In addition, their works
are not presented in the framework of the proposed stan-
dard, BSPlib.

The benefits of the relaxed barrier synchronization can
be summarized as follows. First, it eliminates the time re-
quired for the exchange phase, which can be substantial if
a program consists of a large number of supersteps. Sec-
ond, it reduces the waiting time because each processor can
start its own computation as soon as data become available.
Third, it reduces the network congestion by distributing the
communication according to the relative speed of individual
processors.

We are currently evaluating the relaxed barrier synchro-
nization on other platforms including shared-memory archi-
tectures and network of workstations.

References

[1] R. D. Alpert and J. F. Philbin. cBSP: Zero-Cost Synchro-
nization in a Modified BSP Model. Technical report, NEC
Research Institute, 1997.

[2] A. Fahmy and A. Heddaya. Communicable Memory and
Lazy Barriers for Bulk Synchronous Parallelism in BSPk.
Technical Report BU-CS-96-012, Boston University, Sep.
1996.

[3] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. To-
wards Efficient and Portability: Programming with the BSP
Model. In Proc. 8th ACM Symp. on Parallel Algorithms and
Architectures, pages 1–12, 1996.

[4] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau,
K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and R. Bissel-
ing. BSPlib: The BSP Programming Library. Available at
http://www.bsp-worldwide.org/ , May 1997.

[5] J. M. D. Hill and D. B. Skillicorn. Practical Barrier Synchro-
nization. Technical Report PRG-TR-16-96, Oxford Univer-
sity Computing Laboratory, 1996.

[6] W. Saphir, A. Woo, and M. Yarrow. The NAS Parallel Bench-
marks 2.1 Results. Technical Report NAS-96-010, NASA
Ames Research Center, Aug. 1996.

[7] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions
and Answers about BSP. Technical Report PRG-TR-15-96,
Oxford University Computing Laboratory, Nov. 1996.

[8] L. G. Valiant. A Bridging Model for Parallel Computing.
Commun. ACM, 33(8):103–111, Aug. 1990.

