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Abstract

Vector prefix and reduction are collective communica-
tion primitives in which all processors must cooperate. We
present two parallel algorithms, the direct algorithm and
the split algorithm, for vector prefix and reduction compu-
tation on coarse-grained, distributed-memory parallel ma-
chines. Our algorithms are relatively architecture indepen-
dent and can be used effectively in many applications such
as Pack/Unpack, Array Prefix/Reduction Functions, and Ar-
ray Combining Scatter Functions, which are defined in For-
tran 90 and in High Performance Fortran. Experimental
results on the CM-5 are presented.

1. Introduction

On coarse-grained, distributed-memory parallel ma-
chines the prefix and reduction primitives are collective
communication primitives, in which all processors have to
cooperate with each other [8, 2, 9, 7]. We can expand
prefix and reduction to element-wise vector prefix and re-
duction. Suppose there areP processors, and each pro-
cessorPi has a local vector of sizeM , Vi(0 : M � 1),
where0 � i < P . In exclusive vector prefixwith bi-
nary operator� and itsidentityI�, each processorPi has
the resulting vectorFi(0 : M � 1) such thatFi(j) =
I��V0(j)�� � ��Vi�2(j)�Vi�1(j) for all j (0 � j < M ).
In vector reductionwith binary operator�, the resulting
vectorR(0 : M � 1) is stored in all processors. Hence
R(j) = V0(j)�V1(j)�� � ��VP�2(j)�VP�1(j) for all j
(0 � j < M ). In the remainder of the paper we will assume
that prefix is exclusive.

In this paper we present two algorithms for vector pre-
fix and reduction: thedirect algorithmand thesplit algo-
rithm. The direct algorithms are extensions of hypercube
algorithms for prefix and reduction, respectively [8, 9]. Un-

der the assumption thatP is a power of two, in the split
algorithmP full binary trees (FBT) of depthlgP are em-
bedded toP processors, and thenP reduction or prefix is si-
multaneously performed on theP FBTs of depthlgP [2, 7]
WhenM = 
(lgP ), the split algorithm is cost optimal.

This paper is organized as follows. The direct algorithms
for vector prefix and vector reduction are presented in Sec-
tion 2. In Sections 3 and 4 the split algorithms for vector
prefix and vector reduction are presented, respectively. A
new extended primitive, vector prefix-reduction, is intro-
duced in Section 5. Experimental results are presented in
Section 6 and, finally, our conclusion is stated in Section 7.

2. Direct algorithm

The direct algorithms for vector prefix and reduction
are extensions of hypercube algorithms for prefix and re-
duction, respectively. The hypercube algorithms onlgP -
dimensional hypercube consist oflgP steps [8, 9]. Readers
are referred to [8, 9] for detailed algorithms.

In the direct algorithms for vector prefix and reduction
we use the same algorithms as hypercube algorithms for
prefix and reduction, except that the message size increases
M times. The time taken by communication in the direct
algorithms is bounded byO(lgP (� + �M)) where� is the
start-up cost and� is the per-element transfer time. Also,
the local computation takes timeO(2M lgP ) in prefix and
O(M lgP ) in reduction.1 Note that in the direct algorithm
for prefix we need to maintain the reduction value at each
step.

3. Split algorithm for vector prefix

The split algorithm consists of two stages,split stageand
union stage, each of which consists oflgP steps. First of

1We use constants in complexity for the purpose of comparison, al-
though the constants are insignificant in terms of asymptotic complexity.
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all, we make the following assumptions in presenting the
split algorithm:

� A binary operator� is associative and has identityI�.

� P andM are powers of two, thus letd = lgP and
dv = lgM . Later the extensions to the case in which
P orM are not powers of two will be described.

� [bd�1bd�2 � � � b1b0] is the binary representation of an
index for a processor or vector element. For bit posi-
tioning we regard the lowest and highest bits as bit 0
and bit(d� 1), respectively.

� Define aninverse-levelof a tree,s, such thats = d� l
wherel is a level in a tree and0 � s; l � d. Note that
we designate the level of a root as 0.

In the following sections we will briefly describe the
PRAM algorithms for prefix and reduction and then explain
how to embedP FBTs of depthlgP in P processors. Fi-
nally, we will present in detail the split and union stages of
the split algorithm for vector prefix. Note that, for the sake
of simplicity, the split algorithm will be presented under the
assumption thatM = P , and then later the extensions to
the case in whichM 6= P will be described.

3.1. PRAM algorithm for prefix and reduction

The PRAM algorithm for exclusive prefix consists of two
stages,upward traverseanddownward traverse. In the up-
ward traverse allP input data are assigned to all leaves in
order. Then, at each level of an FBT (fromd � 1 to 0), the
value of nodeA, R(A), is decided as follows:

R(A) R(left[A])�R(right[A]); (1)

whereleft[A] andright[A] are nodeA’s left and right chil-
dren [2, 7]. Therefore, the root (at level 0) will have the
final resulting value for reduction. Note that the PRAM al-
gorithm for reduction requires only one stage,upward tra-
verse, and the result of the upward traverse in prefix is the
same as that in reduction.

In the downward traverse the root is first initialized to
I�. Then, at each level of an FBT (from0 to d � 1), each
nodeA with the current valueF (A) contributes the values
of its two children as follows [2, 7, 9]:

F (left[A]) F (A)
F (right[A]) F (A)�R(left[A]):

(2)

Readers are referred to [2, 7] for details of PRAM algo-
rithms.

3.2. EmbeddingP full binary trees

Let Ti be an FBT of depthd. Then each FBTTi is in
charge of prefix on vector elementi where0 � i < P .
Each ofP FBTs is embedded intoP processors according
to the following embedding rules:

1. Each processorPi is mapped to the root of FBT
Trev(i).

2. In each FBT processorPi = P[bd�1���bsbs�1bs�2���b0] to
be mapped to a node at inverse-levels (0 < s � d)
has a left and right child, and its children are mapped
toP[bd�1���bs0bs�2���b0] andP[bd�1���bs1bs�2���b0], respec-
tively.

Here the functionrev() is a bit-reversal function such that
the binary representation of an input value with a given
width of bits is bit-reversed [4]. For example, if a bit-width
is 4,rev(7) = 14. In the split stage,d is the width of bits in
rev().

After embeddingP FBTs onP processors, it should be
noted that at each inverse-levels (i.e., leveld� s) each pair
of two processors,(Pk; Pl), such thatk xor l = 2s, have
the same two parents,Pk andPl, wherexor is a bitwise
exclusive-or operation. Now we need to identify the FBTs
to which a processor belongs at each level.

Theorem 1 At level l (inverse levels = d � l) processor
Pi = P[bd�1���bsbs�1bs�2���b0] belongs to2l FBTs such that

T[b0���bs�2bs�1 � � � � �| {z }
l

];

where0 � l � d, 0 � i < P , and each of lowerl bits,�, is
either 0 or 1.

Proof by induction on l:
[Induction base] Pi = P[bd�1bd�2���b1b0] belongs to
Trev(i) = T[b0b1���bd�2bd�1] at level 0 by embedding rule 1.

[Induction hypothesis] Suppose at levell (inverse-level
s = d � l) P[bd�1���bsbs�1bs�2���b0] belongs to2l FBTs such
thatT[b0���bs�2bs�1 � � � � �| {z }

l

].

[Induction step] At level l + 1 (inverse-levels � 1 =
d � (l + 1)) P[bd�1���bsbs�1bs�2���b0] has two parents such
asP[bd�1���bs0bs�2���b0] andP[bd�1���bs1bs�2���b0] according to
embedding rule 2. Moreover, by induction hypothesis, two
parents belong toT[b0���bs�20� � � � �| {z }

l

] andT[b0���bs�21� � � � �| {z }
l

]

at level l, respectively. Therefore,P[bd�1���bsbs�1bs�2���b0]

belongs to2l+1 FBTs such thatT[b0���bs�2 � � � � �| {z }
l+1

].



3.3. Split stage

In the split stage we traverse each FBT upward. At this
time the operation in Equation (1) is performed on each
FBT, which is needed to take care of each element of a re-
sulting vector, sinceM = P . According to Theorem 1, at
level l (0 � l � d) each processor has to take care of2l

elements of a vector.
As a preliminary step all elements of an input vector are

copied to resulting vectorR. Now the split stage consists of
d steps, each of which corresponds to each pair of inverse-
levels(s; s + 1) on FBTs where0 � s < d. At the be-
ginning of steps each processorPi = P[bd�1���bsbs�1���b0]

is initially in charge of the resulting subvector of size2l,
Rs
i ([b0 � � � bs�1 � � � � �| {z }

l=d�s

]). Note that in the presentation of the

split algorithm we will use the notations,Rs
i (for the split

stage) andF s
i (for the union stage), to describe the resulting

subvectors on processorPi, which corresponds to inverse-
levels on FBTs.

If bs = 0, Pi keepsRs
i ([b0 � � � bs�10 � � � � �]) (the first

half), and sendsRs
i ([b0 � � � bs�11 � � � � �]) (the second half)

to its partnerPj=(i xor 2s). On the other handPj keeps the
second half of the current subvector and sends the first half
to its partnerPi. If bs = 1, Pi andPj will take the place of
Pj andPi, respectively.

At each levell (0 < l � d) of FBTs in the union
stage, the basic operation given in Equation (2) is used.
Hence, after communicating with the partner in the split
stage, each processorPi must save the subvector received
from its left child. More precisely, ifbs = 0, Pi should
save the current keeping subvector:Leftsi (0 : 2l�1� 1)(
Rs
i ([b0 � � � bs�10 � � � � �]). Otherwise,Pi saves the mes-

sage of size2l�1 to be received from its partner:Leftsi (0 :
2l�1�1)( Rs

j([b0 � � � bs�10�� � � �]). Here notationLeftsi
is used to describe the vector to be saved at steps on pro-
cessorPi, and( is an element-wise vector assignment.

After savingLeftsi , each processor combines the keep-
ing subvector with the receiving subvector according to
the given binary associative operator. Now,Pi is ready
to take care of the new resulting subvector at steps + 1,
Rs+1
i ([b0 � � � bs � � � � �| {z }

l�1

]), the size of which is reduced by

half. After the final step (s = d � 1), processorPi to be
mapped to the root of FBTTrev(i) has the final resulting

valueR(rev(i)) = Rd
i (rev(i)).

3.4. Union stage

In the second (union) stage we traverse each FBT down-
ward. First of all, as a preliminary step on each pro-
cessorPi, we need to initialize in the following way:
F d
i (rev(i))  I�. The union stage consists ofd = lgP

steps, each of which corresponds to each pair of levels
(l � 1; l) on FBTs where0 < l � d. The union stage
can be performed by reversing the sequence of operations
in the split stage. It follows that each step of the union stage
l (0 < l � d) corresponds to steps in the split stage such
thats = d� l. Note that stepl starts from 1, since it corre-
sponds to stepd� 1 of the split stage.

At each stepl (0 < l � d) in the union stage, each
nodePi = P[bd�1���bsbs�1���b0] needs to perform operations
defined in Equation (2). Ifbs = 0, Pi first performs
F s+1
i ([b0 � � � bs�10 � � � � �]) � Leftsi (0 : 2l�1 � 1); and

then sends the result to its right child, wheres = d � l.
Otherwise, only afterPi sendsF s+1

i ([b0 � � � bs�11 � � � � �])
to its left child, does it performF s

i ([b0 � � � bs�11� � � � �])(
F s+1
i ([b0 � � � bs�11 � � � � �])� Leftsi (0 : 2l�1 � 1):
Two subvectors, the kept and received vectors, are then

concatenated, which results in a new subvector of size2l =
2d�s. The size of a new resulting subvector is twice as large
as those two initial subvectors. At the end of the union stage
each processorPi (0 � i < P ) has a complete resulting
vectorF (0 : M � 1) = F 0

i (0 : M � 1). Readers are
referred to [1] for details of the algorithm.

3.5. Extensions

[Case I: M > P ] Each FBT should be responsible for
reduction onM=P vector elements. This can be done by
evenly partitioning an input vector into continuousP sub-
vectors, and then regarding each subvector of sizeM=P =
2dv�d as one unit.

[Case II : M < P ] T[b0b1���bdv�2bdv�1bdv ���bd�2bd�1], is
in charge of reduction on one vector element such as
[b0b1 � � � bdv�2bdv�1]. That is, only thedv most signifi-
cant bits in the index of a FBT is used to identify the as-
signed vector element. It should be noted that during the
first (d�dv) steps (1 � l � d�dv) in the union stage each
processor does not need to communicate at all with its part-
ner, and it needs to update the resulting value locally only if
bit s of the processor number is one.

[CaseIII : P or M is not a power of two] If P is not a
power of two,Pv = 2dlgP e � P virtual processors need to
be used, soP +Pv FBTs of depthdlgP e can be embedded
to P + Pv processors. SincePv < P , no actual proces-
sor needs to take care of more than one virtual processor.
Therefore, the time taken by the split algorithm withP not
being a power of two will be the same as that taken by the
split algorithm withP being a power of two in terms of
asymptotic complexity. Note that the input vector on each
virtual processor must be initialized to identity values. If
M is not a power of two, we need only to add some dummy
vector elements.



3.6. Analysis

First of all let us assume thatM > P . Then, at the be-
ginning of steps (0 � s < lgP ) in the split stage each
processor has a subvector of size2d�sM=P = M=2s. One
half of the subvector is sent to the partner, and then the
other half, which will be kept, is updated by using the re-
ceived message. Also, each nodePi must save a subvector
of sizeM=2s+1 received from its left child. Therefore, in
the split stage the total size of messages or subvectors to
be updated (or saved) at each processor is

PlgP�1
s=0

M
2s+1 =

M
�
1� 1

P

�
= O (M) ; thus the cost for the split stage is

bounded byO(� lgP + �M + 2M).

In the union stage each processor needs to exchange a
message with its partner and to perform the operation in
Equation (2), thus the cost for the union stage is bounded
byO(� lgP + �M +M).

Similarly, the total cost for the split algorithm
for vector prefix with M < P is bounded by
O
�
� lgPM + �

�
2M + lg P

M

��
+O

�
3(M + lg P

M

�
):

Comparison with direct algorithm The direct algorithm
consists oflgP steps, while the split algorithm consists of
2 lgP steps. Thus, the total number of communications in
the split algorithm is at most two times greater than that in
the direct algorithm. However, ifP is relatively large, the
time taken by local computation in the split algorithm will
be less than that in the direct algorithm. Moreover, data
transfer time, the term associated with�, also will be less
than that in the direct algorithm. Actually, ifM � lgP ,
the total cost for startup would be dominated by the data
transfer time, even though the startup time,� , is relatively
larger than the per-element transfer time,�, on parallel ma-
chines. Therefore, asP andM increase, the split algorithm
will outperform the direct algorithm.

4. Split algorithm for vector reduction

Basically, the split algorithm for vector reduction can
be performed in a manner similar to that presented in the
split algorithm for vector prefix. At this time the operations
given in Equation (2) should be changed toR(left[A])  
R(A) andR(right[A])  R(A). Also, the final resulting
value stored in the root after the split stage will be the initial
value of the root in the union stage.

Since we do not deal with a vector,Left, the total cost
for the split algorithm for vector reduction is bounded by,
if M � P , O (2 (� lgP + �M)) + O (M) and otherwise
O
�
� lgPM + �

�
2M + lg P

M

��
+O

�
M + lg P

M

�
.

5. Vector prefix-reduction

In many applications such as PACK/UNPACK, Array
Prefix and Reduction, and Array Combining Scatter Func-
tions, which are defined in Fortran 90 and in High Perfor-
mance Fortran [3, 6], we need to perform not only vector
reduction, but also vector prefix with the same input vec-
tor [1]. Thus, in this section we define a new primitive,
vector prefix-reduction, which is nothing but a combination
of vector prefix and vector reduction.

Direct algorithm In the direct algorithm for vector prefix
we maintain the reduction value at each step. Thus the di-
rect algorithm for vector prefix can be used directly for vec-
tor prefix-reduction without any modification, and the cost
will be the same as that for the direct algorithm for vector
prefix.

Split algorithm The split stage for vector prefix can be
used for vector prefix-reduction without any modification.
Also, note that the basic structure of the second (union)
stage in vector prefix is the same as that in vector reduction.
Therefore, at each step in the union stage of the split algo-
rithm for vector prefix-reduction, each processor needs only
to send and receive two messages instead of one. Thus we
have extra cost only in communication, not in local compu-
tation. Compared with the time taken by the split algorithm
for vector prefix, the extra cost entailed in combining two
primitives will beO(� lgP + �M) if M � P , and other-
wise will beO(� lgM + �M).

6. Experimental results

All six algorithms presented in this paper were pro-
grammed in C on the CM-5. To evaluate the performance,
the experiments were conducted for variousM andP such
that M = 2i and P = 2j where 2 � i � 12 and
2 � j � 7. Associative binary operator+ was used in the
experiments, where the type of each vector element was in-
teger. Also, active messages were used in one-to-one com-
munication [10, 5]. We measured total execution time for
each algorithm except the direct algorithm for vector prefix-
reduction, since it is the same as the direct algorithm for
vector prefix. Notice that only partial results are presented
in Figure 1 due to space limitation. Full results are available
in [1].

Effect of M Each plot in Figure 1 shows the total execu-
tion time (in milliseconds) for each algorithm with a fixed
P . OnceP is equal to or greater than 16, the slopes of all
split algorithms are less than those of all direct algorithms.
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Figure 1. Performance evaluation of direct and split algorithms for vector prefix (VP), reduction (VR),
and prefix-reduction (VPR) when P = 16; 64

Therefore,M is relatively large, all split algorithms outper-
form the direct algorithms. Moreover, asM increases, the
split algorithms will have a substantially better performance
as compared to the direct algorithms.

Effect of P As stated before, the performance of the di-
rect algorithm is largely affected not only byP , but also by
M , while that of the split algorithm mainly depends onM .
In the direct algorithm we can see that a higherP shows
a higher rate of increase in execution time. Thus, given a
vector of sizeM , the time taken by the direct algorithm in-
creases significantly withP . As M increases, the cost of
the direct algorithm is more substantially affected by the
increase ofP . On the other hand, in the split algorithm,
onceP is relatively large, the slope does not increase sig-
nificantly withP .

7. Conclusions

In this paper we have presented two algorithms for vector
prefix and reduction: thedirect algorithmand thesplit al-
gorithm. The performance of the direct algorithm is greatly
affected not only byP , but also byM , while that of the
split algorithm mainly depends onM . Thus whenP and
M are relatively large, the split algorithm will give the bet-
ter performance. IfM = 
(lgP ), the split algorithm is cost
optimal and outperforms the direct algorithm by a factor of
lgP in terms of asymptotic complexity. WhenP andM
are relatively small, the direct algorithm will be a feasible
option.

In addition, we have explained how to perform vector
prefix and vector reduction simultaneously when two prim-
itives use the same input vector.
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