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Abstract der the assumption thdt is a power of two, in the split

algorithm P full binary trees (FBT) of depthg P are em-

Vector prefix and reduction are collective communica- bedded taP processors, and théhreduction or prefix is si-
tion primitives in which all processors must cooperate. We multaneously performed on teFBTs of depttg P [2, 7]
present two parallel algorithms, the direct algorithm and WhenM = Q(lg P), the split algorithm is cost optimal.
the split algorithm, for vector prefix and reduction compu-  This paper is organized as follows. The direct algorithms
tation on coarse-grained, distributed-memory parallel ma- for vector prefix and vector reduction are presented in Sec-
chines. Our algorithms are relatively architecture indepen- tion 2. In Sections 3 and 4 the split algorithms for vector
dent and can be used effectively in many applications suchprefix and vector reduction are presented, respectively. A
as Pack/Unpack, Array Prefix/Reduction Functions, and Ar- new extended primitive, vector prefix-reduction, is intro-
ray Combining Scatter Functions, which are defined in For- duced in Section 5. Experimental results are presented in
tran 90 and in High Performance Fortran. Experimental Section 6 and, finally, our conclusion is stated in Section 7.
results on the CM-5 are presented.

2. Direct algorithm

1. Introduction The direct algorithms for vector prefix and reduction
are extensions of hypercube algorithms for prefix and re-
duction, respectively. The hypercube algorithmslgir-
dimensional hypercube consistlgfP steps [8, 9]. Readers
are referred to [8, 9] for detailed algorithms.

In the direct algorithms for vector prefix and reduction
we use the same algorithms as hypercube algorithms for
prefix and reduction, except that the message size increases
M times. The time taken by communication in the direct
algorithms is bounded b§(lg P( + pM)) wherer is the
start-up cost ang is the per-element transfer time. Also,
the local computation takes tin@@(2M lg P) in prefix and
O(M 1g P) in reduction! Note that in the direct algorithm
for prefix we need to maintain the reduction value at each
step.

On coarse-grained, distributed-memory parallel ma-
chines the prefix and reduction primitives are collective
communication primitives, in which all processors have to
cooperate with each other [8, 2, 9, 7]. We can expand
prefix and reduction to element-wise vector prefix and re-
duction. Suppose there afe processors, and each pro-
cessorP; has a local vector of sizéf, V;(0 : M — 1),
where0 < i < P. In exclusive vector prefiwith bi-
nary operator and itsidentity Zo,, each processap; has
the resulting vecto;(0 : M — 1) such thatF;(j) =
T ®Vo(j) @+ --®Viea(j) @ Vi1 (j) forall j (0 < j < M),

In vector reductionwith binary operatorp, the resulting
vectorR(0 : M — 1) is stored in all processors. Hence
R(j) = Vo) ®Vi(j) ®--- & Vp_s(j) ® Ve_1(j) forall j . . .
(0 < j < M). Inthe remainder of the paper we will assume 3- Split algorithm for vector prefix

that prefix is exclusive.

In this paper we present two algorithms for vector pre-  The split algorithm consists of two stageplit stageand
fix and reduction: thelirect algorithmand thesplit algo- ~ union stageeach of which consists df P steps. First of
rithm. The direct algorithms are extensions of hypercube 1y yse constants in complexity for the purpose of comparison, al-
algorithms for prefix and reduction, respectively [8, 9]. Un- though the constants are insignificant in terms of asymptotic complexity.
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all, we make the following assumptions in presenting the
split algorithm:

¢ Abinary operatorp is associative and has identify, .

e P and M are powers of two, thus let = 1g P and
d, = lg M. Later the extensions to the case in which
P or M are not powers of two will be described.

[Da—1ba—2 - - - bibo] is the binary representation of an
index for a processor or vector element. For bit posi-
tioning we regard the lowest and highest bits as bit O
and bit(d — 1), respectively.

Define aninverse-levebf a tree,s, such that = d — [
wherel is a level in atree and < s, < d. Note that
we designate the level of a root as 0.

In the following sections we will briefly describe the
PRAM algorithms for prefix and reduction and then explain
how to embedP FBTs of depthlg P in P processors. Fi-
nally, we will present in detail the split and union stages of
the split algorithm for vector prefix. Note that, for the sake
of simplicity, the split algorithm will be presented under the
assumption thal/ = P, and then later the extensions to
the case in whicld/ # P will be described.

3.1. PRAM algorithm for prefix and reduction

The PRAM algorithm for exclusive prefix consists of two
stagesupward traverseanddownward traverseln the up-
ward traverse alP input data are assigned to all leaves in
order. Then, at each level of an FBT (frain- 1 to 0), the
value of noded, R(A), is decided as follows:

R(A) « R(left[A]) ® R(right[A]), 1)
whereleft[A] andright[A] are noded’s left and right chil-
dren [2, 7]. Therefore, the root (at level 0) will have the
final resulting value for reduction. Note that the PRAM al-
gorithm for reduction requires only one stageward tra-
verse and the result of the upward traverse in prefix is the
same as that in reduction.

In the downward traverse the root is first initialized to
Zg. Then, at each level of an FBT (frofto d — 1), each
nodeA with the current valué”(A) contributes the values
of its two children as follows [2, 7, 9]:

F(left[A]) «+ F(A) o)
F(right[A]) « F(A) @ R(left[A)]).
Readers are referred to [2, 7] for details of PRAM algo-
rithms.

3.2. EmbeddingP full binary trees

Let T; be an FBT of depthl. Then each FBTI; is in
charge of prefix on vector elemehtwhere0 < i < P.
Each of P FBTs is embedded int& processors according
to the following embedding rules:

1. Each processoP; is mapped to the root of FBT
Trev(z')'

2. Ineach FBT processat; = Py, ,...b,b,_1b,_»--bo) 1O

be mapped to a node at inverse-levéD < s < d)

has a left and right child, and its children are mapped

t0 Py, 5,004 _o--bo] ANAPb, b, 16, 5. bo]s FESPEC-

tively.

Here the functiorrev() is a bit-reversal function such that
the binary representation of an input value with a given
width of bits is bit-reversed [4]. For example, if a bit-width
is 4,rev(7) = 14. In the split staged is the width of bits in
rev().

After embeddingP FBTs onP processors, it should be
noted that at each inverse-levdi.e., leveld — s) each pair
of two processors,Py, F;), such thate xor [ = 2%, have
the same two parents), and P;, wherexor is a bitwise
exclusive-or operation. Now we need to identify the FBTs
to which a processor belongs at each level.

Theorem 1 At levell (inverse levek = d — [) processor
Pi =Py, . b,b._ib._sebo] DEIONGS t@' FBTS such that

by -by_oby_y % - - %]

1

where0 <1 < d,0 <i < P, and each of lowef bits, , is
either O or 1.

Proof by induction on I:

[Induction base] P; Py, by_o-bib,] DElONGS tO
rev(i) = Tiboby--ba_sby_,) At level 0 by embedding rule 1.

[Induction hypothesis] Suppose at level (inverse-level

s=d—1) Py, ,..b,b._ib._-b] DElONGS tR2! FBTS such

thatT[bo...bs_2bs_1 Koo k]

l
[Induction step] At level [ 4+ 1 (inverse-levels — 1
d—(+1) Py, ,...b,_1b,_s--bo] NS two parents such
asPry, ,...b,005_o--bo] @A Py, ...p, 10, _...5,] @CCOrding to
embedding rule 2. Moreover, by induction hypothesis, two

parents belong t@,,...,, o --- % aNdT{p;...p, o1 % - - - %]

l 1
at levell, respectively. Thereforell,, ,...p,5,_1b,_o--bo]

belongs ta2*! FBTs such thafjy,..,,_, % - - - -

1+1



3.3. Split stage

steps, each of which corresponds to each pair of levels
(I —1,1) on FBTs whereD < [ < d. The union stage

In the split stage we traverse each FBT upward. At this can be performed by reversing the sequence of operations
time the operation in Equation (1) is performed on each in the split stage. It follows that each step of the union stage
FBT, which is needed to take care of each element of a re-l (0 < [ < d) corresponds to stepin the split stage such

sulting vector, sincé/ = P. According to Theorem 1, at
levell (0 < I < d) each processor has to take careof
elements of a vector.

thats = d — . Note that step starts from 1, since it corre-
sponds to sted — 1 of the split stage.
At each steg (0 < | < d) in the union stage, each

As a preliminary step all elements of an input vector are nodeP; = Py, .5, _,...5,] N€Eds to perform operations

copied to resulting vectdR. Now the split stage consists of

d steps, each of which corresponds to each pair of inverse- Fs+1([bo b

levels(s,s + 1) on FBTs wherd) < s < d. At the be-
ginning of steps each processaP; = Py, _,...p.5,_,-..bo]
is initially in charge of the resulting subvector of si2g
Ri([bo - - - bs—1 % - - - %]). Note that in the presentation of the
l=d—s

split algorithm we will use the notation®? (for the split
stage) and”? (for the union stage), to describe the resulting
subvectors on processé¥, which corresponds to inverse-
levels on FBTSs.

If bs = 0, P; keepsR;([by - --bs_lo x -+ x]) (the first
half), and send®?([by - - - bs_11 * - - - ¥]) (the second half)
to its partne;—(; xor 2:)- On the other han#; keeps the

defined in Equation (2). Ib; = 0, P; first performs
s—10 % ---x]) @ Lefti(0 : 2I-1 — 1), and
then sends the result to its right child, where= d — I.

Otherwise, only afteP; sendsF;+* ([by - -bs_11% - - *])

to its left child, does it perforn&? ([bg - - - bs—11%-- - %]) <

Fft Y ([bo - bs—11%---%]) @ Lefts(0: 2171 —1).

Two subvectors, the kept and received vectors, are then
concatenated, which results in a new subvector of Zize
2¢=5_The size of a new resulting subvector is twice as large
as those two initial subvectors. At the end of the union stage
each processaP; (0 < 7 < P) has a complete resulting
vector F(0 : M — 1) = F2(0 : M — 1). Readers are
referred to [1] for details of the algorithm.

second half of the current subvector and sends the first half3.5. Extensions

to its partner?;. If b, = 1, P; and P; will take the place of
P; andP;, respectively.
At each levell (0 < I < d) of FBTs in the union

[Casel: M > P] Each FBT should be responsible for
reduction onM /P vector elements. This can be done by

stage, the basic operation given in Equation (2) is used.evenly partitioning an input vector into continuof¥ssub-

Hence, after communicating with the partner in the split
stage, each processBy must save the subvector received
from its left child. More precisely, ibs = 0, P; should
save the current keeping subvectbef5(0 : 211 — 1) «
R:([bo---bs—10 = ---x]). Otherwise,P; saves the mes-
sage of siz&'~! to be received from its partneEe ft7 (0
2!=1—1) <= R¥([bo - - - bs—10%- - - +]). Here notatiorLe f
is used to describe the vector to be saved at step pro-
cessorP;, and< is an element-wise vector assignment.
After savingLeft;, each processor combines the keep-
ing subvector with the receiving subvector according to
the given binary associative operator. Nol;, is ready
to take care of the new resulting subvector at step 1,
Rs“( bo---bsx , the size of which is reduced by

half. After the finaI step{ = d — 1), processolP; to be
mapped to the root of FBT, rev(i) has the final resulting

valueR(rev(i)) = R{(rev(i)).

3.4. Union stage

vectors, and then regarding each subvector of 4i7é> =
24.~d gs one unit.

[Case In: M < P] T{bobl"'bdv—zbdv—lbdv"'bd—zbd—l]' is

in charge of reduction on one vector element such as
[boby - - - bg,—2b4,—1]. That is, only thed, most signifi-
cant bits in the index of a FBT is used to identify the as-
signed vector element. It should be noted that during the
first(d—d,) steps { <! < d—d,) inthe union stage each
processor does not need to communicate at all with its part-
ner, and it needs to update the resulting value locally only if
bit s of the processor number is one.

[Caselll: P or M is not a power of two] If P is not a
power of two,P, = 2['8F1 — P virtual processors need to
be used, s@ + P, FBTs of depthlg P] can be embedded

to P + P, processors. Sinc€, < P, no actual proces-
sor needs to take care of more than one virtual processor.
Therefore, the time taken by the split algorithm withnot
being a power of two will be the same as that taken by the
split algorithm with P being a power of two in terms of

In the second (union) stage we traverse each FBT down-asymptotic complexity. Note that the input vector on each

ward. First of all, as a preliminary step on each pro-
cessorP;, we need to initialize in the following way:
F(rev(i)) + Zg. The union stage consists df= lg P

virtual processor must be initialized to identity values. If
M is not a power of two, we need only to add some dummy
vector elements.



3.6. Analysis 5. Vector prefix-reduction

In many applications such as PACK/UNPACK, Array
Prefix and Reduction, and Array Combining Scatter Func-
tions, which are defined in Fortran 90 and in High Perfor-
mance Fortran [3, 6], we need to perform not only vector
reduction, but also vector prefix with the same input vec-
tor [1]. Thus, in this section we define a new primitive,
vector prefix-reductiorwhich is nothing but a combination
&f vector prefix and vector reduction.

First of all let us assume thdt? > P. Then, at the be-
ginning of steps (0 < s < 1g P) in the split stage each
processor has a subvector of see*M /P = M/2°. One
half of the subvector is sent to the partner, and then the
other half, which will be kept, is updated by using the re-
ceived message. Also, each nddemust save a subvector
of size M /2°*! received from its left child. Therefore, in
the split stage the total size of messages or subvectors t
be updated (or saved) at each process@i@’;_]L 2% =
M (1- %) = O(M), thus the cost for the split stage is Direct algorithm  In the direct algorithm for vector prefix
bounded byO(7lg P + uM + 2M). we maintain the reduction value at each step. Thus the di-

In the union stage each processor needs to exchange EeCt algorithm for vector prefix can be used directly for vec-
message with its partner and to perform the operation intor prefix-reduction without any modification, and the cost
Equation (2), thus the cost for the union stage is boundedWwill be the same as that for the direct algorithm for vector
by O(r1g P + pM + M). prefix.

Similarly, the total cost for the split algorithm
for vector prefix with M < P is bounded by  Split algorithm The split stage for vector prefix can be
O(rlgPM +p(2M +1g£)) + O (3(M +1g £)). used for vector prefix-reduction without any modification.

Also, note that the basic structure of the second (union)
stage in vector prefix is the same as that in vector reduction.

Comparison with direct algorithm ~ The direct algorithm ~ Therefore, at each step in the union stage of the split algo-
consists oflg P steps, while the split algorithm consists of rithm for vector pr_eflx—reductlon, each processor needs only
21g P steps. Thus, the total number of communications in to send and receive two messages instead of one. Thus we

the split algorithm is at most two times greater than that in N2ve extra cost only in communication, not in local compu-
the direct algorithm. However, iP is relatively large, the tation. Compared with the time taken by the split algorithm

time taken by local computation in the split algorithm will for vector prefix, the extra cost entailed in combining two
be less than that in the direct algorithm. Moreover, data Primitives will be O(7 lg P + pM) if M > P, and other-
transfer time, the term associated wjthalso will be less ~ Wise Willbe O(7lg M + pM).

than that in the direct algorithm. Actually, ¥/ > lg P,

the total cost for startup would be dominated by the data g, Experimental results

transfer time, even though the startup timejs relatively
larger than the per-element transfer timeon parallel ma-
chines. Therefore, a8 andM increase, the split algorithm
will outperform the direct algorithm.

All six algorithms presented in this paper were pro-
grammed in C on the CM-5. To evaluate the performance,
the experiments were conducted for variddsand P such
that M = 2 and P = 2/ where2 < i < 12 and
2 < j < 7. Associative binary operater was used in the
experiments, where the type of each vector element was in-
teger. Also, active messages were used in one-to-one com-

Basically, the split algorithm for vector reduction can Munication [10, 5]. We measured total execution time for
be performed in a manner similar to that presented in the®ach algorithm except the direct algorithm for vector prefix-
split algorithm for vector prefix. At this time the operations éduction, since it is the same as the direct algorithm for
given in Equation (2) should be changedRéle ft[A]) « yec?or prefix. Notice that. only .partlal results are presgnted
R(A) andR(right[A]) < R(A). Also, the final resulting I Figure 1 due to space limitation. Full results are available
value stored in the root after the split stage will be the initial " [1].
value of the root in the union stage.

Since we do not deal with a vectdreft, the total cost  Effect of M Each plot in Figure 1 shows the total execu-
for the split algorithm for vector reduction is bounded by, tion time (in milliseconds) for each algorithm with a fixed
if M > P,O(2(rlgP+ uM))+ O (M) and otherwise ~ P. OnceP is equal to or greater than 16, the slopes of all
O(tlgPM +p(2M +1g L))+ O (M +1g+). split algorithms are less than those of all direct algorithms.

4. Split algorithm for vector reduction
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Figure 1. Performance evaluation of direct and split algorithms for vector prefix (VP), reduction (VR),
and prefix-reduction (VPR) when P = 16,64

Therefore M is relatively large, all split algorithms outper-
form the direct algorithms. Moreover, d¢ increases, the
split algorithms will have a substantially better performance
as compared to the direct algorithms.

Acknowledgments

The work of Sanjay Ranka was supported by AFMC and
ARPA under contracts F19628-94-C-0057 and WM-82738-
K-19 and a subcontract from Syracuse University. The con-
Effect of P As stated before, the performance of the di- tent of the information does not necessarily reflect the po-
rect algorithm is largely affected not only ¥, but also by  sition or the policy of the United States government and no
M, while that of the split algorithm mainly depends bh official endorsement should be inferred.

In the direct algorithm we can see that a higlitshows

a higher rate of increase in execution time. Thus, given a References

vector of sizeM, the time taken by the direct algorithm in-
creases significantly wit®. As M increases, the cost of
the direct algorithm is more substantially affected by the on Coarse-Grained Distributed-Memory Parallel Machines
increase ofP. On the other hand, in the split algorithm, PhD thesis, Syracuse University, August 1997.

onceP is relatively large, the slope does not increase sig- [2] G. E. Belloch. Prefix Sums and Their Applications. Tech-

[1] S. Bae. Runtime Support for Unstructured Data Accesses

nificantly with P. nical report, School of Computer Science, Carnegie Mellon
University, November 1990.
. [3] W.S. Brainerd, C. H. Goldberg, and J. C. AdarRsogram-
7. Conclusions mer’s Guide to FORTRAN 9McGraw Hill, 1990.
[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivesttroduc-

In this paper we have presented two algorithms for vector tion to Algorithms The MIT Press, 1990.
prefix and reduction: thdirect algorithmand thesplit al- [5] I/I M.lcgg;poratlon. CMMD version 3.0 Reference manial

. . : : ay .
gorithm The performance of the direct algorlthm is greatly [6] High Performance Fortran ForunHigh Performance For-
affgcted nIOt only k?yp' but also by}, while that of the tran Language Specification: Version 1November 1994,
split algorithm mainly depends ol/. Thus whenP” and [7] J. JE. An introduction to Parallel Algorithms Addison-
M are relatively large, the split algorithm will give the bet- Wesley Publishing Company, 1992.
ter performance. I/ = Q(Ig P), the split algorithm is cost [8] V. Kumar, A. Grama, G. Karypis, and A. GuptaParal-

lel Computing: Design and Analysis of AlgorithmBen-

optimal and outperforms the direct algorithm by a factor of
lg P in terms of asymptotic complexity. WheR and M
are relatively small, the direct algorithm will be a feasible
option.

In addition, we have explained how to perform vector
prefix and vector reduction simultaneously when two prim-
itives use the same input vector.

jamin/Cummings Publishing Company, Inc., 1994.
[9] M. J. Quinn.Parallel Computing: Theory and Practic#lc-
Graw Hill, 1994.

[10] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active messages: A mechanism for integrated
communication and computation. Proc. of ISCA 1992
pages 256-266, 1992.



