
Scheduling Algorithms Exploiting Spare Capacity and Tasks’ Laxities
for Fault Detection and Location in Real-Time Multiprocessor Systems

K. Mahesh G. Manimaran C. Siva Ram Murthy
Dept. Computer Science and Engg.

Indian Institute of Technology
Madras 600 036, INDIA

Email: fgmani@bronto.,murthy@giitm.ernet.in

Arun K. Somani
Dept. Electrical and Computer Engg.

Iowa State University
USA

Email: arun@iastate.edu

Abstract
Several schemes for detecting and locating faulty proces-

sors through self-diagnosis in multiprocessor systems have
been discussed in the past. These schemes attempt to start
multiple copies (versions) of the tasks on available idle pro-
cessors simultaneously and compare the results generated
by the copies to detect or locate faulty processors. These
schemes are based on FCFS scheduling strategy. But, they
cannot be applied directly to real-time multiprocessor sys-
tems where tasks have timing constraints. In this paper, we
present a new scheduling algorithm that not only schedules
real-time tasks, but also attempts to perform self-diagnosis if
the system is not heavily loaded. We define load as a function
of tasks’ laxities. We have carried out extensive simulations
and compared the results of our algorithm with that of the
myopic algorithm, a real-time task scheduler. Simulation re-
sults show that our algorithm that exploits both tasks’ laxity
and spare capacity (unused processors) offers the same per-
formance (guarantee ratio) as that of the myopic algorithm
in addition to achieving fault detection and location.

1 Introduction
Real-time systems are defined as those systems in which

correctness of the system depends not only on the logical re-
sult of computation, but also on the time at which the results
are generated. Air traffic control system, process control sys-
tem, and nuclear plant control system are some examples of
such real-time systems. Such systems are life critical and the
outcome could be catastrophic, if results are not generated
within certain specified time intervals. Multiprocessor sys-
tems are being employed for satisfying such requirements
due to their potential for high performance and reliability.
Scheduling of tasks in a real-time multiprocessor system in-
volves deciding when and on which processor the given tasks
have to execute. This can be done either statically or dynami-
cally. In static scheduling, the assignment of tasks to proces-
sors and also the time at which the tasks start their execution
are determineda priori. On the other hand, if the charac-
teristics (e.g. deadline) of tasks are known only on their ar-

rivals (and not in advance), scheduling decisions have to be
made dynamically. In dynamic scheduling, when a task ar-
rives, the scheduler dynamically determines the feasibility of
the task. The scheduler checks if the new task can be guar-
anteed without jeopardizing the guarantees provided to the
previous tasks. Thus for predictable executions, schedulabil-
ity analysis must be done before a task’s execution is begun.
A feasible schedule is generated if the requirements (timing,
resource, etc.) of the tasks can be satisfied. The tasks are dis-
patched, at run-time, according to this feasible schedule. The
general problem of optimal scheduling of tasks in a multipro-
cessor system isNP-complete. In dynamic scheduling, since
the scheduling decisions have to be made at run-time, em-
ploying any optimal feasible scheduling algorithm is ruled
out. Therefore, most of the dynamic scheduling algorithms
resort to heuristic techniques.

Generally, in real-time multiprocessor systems, the de-
mand for the system resources varies with time. The systems
are usually provided with enough spare capacity (processors)
to meet tasks’ timing constraints even when the system is
heavily loaded. Therefore, except at peak load, not all pro-
cessors will be busy. Such unused processors are called as
spare capacity. The presence of a large number of processors
increases the probability of failure of one of the processors.
Hence some mechanism has to be employed to constantly
check the health of the system. Instead of employing any
additional hardware, the tasks to be scheduled themselves
can be used to perform health checking. Such an approach
is called as self-diagnosis. Several approaches to perform
self-diagnosis in non real-time multiprocessor systems [1, 2]
have been discussed in the past. The main objective of this
work is to perform self-diagnosis to detect and locate faulty
processors in real-time multiprocessor systems.

1.1 Related Work
Fault detection and location in non-real-time multiproces-

sor systems using self-diagnosis have been discussed in [1]
and [2]. [1] describes a scheme in which a task is started (pri-
mary version) on any available idle processor. Another copy
of the task (secondary version) is started simultaneously if

IPPS/SPDP 1998

 1063-7133/98
$10.00 (c) 1998 IEEE

there is an idle processor. The results generated are then
compared to detect if one of the two processors is defective.
The performance metric used is

�(n; �) =
number of secondary tasks completed

number of primary tasks completed
� 100

where, n is the number of processors and� is the average
system load. It is to be noted that only fault detection is
possible in this approach. [2] extends this by proposing three
schemes by which faulty processors can be located directly.
The basic idea is to start more than one secondary version
whenever possible. The performance metrics used are Fault
Detection Capability (FDC) and Fault Location Capability
(FLC). FDC gives the average amount of time a processor is
checked by two or more processors, whereas FLC gives the
average amount of the time a processor is checked by three
or more processors. They are defined as

FDC(n; �) =

�
1

n

� nX
i=2

i �
i
�i
� 100

FLC(n; �) =

�
1

n

� nX
i=3

i �
i
�i
� 100

where
i is the average number of tasks that complete with i
versions and�i is the average service time (execution time)
of the tasks that complete with
i versions. The following
example shows the weakness of these algorithms when ap-
plied to real-time tasks, where tasks have timing constraints.
Example 1 : Consider a real-time multiprocessor system
with 4 processors. Let four tasks, each having a computation
time of 6 time units and deadline of 30 time units, arrive at
the same time. If we apply the schemes in [1] and [2] di-
rectly, all four tasks will be scheduled with only one version
and hence fault detection or location is not possible. How-
ever, since the tasks have enough laxities (defined in Section
2.1), each one of them can be started with 4 copies result-
ing in performing both fault detection and location. Thus,
the schemes proposed in [1] and [2], if applied directly to
real-time systems, fail to take advantage of tasks’ laxities.2

2 Task Model and Definitions
� Each Task (Ti) is characterized by Ready time (ri), Worst
case computation time (ci), and Deadline (di) - the time by
whichTi must finish its computation.
� Tasks are non-preemptable. A task may require some re-
sources during its execution. The resource itself can be ac-
cessed in shared or exclusive mode.
� The scheduler fixes the start time (si) for each task - the
time at whichTi is scheduled to start its execution. And
finish time (fi) - the time at whichTi will finish its execution
(= si + ci).
� Laxity (li) of taskTi denotes the latest time by which the
task must start its execution, defined asli = di � ci.

2.1 Notations and Definitions
T = Set of all tasks;S = Set of scheduled tasks;U = Set
of unscheduled tasks (=T � S); �i - Number of versions
(copies) ofTi that are scheduled; L - the largest deadline
of the unscheduled tasks; p - the number of processors in
the real-time multiprocessor system; R =f R1; R2; :::; Rr g
be the set of resources in the system;Ri - the number of
instances of resource typeRi. Each resource typeRi can
be accessed either in Shared (S) or Exclusive (X) mode. Let
R(Ti) be the set of resources requested byTi; EATm

ij - the
jth earliest available time of the resourceRi in mode m. if j
> Ri thenEATm

ij = L; ESTij - the earliest time j versions
of Ti may be started.

Definition 1: A taskTi is said to be feasible (schedulable)
iff ESTi1 + ci � di.

Definition 2: A partial schedule is one which does not
contain all the tasks. A partial schedule is said to bestrongly
feasibleif all the schedules obtained by extending the current
schedule by any one of the yet unscheduled (primary) tasks
are also feasible [4]. By definition, an empty schedule is
strongly feasible.

Definition 3: The performance metricguarantee ratio
is defined as the fraction of total tasks arrived in the system
that are found to be schedulable by an algorithm.

2.2 The Proposed Scheduling Algorithm
In this section, we present a dynamic scheduling algo-

rithm that schedules real-time tasks and also attempts to per-
form self-diagnosis. The proposed algorithm is a variation of
myopic algorithm [4]. Myopic algorithm is a heuristic algo-
rithm that schedules dynamically arriving tasks which have
resource constraints. It starts with an empty partial schedule
(P) and constructs the full feasible schedule by extendingP
with one task at a time. Before extendingP with a task, it
first checks if the currentP is strongly feasible or not. Strong
feasibility check is performed by considering only the firstk
tasks (called the feasibility check window) instead of all the
remaining tasks in the list. IfP is strongly feasible, a heuris-
tic function h() is applied to the firstk tasks in the list. The
schedule is then extended with the task that has the small-
est h() value. It has been shown in [4] that the integrated
heuristic functionESTi1 + di performs better than simple
heuristics such as earliest deadline first and shortest laxity
first.

Any algorithm that attempts to perform self-diagnosis us-
ing real-time tasks must tackle two problems. The first is to
select the correct task to extend the schedule and second is
to schedule the right number of versions (�i) to the selected
task so that tasks’ timing requirements are met. The pro-
posed scheduling algorithm solves the first problem by using
the same heuristic function h() as that of the myopic algo-
rithm. To determine�i, it uses another heuristic function
R(Ti). The proposed algorithm is given below:

Input : A task set ordered in non-decreasing

order of deadlines.
Output : TRUE if the task set is feasible.

FALSE otherwise.
U T
While (U 6= �)

If (current schedule is strongly feasible)
Pick the task with minimum h value
Let Ti be the selected task to extend schedule.
�i R(Ti)
Extend schedule with�i versions ofTi

each having start timeESTi�i
U U � Ti; S S [Ti

Else
Backtrack to the previous level
Let Tj be the task last scheduled
If (�j > 1) �j �j / 2
Else

Increment the backtrack count
If (maximum backtracks reached)

return (FALSE)
U U [Tj ; S S � Tj

return (TRUE)

In addition to the guarantee ratio, which is the primary met-
ric, we define two more metrices, viz,̇ Time spent on Fault
Detection (TFD) and Time spent on Fault Location (TFL) as
follows :

TFD =

P
Ti 2 S and �i >= 2 �i � ci

Total time the system was operated
� 100

TFL =

P
Ti 2 S and �i >= 3 �i � ci

Total time the system was operated
� 100

It is obvious that if�i is always set to 1, then the algorithm
behaves like the myopic algorithm.The main objective is
to achieve as much TFD and TFL as possible while achiev-
ing the same guarantee ratio as that of myopic algorithm.
In the rest of this section, we present three different algo-
rithms (heuristics), that employ differentR(Ti) to determine
the number of versions.
2.3 Greedy Algorithm

The greedy algorithm attempts to schedule as many ver-
sions as possible for a task. The heuristic functionR(Ti) is
defined as

�i Max j such that ESTij + ci <= di (j = 1 : : : p)

Thus the number of versions scheduled is limited only by
the availability of the resources required byTi. The greedy
algorithm takesO(kr) time to perform strong feasibility
check andO(pr) time to compute�i. Further, the sched-
ule is extended inO(pr) time. Hence the total complexity of
the greedy algorithm isO(n(kr + pr + pr)) = O(n).
Example 2 : Consider a real-time system with 4 processors.
Assume that 5 tasksfT1; T2; :::; T5g are to be scheduled and

they all haveci = 5 time units anddi = 10 time units. The
greedy algorithm will assign all the four processors to the
first 2 tasks. But afterT2 is scheduled, the partial schedule
will no longer be strongly feasible. The scheduler backtracks
and reduces the number of versions forT2 (from 4) to 2.
Now afterT3 is scheduled, the partial schedule once again is
no longer be strongly feasible. It is quite easy to see that the
greedy scheduler has to backtrack a large number of times to
come up with a feasible schedule.2

2.4 Look Ahead Algorithm
The basic problem with greedy approach is that it does not

consider the timing requirements of the unscheduled tasks.
It blindly introduces secondary versions and corrects the er-
ror entirely with backtracks. The look ahead algorithm at-
tempts to overcome this by examining the laxities of the tasks
within the feasibility check window before deciding�i. The
heuristic functionR(Ti) first scans the feasibility check win-
dow and determines the number of tasks whose laxities are
smaller than that offi. Let t be the number of such tasks.
It is clear that these t tasks have to be scheduled beforeTi
finishes. Since these t tasks have to share the p processors,

�i =

�
bp=tc if p > t
1 otherwise

R(Ti) takesO(kr) time to compute�i. Further, once a
task is selected, it takes O(pr) time to extend the schedule.
Hence the time complexity of the look ahead algorithm is
O(n(kr + kr + pr)) = O(n).
Example 3 : Consider the same problem mentioned in ex-
ample 2. Let the size of the feasibility check window be 4.

The look ahead scheduler, after scanning the window,
finds out thatT2; T3 andT4 have enough laxities and hence
schedules 4 versions forT1. Next, afterT2 is selected for
extending the schedule, it scans the window to find out that,
all the remaining tasks do not have enough laxities. Hence,
includingT2, 4 tasks have to share the 4 processors. Hence
�i is 1. Thus, no backtrack is required at all due to look
ahead. It is now clear that look ahead offers better guarantee
ratio particularly when the maximum number of backtracks
allowed is small.2

2.5 Spare Capacity Algorithm
The problem with the look ahead algorithm is that it

blindly introduces a large number of secondary versions for
the first few tasks, and hence is left with a large number of
tasks to be scheduled in a short time span. Both greedy and
look ahead approaches achieve a low guarantee ratio because
they fail to take into account the resource requirements of
the yet unscheduled tasks. The spare capacity algorithm pre-
sented in this section overcomes this problem. The basic idea
employed by this algorithm is to determine the spare capacity
at a given point of time. The heuristic functionR(Ti) calcu-
lates the spare capacity and using this knowledge determines
�i. We describe theR(Ti) function below.

LetU be the set of unscheduled tasks and letTi be the task
selected to extend the schedule.R(Ti) determines the spare
capacity based on the processing and resource requirements
of the tasks inU . The total resource usage time ofRj by the
tasks inU is given by

�j =
X

Tx2 U and Tx uses Rj

Cx

Now, the timekth instance ofRj is available for processing
up todi is given by

�jk(di) =

�
di �EATm

jk if EATm
jk > ESTi1

di �ESTi1 otherwise

Therefore, the total time the resourceRj is available up
to timedi is

�j(di) =

RjX
k=1

�jk(di)

and the utilization of resourceRj up todi by tasks inU
is given by

�j =
�i

�j(di)
� 100%

Intuitively, it can be seen that�j itself gives a measure
of number of instances ofRj to be employed to meet the
requirements of the tasks inU . Thus, a utilization�j also
implies that�j % of Rj are enough to handle the tasks inU .
In other words,

�j = d
�j � Rj

100
e

number of resources will be required to handle the require-
ments of the primary versions of the tasks inU . Obviously,
the spare capacity isRj � �j . This spare capacity has to be
shared by the�j primary versions. Therefore, the number of
secondary versions that can be safely run per primary task,
based on the future requirement forRj is given by

b
Rj � �j

�j
c

Finally, taking into account the requirements of all the re-
sources, the heuristic functionR(Ti) returns the number of
versions (primary + secondary),�i, for taskTi

�i Min(1+b
Rj � �j

�j
c) (8j such that Ti uses Rj)

It can be easily shown that the complexity of the spare
capacity algorithm isO(nr(k+p+1)) which isO(n). It is im-
portant to note that the spare capacity algorithm reduces to
myopic algorithm ifR(Ti) always sets�i to 1. The algorithm
achieves the same guarantee ratio as that of the myopic al-
gorithm if the utilization of tasks inU is above 50%. Also,

any�i > 1 implies that all the tasks inU are also likely to
be scheduled with same�i. However, this may not be always
possible as some of the tasks inU may have some resource
conflicts leading to holes in the schedules. Holes result in
reduction in available processing time and this indirectly re-
sults in reduction in�i. Both greedy and look ahead algo-
rithms are unaware of such holes and still attempt to intro-
duce as many secondary versions as possible. The presence
of hole is detected by the spare capacity algorithm by cal-
culating�ij(di) based onESTi and not just onEATj . By
calculating the spare capacity at every stage of the schedule,
the spare capacity algorithm controls�i to offset the effect
of holes. The algorithm takes a very pessimistic view by
trying to find spare capacity withindi. Since meeting task
deadlines is the primary objective, we feel that making such
a pessimistic assumption is justified.

Example 4 : Consider the same problem mentioned in
example 3. For taskT1 :

�1 = 5+5+5+5
4�10 = 50

�1 = d 50�4100 e = 2
�1 = 1 + b 4�22 c = 2

After T1 is scheduled with 2 versions, forT2

�2 = 5+5+5
(2�5)+(2�10) = 50

�2 = d 50�4100 e = 2
�2 = 1 + b 4�22 c = 2

It is easy to see that, all tasks will be started with 2 versions
thus offering 100% TFD. Moreover, no backtracking is nec-
essary.2

3 Simulation Studies
To study the effectiveness of the proposed heuristics, we

have conducted extensive simulation studies. Here, we are
interested in whether or not all the tasks in a task set can
finish before their deadlines. Therefore, the most appropriate
metric is the schedulability of task sets [4], calledsuccess
ratio, which is defined as the percentage of total number of
task sets which are found to be schedulable by a scheduling
algorithm. In addition to success ratio, TFD and TFL are also
studied. Schedulable task sets are generated for simulation
using the following approach.
� A task set, consisting only primary versions, is generated
up to SC (schedule length which is an input parameter, taken
to be 800) with no processors left idle at any time [4].
� The computation time (ci) of tasks are uniformly dis-
tributed between minimum (40) and maximum (60) compu-
tation times.
� The deadlines of the tasks are uniformly distributed be-
tween SC and (1 + LParam)*SC, whereLParam is an input
parameter.
� The heuristic function h() is defined asESTi1+di and the
same h() is used for all the above algorithms.

The important point to be noted is thatthe guarantee ra-
tio (success ratio) offered by the spare capacity algorithm is
the same as that of the myopic algorithm for all parameter
variations. The TFD and TFL offered by the myopic algo-
rithm is always 0 since it does not incorporate fault detection
and location capabilities. Here, due to space limitations, we
present only a few results.

Fig.1 shows the effect of LParam on success ratio. The
success ratio increases with increasing LParam for all the
four algorithms. This is because, increasing LParam in-
creases the average laxities of tasks. As mentioned earlier,
the success ratio offered by the spare capacity algorithm is
the same as that of the myopic algorithm, which is better
than the other two algorithms.

Fig.2 shows the effect of LParam on TFD. For all the three
proposed heuristics, TFD increases with increasing LParam.
For the greedy and look ahead algorithms, a larger deadline
reduces the number of tasks affected by introducing incor-
rect number of secondary versions, and hence the TFD in-
creases with LParam. For the spare capacity algorithm, a
larger deadline implies a larger�j and hence a larger�i.
Also, note that, the TFD tends to saturate for larger values
of LParam. This is because at larger values of LParam, the
number of versions scheduled is limited by the availability of
resources (rather than processors) in the system since tasks
have resource requirements. The effect of LParam on TFL
exhibits similar behaviour for all the algorithms.

Though the greedy algorithm offers the maximum TFD
and TFL, its success ratio is lesser than the other algorithms.
Since the guarantee ratio (success ratio) is a crucial metric in
real-time systems, the algorithm which offers the best guar-
antee ratio with a capability for fault detection and location
is preferable. From our studies, spare capacity algorithm is
one such algorithm.

4 Conclusions
In this paper, we have proposed three heuristics for

scheduling real-time tasks with fault detection and location
capabilities in multiprocessor systems. Our simulation stud-
ies show that the spare capacity heuristic, which exploits
both tasks’ laxities and processor spare capacity, performs
better than the other two, and offers the same guarantee ratio
as that of the myopic algorithm in addition to achieving fault
detection and location.

References
[1] A. Dahbhura, K. Sabnani, and W. Hery, “Spare capacity as a means of

fault detection and diagnosis in multiprocessor systems,”IEEE Trans.
Computers,vol.38, no.6, pp.881-891, June 1989.

[2] S. Tridandapani, A.K. Somani, and U.R. Sandadi, “Low overhead
multiprocessor allocation strategies exploiting system spare capacity
for fault detection and location,”IEEE Trans. Computers,vol.44, no.7,
pp.865-877, July 1995.

[3] F. Wang, K. Ramamritham, and J.A. Stankovic, “Determining redun-
dancy levels for fault tolerant real-time systems,”IEEE Trans. Com-
puters,vol.44, no.2, pp.292-301, Feb. 1995.

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

Su
cc

es
s

ra
tio

Laxity parameter (LParam)

Myopic
Greedy

Look ahead
Spare capacity

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6
TF

D
Laxity parameter (LParam)

Myopic
Greedy

Look ahead
Spare capacity

Figs.1-2 Effect of LParam on success ratio and TFD

[4] K. Ramamritham, J.A. Stankovic, and P.-F. Shiah, ”Efficient schedul-
ing algorithm for real-time multiprocessor systems,”IEEE Trans. Par-
allel and Distributed Systems,vol.1, no.2, pp.184-194, Apr. 1990.

