
Update Protocols and Iterative Scientific Applications
Pete Keleher

University of Maryland

Abstract
Software DSMs have been a research topic for over a decade.
While good performance has been achieved in some cases, con-
sistent performance has continued to elude researchers. This
paper investigates the performance of DSM protocols running
highly regular scientific applications. Such applications should
be ideal targets for DSM research because past behavior gives
complete, or nearly complete, information about future behavior.
We show that a modified home-based protocol can significantly
outperform more general protocols in this application domain
because of reduced protocol complexity.

Nonetheless, such protocols still do not perform as well as ex-
pected. We show that the one of the major factors limiting per-
formance is interaction with the operating system on page faults
and page protection changes. We further optimize our protocol by
completely eliminating such memory manipulation calls from the
steady-state execution. Our resulting protocol improves average
application performance by a further 34%, on top of the 19%
improvement gained by our initial modification of the home-
based protocol.

1. Introduction
Iterative scientific applications would seem to be ideal applica-
tions from the perspective of a software distributed shared mem-
ory (DSM) system. While aspects of such programs differ, many
have highly regular sharing behaviors. The set of shared data
accessed by individual threads is often invariant from one itera-
tion to the next. This regular behavior can be used by DSMs to
predict future accesses, and to move data in advance of subse-
quent accesses [1-3]. Such update protocols allow much of the
latency of remote data fetches to be hidden. Given reasonably
efficient communication, DSMs should be able to achieve good
speedups on such applications.

The output of parallelizing compilers, such as SUIF [4], is a
good source for this type of application. While parallelizing com-
pilers can analyze many sequential programs well enough to gen-
erate message-passing versions, this process is by no means easy
or common. The process of generating parallel applications that
run in shared memory environments requires far less analysis.
Further, the set of applications that can currently be analyzed well
enough to turn into a shared memory application is much larger
than for message-passing applications.

By combining parallelizing technology with sophisticated
runtime systems [1, 3, 5], we can create a programming environ-
ment that is flexible and easy to use. Scientists are not required to
write message-passing programs or use data-parallel languages
such as HPF. Instead, they can write sequential programs, re-
writing a few computation-intensive procedures, and adding par-
allelism directives where necessary. This combination has the
advantage of producing programs that can run on large-scale
parallel machines as well as the more pervasive multiprocessor
workstations. This portability is important for scientists and engi-

neers who want to develop applications that run well on their
multiprocessor workstations, but who desire the ability to scale
their applications up for larger parallel machines as needed. The
combination of ease of use and scalability of the resulting soft-
ware is a key appeal of shared-memory compilers.

1.1 Contributions
This paper presents the design and performance of several new

protocols to handle this and similar types of applications. We first
look at a relatively straightforward update protocol based on
multi-writer lazy release consistency (LRC) [6].

We then show that modified home-based [7] protocols can
perform even better than LRC protocols for applications of this
type. Whereas "home-less" LRC protocols can perform poorly for
applications that modify (and communicate) large amounts of
data, home-based protocols maintain relatively little state, and
such state lives has short lifetimes. The main drawbacks of home-
based protocols are related to problems adapting to dynamic
sharing patterns, precisely the sort of pattern that the applications
we are investigating here do not have.

The rest of the paper is organized as follows. Section 2 dis-
cusses the background of LRC and home-based protocols and
describes the specific protocols that will be investigated in this
work. Section 3 presents the performance of these protocols and
attempts to relate their differences to how the protocols interact
with specific sharing patterns. Sections 4 and 5 describe and
analyze the performance of extensions to our home-based proto-
cols that impose less of a load on the underlying operating sys-
tem. Finally, Section 6 concludes.

2. Background and Protocol Descriptions
Our home-based protocols are based on those discussed by Zhou
[7]. Home-based protocols are, in turn, based on the multi-writer
lazy release consistent (LRC) protocols used by DSMs such as
TreadMarks [8] and CVM [9].

2.1 Multi-Writer LRC Protocols

2.1.1 Lmw-i
LRC protocols allow the shared memory system to delay per-
forming shared updates until specific synchronization events
occur. For the applications in this study, this means the next bar-
rier. The advantage of LRC in this context is that sharing (either
true or false) does not cause invalidations between barriers.

This is useful in two cases. First, consider an example with
true sharing. Shared data item x is initially valid on both nodes i
and j. If process pi writes to data x during the same barrier epoch
(between the same two barriers) in which pj reads x, the value
returned by the read does not depend on the relative ordering of
the read and the write. The value that is returned by the read is
always the last value written prior to the previous barrier. By
contrast, the canonical sequentially consistent [10] memory
model would require node j's copy of x to be invalidated before pi

IPPS/SPDP 1998
 1063-7133/98 $10.00 (c) 1998 IEEE

is allowed to modify it. The result is that if the write occurs be-
fore the read in "wall-clock" time, the read will return the new
value. However, if the read occurs before the write, the previous
value is returned.

Consider where this is useful. If the programmer intended pj's
read to return the previous value of x, then an anti-dependence
exists between the two accesses. The compiler would need to add
an extra round of synchronization to enforce the anti-dependence
for a sequentially consistent system. For an LRC system, on the
other hand, the notice of the write is only propagated to pj at the
next barrier. The anti-dependence is therefore protected without
recourse to extra synchronization.

The second case where LRC is useful for our applications is in
hiding the effects of false sharing. Assume two data items x and y
reside on the same shared page. Sequentially consistent systems
require processes to gain exclusive access to shared pages before
modifying any items that reside on the pages. Therefore, modifi-
cation of x and y by distinct processes during the same barrier
epoch requires the processes to communicate in order to arbitrate
access to the page. By contrast, multi-writer LRC protocols allow
the modifications to proceed in parallel, without communication.
The separate modifications are merged at the next synchroniza-
tion.

Lmw-i implements an invalidate-based multi-writer LRC pro-
tocol. Multi-writer protocols allow multiple processes to simulta-
neously modify the same page without network communication.
Our programs are presumed to be free of data races, so such con-
current modifications are constrained to be to disjoint sections of
the pages. At the end of each barrier epoch, the modifications to
each shared page are captured in the form of diffs. A diff is a run-
length encoding of the changes made to a single virtual memory
page. Diffs are created by performing a page-length comparison
between the current contents of the page and copy of the page that
was created at the first write access. If each concurrent writer
summarizes its modifications as a diff, the system can create a
copy that reflects all modifications by applying the concurrent
diffs to the same copy.

Since Lmw-i is an invalidate protocol, these diffs are not im-
mediately sent to other processes. Instead, structures called write
notices are distributed to other processes via existing synchroni-
zation (barrier) messages. Each write notice informs the recipient
that a shared page has been modified, and the recipient invali-
dates any local copy of the page. The write notice also names the
diff that needs to be applied in order to bring the local copy of the
page up to date. Accesses to invalid pages cause page faults,
during which the diffs named by write notices are retrieved and
applied to the faulting page. Once the diffs have been applied, the
page protections are re-validated and the application continues.

2.1.2 Lmw-u
Lmw-u is an extension of lmw-i that uses updates to communi-
cate data whenever possible. A more complete description can be
found in the literature [1], but we provide a short description here.

Accesses to shared pages are tracked by using per-page copy-
sets, which are bitmaps that specify which processors cache a
given page. This information can be used to selectively employ a
hybrid invalidate/update coherence protocol. Coherence for pages
that are consistently communicated between the same set of proc-
essors can be updated, rather than invalidated, after writes. Such
updates eliminate page faults. Coherence for the remaining pages
is maintained by using the above invalidate protocol.

On the first iteration of each time-step loop, copysets for all
pages are empty, and page faults can occur. By the second itera-
tion, however, copyset information accurately reflects stable
sharing patterns by indicating the processors that need each page.
Page faults can be then be eliminated by sending any local up-
dates to all processors on the copyset for each page. Since updates
are sent before the data is needed, subsequent remote page faults
are avoided.

SUIF was modified to automatically insert calls to DSM rou-
tines to mark pages to be updated at barriers. For a given page,
local modifications are then flushed to all other processors in the
page's local copyset at each barrier. A processor p is inserted into
processor q's copyset for a page if p requests a diff for the page,
or if q sees a write notice for the page that was created by q.

Compiler analysis needed to use such a protocol is much sim-
pler than communication analysis needed in HPF compilers. The
identities of the sending/receiving processors do not need to be
computed at compile time. Instead, the compiler only needs to
locate data that will likely be communicated in a stable pattern,
then insert calls to DSM routines to apply the update protocol for
those pages at the appropriate time. More precise compiler analy-
sis can be used to explicitly clear or set the copysets of data to be
communicated. The compiler’s annotations do not need to be
guaranteed correct, since the page annotations only affect effi-
ciency, not program correctness.

As previously discussed, barrier flushes of updates (essentially
a restricted update model) have both advantages and disadvan-
tages. On the plus side, flushes ideally move data before it is
needed, allowing computation and communication to be wholly
overlapped. The result can be fewer page invalidations and page
faults. A second advantage is that lost flush messages do not af-
fect correctness, only performance. Flush messages can be unreli-
able, and therefore do not need to be acknowledged. A ``flush''
therefore consists of only a single message, whereas a miss to
shared data incurs at least one request and response message pair.

All consistency information in lazy-release-consistency sys-
tems is piggybacked on synchronization messages (barrier mes-
sages in the case of compiler-parallelized applications). By con-
trast, diff requests are inherently two-way, and so cost two mes-
sages. On the minus size, if sharing patterns are not stable, out-of-
date copysets will cause data to be sent to processors that do not
need it. Correctness is not affected, but the unneeded flushes
cause unnecessary overhead.

2.2 Home-Based Protocols
Home-based protocols differ from "homeless" protocols, such as
lmw-i and lmw-u, in that each page has a statically-assigned
home. Each update to a page is flushed to the home at the next
synchronization. The result is that the “home” copy of each page
is always up to date, at least with respect to the synchronization
operations that have been performed at it.

The home-based protocol has two potential advantages: the
“home” effect, and the short lifetimes of many data structures. As
discussed above, homeless protocols summarize modifications in
the form of diffs. Aside from the expense of creating and apply-
ing diffs, they can cause homeless protocols to have voracious
appetites for memory because diffs have long lifetimes. The
“home” effect refers to the fact that home-based protocols allow
the owner of a page (i.e. the home) to dispense with creating diffs
describing its own modifications. Diffs are created only to de-
scribe modifications made to a page by processes other than the

page’s home node. Modifications made by the home node are
merely noted locally. No network communication is required.

Second, home-based diffs have short lifetimes. The most in-
elegant aspect of homeless protocols is that the data structures
that describe shared modifications can not be discarded until ex-
plicitly garbage-collected. For example, consider Figure 1. This
example shows three processes, P1 through P3, that access mi-
gratory data x. First, P1 modifies x and releases a synchronization
variable. P2 then acquires the synchronization variable, causing
any local copy of the page that contains x to be invalidated.
Lastly, P2 accesses x.

With a homeless protocol, touching x causes a page fault that
is satisfied by requesting the diff of w1(x) from P1. However, the
diff can not be discarded by P1 even after it has been supplied to
P2, because P1 can not know if or when some other process (P3,
for example) might subsequently request the diff as well. More
generally, the diff can not be discarded until the system can guar-
antee that no process will request it in the future. The situation is
complicated even more by the fact that if and when P3 requests
diff1, the diff may be requested from P2 rather than P1. For per-
formance reasons, then, P2 can not discard the diff either. The
result is that no diff, nor any of the write notices that name diffs,
can be discarded until garbage-collection occurs.

By contrast, diffs have very short lifetimes under home-based
protocols. Diffs are created at synchronization points, flushed to
the home nodes, and immediately discarded. This is correct under
home-based protocols because all page faults are serviced via
complete page copies from the home node, rather than by apply-
ing diffs to pre-existing page replicas.

Consider Figure 1 again. Assuming that the manager of the af-
fected page is P3, both P1 and P2 will create and send diffs to P3
prior to their releases. P2 will also need to request a new copy of
the page from P3 before it can perform the local modification.
The advantage is that both diffs can be immediately discarded.
The disadvantage of this approach is that more messages are sent
than with homeless protocols. The situation can be even worse.
Consider the case where a fourth process, P4, is the home node
for the page. In this case, both P1 and P2 will send diffs to P4.
Both P2 and P3 will then request copies of the page from P4, a
node that isn’t even involved in the communication. This behav-
ior means that home assignment must take expected sharing be-
havior into account in order to get efficient communication. Fur-
thermore, dynamic sharing patterns would require additional
mechanisms in order modify home assignments.

To summarize, home-based protocols have the following ad-
vantages:
1. Modifications made by the home node do not require diffs to

be created. They do need to be tracked, however, and so still
require local interrupts the first time each page is modified
during each barrier epoch.

2. Validating a page always requires exactly one request-reply
pair since validations are always accomplished by retrieving

a complete new copy of the page.
3. There is very little persistent state. No garbage collection is

needed.
 There are also several obvious disadvantages:
1. The home node must be chosen wisely, and the application

must not change sharing patterns drastically.
2. Communication of data between two non-home processes

requires the data to be sent through the home node. Consider
a piece of migratory data x. Each time x moves from one
process to the next, it must be sent back to the home node in
the form of a diff, and then paged in from the second node.
By contrast, the data travels directly from one process to the
next in a homeless protocol.

3. Potentially more diffs are created, as diffs are created
promptly at the end of each interval rather than lazily [11],
as with homeless protocols.

2.2.1 Bar-i and Bar-u
In order for the “home” effect to be useful, modifications of
shared data should be mainly done by the data’s home. This is
somewhat analogous to the “owner computes” rule often used in
parallelizing compilers. Unsurprisingly, therefore, the output of
parallelizing compilers is a good candidate for a home-based
protocol. Our bar-i protocol is a simplified home-based protocol
that has several extensions to support iterative scientific codes.

First, by limiting the protocol to codes that only use barrier
synchronization, we can prevent any diff or consistency state
from living past the next barrier. Page coherence is maintained by
using a per-page scalar version index, which is maintained by the
page’s home node. The index is incremented with any local modi-
fication of the page (but only once per barrier epoch), and for
each applied diff from another node. Indexes for modified pages
are distributed via the barrier process. The new page versions are
used by other processes to decide which pages need to be invali-
dated.

Second, bar-i has been augmented to provide explicit support
for reductions. Many of our applications were automatically par-
allelized by SUIF [4], and reductions are used in most of these
codes. Accesses to shared pages are tracked by using per-page
copysets, which are bitmaps that specify which processors cache
a given page. This information can be used to selectively employ
a hybrid invalidate/update coherence protocol. Using updates
rather than invalidates allows page faults to be eliminated for
pages that are consistently communicated between the same proc-
esses. Coherence for the remaining pages is maintained using an
invalidate protocol in order to avoid excessive communication.
On the first iteration of the time-step loop, the copysets of each
page are empty and page faults occur. By the second iteration,
however, copyset information indicates the processors that need
each page, accurately reflecting stable sharing patterns.

Third, our barrier protocols assign page homes at runtime,
rather than requiring the compiler or user to do so statically. The
most obvious drawback of a scheme with statically assigned
homes is that the initial assignment must be done well. Secondar-
ily, the scheme will not adapt if an application undergoes a phase
change; a point in the code where the set of pages written by a
given process change.

Zhou [7] addressed the problem of assignments by requiring
user annotations on each section of data, and observed that mak-
ing such assignments is easy for the majority of cases. This is
especially true for scientific applications, which tend to distributeFigure 1: Diff Exchanges

computation among processes as large array slices. Even when
this is the case, however, such annotations are an additional bur-
den on the programmer.

Our protocols collect access behavior information during the
first iteration of a program, and migrate pages before the second
iteration begins. We migrate any pages that have not been written
by their initial owner, but have been written by at least one other
process. The migration decisions are distributed on release mes-
sages at the next barrier.

Similarly to lmw-u, then, page faults can be eliminated for
bar-u by updating processors on the copyset for each page, send-
ing the data before it is accessed.

Additional extensions are discussed in Section 4.

3. Experimental Results

3.1 Applications
The applications used in this study are summarized in Error!
Reference source not found.. The shared segment size is the size
of the shared portion of the address space, while “Sync. Gran.” is
the average period between barrier synchronizations. Barnes is a
version of the n-body simulation from SPLASH-2 [12] that has
been modified to use less synchronization, and to perform some
tasks (i.e. maketree) serially in order to reduce parallel overhead.
Expl is a dense stencil kernel typical of those found in iterative
PDE solvers. FFT is a three-dimensional implementation of the
Fast Fourier Transform that uses matrix transposition to reduce
communication. Jacobi is a stencil kernel combined with a con-
vergence test that checks the residual value using a max reduc-
tion. SOR is a simple nearest-neighbor stencil. Shal and Swm are
different versions of the shallow water simulation, differing pri-
marily in synchronization granularity. Both swm and tomcat are
programs from the SPEC benchmark suite and contain a mixture
of stencils and reductions. We used the APR version of tomcatv,
in which the arrays have been transposed to improve data locality.

In all cases, speedups are calculated with reference to a single-
process version of the same program with all synchronization
macros nulled out. Additionally, we start timing only after the
applications have reached a steady state (and after all page home
assignments occur). There are two primary reasons for this. First,
ignoring the initial iterations allows us to quickly approximate the
behavior of the long runs typical of users of parallel systems,
rather than developers. Second, the underlying OS can take a
significant amount of time to settle when applications with large
address spaces are started.

3.2 Experimental Environment
Our experimental environment consists of an 8-node IBM SP-2.
The SP-2 has a high-performance switch (HPS) in which each bi-
directional link is capable of a sustained bandwidth of approxi-
mately forty megabytes per second. Each processor is a 66MHz

RS/6000 POWER2 and has 128 megabytes of memory. The ap-
plications were run on a version of CVM that uses UDP/IP over
the high-performance switch.

Simple RPC's in our environment require 160 µsecs. Remove
page faults require 939 µsecs. In the best case, AIX requires 128
µsecs to call user-level handlers for page faults, and mprotect
system calls require 12 µsecs. However, the costs of virtual
memory primitives in the current system are location-dependent,
occasionally increasing the cost of page protection changes by an
order of magnitude.

Although AIX’s default virtual memory page size is 4k bytes,
we used 8k pages in CVM by the simple expedient of ensuring
that all page protection changes use an 8k granularity.

3.3 Base Results
Figure 2 shows speedups of our application using four protocols,
lmw-i, lmw-u, bar-i, and bar-u. Table 1 shows the number of diff
creations, misses (remote faults) that cause network traffic, the
number of data and synchronization requests sent (there are an
equal number of replies), and the total amount of data communi-
cated, in kilobytes. Protocols lmw-i, lmw-u, bar-i, and bar-u are
abbreviated li, lu, bi, and bu, respectively.

Since all of our applications are repetitive scientific computa-
tions, the update versions of lmw and bar are almost uniformly
faster than the invalidation versions. Both update protocols elimi-
nate the majority of remote misses in most of the applications.
The exceptions are Barnes and swm, both of which perform much
worse for the update version of lmw than for the invalidate ver-
sion. In both cases, the poor performance is an artifact of the data
structures used to store out-of-order updates.

Second, the home-based protocols outperform the homeless
protocols for all but jacobi, which performs similarly for both
update-based protocols. A number of factors contribute to this
difference. First, the home effect allows the invalidate version of
bar to create an average of 36% fewer diffs than the correspond-
ing lmw protocol. This translates into 31% fewer remote misses,
and a total of 49% fewer messages. This is partially offset by the
fact that bar-i sends 74% more data. The reason is that lmw
moves most data in the form of diffs, whereas bar-i satisfies all
remote misses with complete new copies of pages. Diffs are usu-
ally much smaller than page size.

The complexion of these statistics changes when we look at
the update protocols. bar-u uses diffs to push data before it is
needed, just as with lmw-u. Since page faults no longer occur
(with the sole exception of a small number for shallow running on
lmw-u), the total amount of data moved is almost identical be-
tween the two update protocols, approximately equal to the
amount moved by lmw-i. bar-u creates about 14% more diffs than
lmw-u and sends about 12% fewer messages. Overall, bar-u aver-

Diffs Remote Misses Messages Data (kbytes)
li lu bi bu li lu bi bu li lu bi bu li lu bi bu

Barnes 3261 3261 2688 3274 4185 0 3789 0 16005 2269 4048 1968 28604 28918 33187 27106
expl 632 642 270 648 674 0 390 0 849 247 595 277 1912 1930 3423 1945
fft 2720 2464 140 2464 4640 0 4620 0 5627 2582 4767 1512 36545 41691 37339 32546
jacobi 179 198 77 220 251 0 210 0 412 293 404 293 1236 1294 2259 1543
shallow 5501 5929 2882 5929 6233 198 3420 0 8153 3637 5044 3439 1412 790 27890 783
sor 126 126 0 126 126 0 126 0 196 183 196 178 283 285 1024 264
swm 4408 4858 4873 7462 5159 0 2274 0 6062 2007 3709 2139 8798 9319 32218 19204
tomcat 898 899 413 911 1084 0 625 0 1343 547 992 541 3649 3600 5931 3890

Table 1 : Base Statistics

ages approximately 19% more speedup than the better of the two
lmw protocols.

Although the message count differential can certainly account
for some of the performance difference between the update proto-
cols, there are at least two other factors at work. The first is the
sheer complexity of the homeless protocols. Deciding what con-
sistency actions need to be performed consists of filtering locally
known consistency actions by what is known of the node that is
being synchronized with. Since lmw supports locks, flags, and
other non-global synchronization types, as well as programs with
dynamic sharing behavior, consistency information has long life-
times, and can not be discarded without explicit garbage collec-
tion.

Furthermore, nodes running lmw often receive diffs from
nodes other than the diffs’ creators (see [8] for more details). The
result is that in the general case, the producer of a diff often has
limited information about consumers of the diff. This has the
effect of making copysets (and hence updates) less precise. As a
consequence, lmw-u does not immediately validate pages when
diffs that make it possible arrive by update. Instead, lmw merely
stores updates to locally invalid pages and checks to see if all
required diffs are present when the next access to that page oc-
curs. This next access is signaled by a segmentation fault.

By contrast bar-u is designed for static, iterative, barrier-based
programs, and consumer information is distributed globally at
barrier synchronizations. This allows producers to have exact
knowledge of consumers. Hence, consumers of data wait for up-
dates before leaving barrier operations, allowing the segmentation
faults and additional page protection changes to be avoided.

4. Eliminating OS Memory overhead
Figure 3 shows a breakdown of the execution time for each of the
applications running the bar-u protocol. Runtime is broken into
sigio handling, wait time, operating system overhead, and appli-
cation computation. Sigio handling refers to time spent handling
incoming requests. Wait time is the time spent waiting for remote
requests to succeed. Since nearly all remote misses have been
eliminated, this refers primarily to slaves waiting for barrier re-
lease messages. Operating system overhead consists of time spent
in operating system traps, such as ‘send’, ‘recv’, and ‘mprotect’,
which is used to change page protections. Application computa-
tion is time spent doing useful work.

Note two things. First, several of the applications (fft, shallow,
and swm) have substantial OS components. Although this graph
doesn’t break OS overhead down into contributions from individ-

ual traps, the majority of this time is spent in mprotect calls. This
is an order of magnitude more time than implied by the mprotect
time given in Section 3.2.

Second, the efficiency implied by the “app” component of
several of the applications does not gibe well with the corre-
sponding speedups. For instance, swm spends 41.7% of the time
doing useful work, implying that speedup should be near 8 *
41.7% = 3.3, assuming that the parallel version does no more
work than the sequential version. However, the actual speedup is
closer to 1.8.

We theorized that these discrepancies are caused by a degra-
dation of the operating system performance when under stress. In
this case, the stress is an application (CVM) that uses memory in
unorthodox ways, i.e. modifying page protections in large address
spaces in an unpredictable order. In order to test our theory, we
decided to modify bar-u in order to minimize operating system
traps that manipulate the application’s address space. We could
presumably make CVM’s behavior appear more orthodox if we
ceased manipulating page protections and ceased using segmen-
tation violations (segvs) to detect invalid accesses. Once CVM’s
behavior fit the standard envelope, we would expect CVM’s per-
formance to scale much better.

4.1 Bar-s
Eliminating these two mechanisms one at a time, we first address
the use of segvs. Segvs are used for write trapping, the trapping
of inappropriate accesses to pages. These can be either write ac-
cesses to pages that are readable but not writable, or any type of
access to invalid pages. If segvs are not used, some other method
of write trapping must be used. Given the repetitive nature of our
applications, the obvious choice is to use historical behavior to
infer future behavior. We call the protocol that uses this technique
bar-s.

After gathering information for some period of time, bar-s
goes into overdrive mode, and uses another method of write trap-
ping. This is analogous to what the update protocol already does
via copysets. However, copysets are indiscriminate in that they
provide no information on how shared accesses relate to synchro-
nization.

For example, Figure 5 shows two iterations of a single process
in a parallel CVM run. Each iteration is composed of two barrier
epochs: that of barrier 1, and that of barrier 2. After barrier 1, p1
modifies data x. After barrier 2, p1 modifies y. The application
goes into overdrive mode after the first iteration. Hence, given the
behavior during the first iteration, we expect x to be modified
after the next occurrence of barrier 1, and y to be modified after
the next occurrence of barrier 2. Bar-u would trap this write by
making a twin when the first write to the page during the barrier
epoch occurs. However, without recourse to segvs, we must as-

0

1

2

3

4

5

6

7

8

barnes expl fft jacobi shal sor swm tomcat

lmw-i

lmw-u

bar-I

bar-u

Figure 2: 8-Proc Speedups

0%

20%

40%

60%

80%

100%

barnes expl fft jacobi shallow sor swm tomcat

sigio

wait

os

app

Figure 3: Time Breakdown for Bar-u

sume that the write will take place and make the twin ahead of
time. We therefore make a twin of x and make it writable before
we leave barrier 1. Upon arriving at barrier 2 for the second time,
the diff is created as normal and write protection is removed. The
only difference from bar-u at this point is that we have no idea
whether the write actually occurred. We can dispense with up-
dating the page elsewhere if the resulting diff is zero-length.
However, the twin and diff creations are pure overhead if the
write did not happen. We do not expect this to be common, how-
ever, as this technique is only applicable when access patterns are
highly predictable.

Note that although segvs no longer occur and that we may at-
tempt to create diffs for pages that are not accessed, bar-s will
still be correct. Any unanticipated write will be trapped by a segv,
at which point the protocol can revert to bar-u (or, as in our pro-
totype, complain loudly and exit).

5. Bar-m
The next step is to eliminate the mprotects. We call the resulting
protocol bar-m. Bar-m is identical to bar-s except that we also
eliminate mprotect calls once overdrive mode has started. This
means that any page that will be written locally while overdrive is
in effect must be made writable before overdrive goes into effect.
Hence, the set of writable pages at any given point during the
overdrive portion of an execution can be a strict superset of the
pages that the protocol expects to be modified. In Figure 5, for
example, the pages of both x and y must be made writable before
overdrive goes into effect. This means that if an application’s
sharing pattern diverges during overdrive mode (i.e. P1 modifies y
after barrier 1), bar-m is not guaranteed to detect the access at the
end of the epoch in which it happens. Bar-m is therefore not
guaranteed to maintain consistency.

5.1 Results
Figure 4 shows the speedups of bar-s and bar-m for seven of our
eight applications. The best speedup from the two lmw protocols
and bar-u’s speedup are shown for comparison. Barnes is not
shown because its sharing pattern, although iterative, is highly
dynamic. Work is allocated via non-deterministic traversals of a
shared tree structure, resulting in slightly different sharing pat-
terns each iteration. The other seven applications ran correctly
under bar-s and bar-m without modification.

Figure 4 shows that bar-s improves upon bar-u by only an av-
erage of 2%, indicating that segv handling is not a major source
of overhead. However, bar-m achieves a 34% gain on top of the
19% gain from bar-u to the lmw protocols. Since the shared ac-
cess behavior of the applications is invariant across iterations,
bar-u, bar-s and bar-m send exactly the same number of messages
and communicate the same amount of data. Hence the difference
is entirely due to the lack of memory system interaction via
mprotect calls.

5.2 Discussion
While protocols like bar-m are not likely to be the first option for
many users of software DSMs, they could be useful in specific
circumstances. Their primary application domain would likely be
large, iterative scientific codes, like most of those discussed in
this paper. Such applications tend to stretch operating systems in
ways that are unexpected for the operating system developers.
However, eliminating interrupts and kernel traps will always
improve performance even if operating system support is tuned
for DSM-like consistency actions.

Nonetheless, protocols such as bar-m should clearly be used
only if the programmer knows, by whatever means, that the pro-
gram's data accesses are completely predictable. While running
bar-s over similar data sets several times can give some measure
of assurance, a clean run of bar-s is by no means proof of a pro-
gram's repeatability. In this sense, the problem of knowing
whether an application is safe for bar-m is analogous to the prob-
lem of detecting data races at run-time [13, 14].

One potential source of information is the programmer. While
complicated applications could be analyzed by programmers
manually, it is more likely that the programmer could verify that
the sharing patterns of an abstract algorithm are invariant. Given
knowledge that the application closely models the underlying
algorithm, the programmer would then have some measure of
confidence that the application would execute correctly under a
bar-m.

Nonetheless, compilers are a more trustworthy source of in-
formation, whether they be parallelizing compilers or compilers
for explicitly parallel languages. The information needed to de-
termine that sharing behavior is invariant is clearly a subset of the
information that is needed in order to determine precisely what
that sharing behavior is. We therefore expect that this information
could be obtained more easily and therefore could be more com-
monly implemented. Moreover, there is likely to be a large class
of applications for which determining invariance of access pat-
terns is possible, but determining the nature of the patterns is not.

6. Conclusions
This paper has presented the design and performance of several
new protocols that support iterative, parallel applications with
stable sharing patterns. We first described lmw-u, an update-
based version of a conventional lazy release consistent protocol
that improves performance over lmw-i by eliminating most re-
mote misses.

0

1

2

3

4

5

6

7

8

expl fft jacobi shal sor swm tomcat

lmw

bar-u

bar-s

bar-m

Figure 4: Overdrive Speedups

P1
w(x) w(y)

bar 1

bar 2

w(x) w(y)

Iteration 1 Iteration 2

bar 1

bar 2

Figure 5: Iterations and Overdrive

We then described bar-u, a modified home-based [7] protocol
that performs even better than LRC protocols for this type of
application. The reasons include “home” effects, and the fact that
home-based protocols are much less complex. Whereas “home-
less” LRC protocols can perform poorly for applications that
modify (and communicate) large amounts of data, home-based
protocols incur less system overhead because they maintain rela-
tively little state, and such state has very short lifetimes. The main
drawbacks of home-based protocols are related to problems
adapting to dynamic sharing patterns, precisely the sort of pattern
that the applications we are investigating do not have.

Finally, we presented and analyzed bar-s and bar-m, two pro-
tocols that successively strip away all reliance on kernel protec-
tion manipulation. The result is that the application’s behavior
conforms more closely to the type of behavior expected (and
optimized for) by the underlying operating system, and therefore
performs much better. Overall, our update home-based protocols
average 51% better than the original lmw invalidate protocols for
our environment.

7. Bibliography
[1] C.-W. Tseng and P. Keleher, “Enhancing Software

DSM for Compiler-Parallelized Applications,” in 11th
International Parallel Processing Symposium, 1997.

[2] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt,
J. R. Larus, and D. A. Wood, “Fine-grain Access Con-
trol for Distributed Shared Memory,” in The Sixth In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, Oc-
tober 1994.

[3] A. L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel,
“Evaluating the Performance of Software Distributed
Shared Memory as a Target for Parallelizing Compil-
ers,” in Proceedings of the International Parallel Proc-
essing Symposium, 1997.

[4] R. P. Wilson, R. S. French, C. S. Wilson, J. M. Ama-
rasinghe, S. W. Anderson, S. W. K. Tjiang, S.-W. Liao,
C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hen-
nessy, “SUIF: An Infrastructure for research on paral-
lelizing and optimizing compilers,” ACM SIGPLAN
Notices, vol. 29, pp. 31-37, December 1994.

[5] S. Chandra and J. R. Larus, “Optimizing Communica-
tion in HPF Programs on Find-Grain Distributed Shared
Memory,” in Proceedings of the 6th Symposium on
Principles and Practice of Parallel Programming,
1997.

[6] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Re-
lease Consistency for Software Distributed Shared
Memory,” in Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, May
1992.

[7] Y. Zhou, L. Iftode, and K. Li, “Performance Evaluation
of Two Home-Based Lazy Release Consistency Proto-
cols for Shared Virtual Memory Systems,” in Proceed-
ings of the 2nd Symposium on Operating Systems De-
sign and Implementation, October, 1996.

[8] W. Yu, C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher,
H. Lu, R. Rajamony, and W. Zwaenepoel, “Tread-
Marks: Shared Memory Computing on Networks of
Workstations,” IEEE Computer, pp. 18--28, February
1996.

[9] P. Keleher, “The Relative Importance of Concurrent
Writers and Weak Consistency Models,” in Proceed-
ings of the 16th International Conference on Distrib-
uted Computing Systems, 1996.

[10] L. Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System,” Communications of the ACM,
vol. 21, pp. 558--565, July 1978.

[11] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel,
“TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems,” in Proceedings
of the 1994 Winter Usenix Conference, January 1994.

[12] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, “The SPLASH-2 Programs: Characterization
and Methodological Considerations,” in Proceedings of
the 22nd Annual International Symposium on Computer
Architecture, June 1995.

[13] D. Perkovic, “Online Data-Race Detection via Coher-
ency Guarantees,” in Proceedings of the 2nd Sympo-
sium on Operating Systems Design and Implementa-
tion, 1996.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson, “Eraser: A Dynamic Data Race Detector
for Multi-Threaded Programs,” in Proceedings of the
16th Symposium on Operating Systems Principles,
1997.

