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Abstract

Circuit-switched Banyan interconnection networks can
be built from simple switching elements that do not have
logical processing or buffering capabilities. This paper de-
scribes a distributed technique for dynamic control of such
a network, so that circuits can be established in response to
the changing needs of a parallel application. Control infor-
mation is interleaved with data, thus avoiding the need for a
separate network to process control messages. These tech-
niques are particularly useful in optical networks, where
it may be desirable to provide all-optical circuit-switched
connections.

1. Introduction

A common technique used in banyan interconnection
networks is packet switching, in which data is buffered at
each switch, processed, and routed to the correct destina-
tion. Circuit-switched banyan networks can also be con-
structed, in which a direct connection is provided between
the source of a message and its destination. Since neither
packet processing nor buffering is needed, circuit switch-
ing can be implemented with switches that are simpler and
faster than those required for packet switching. The circuits
provided at any instant of time are determined by the states
of the switches, and are collectively referred to as thenet-
work state.

One means of providing multiple network connections
for each processor is to use time division multiplexing
(TDM). With TDM, the network hardware automatically
cycles through a sequence of network states. A control op-
eration may, for example, load a register with a bit string
representing a sequence of states for a switch. Rotating
the bits in the register changes the control signal sent to the
switch, providing a very rapid means of changing the net-
work state. TDM can improve performance when the time
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to cycle between network states is much less than the time
to perform the control operation[6]. Each network state is
provided for atime slotsufficient to transmit a message.
The number of network states in the sequence is themulti-
plexing degree. A global clock is required to synchronize
all switches.

Techniques have been developed for dynamic control of
circuit-switched networks. One approach is to use a cen-
tral network controller to accept communication requests,
determine the required network state, and notify the re-
quester when the state is available[2]. Distributed ap-
proaches spread control functions across several devices,
increasing fault tolerance and performance while also po-
tentially increasing complexity. The distributed approach
described in [5] uses a separate control network and con-
trol logic placed in each switch. A distributed approach for
controlling an optical passive star network is described in
[1].

This paper describes distributed, dynamic control of
circuit-switched banyan networks comprised of simple
switches, without the need for a control network. Multi-
plexing is used to share the network bandwidth for both
control and data communication. Using a distributed al-
gorithm, each processor attached to the network indepen-
dently develops a network state that is consistent with the
states developed by all other processors.

The rest of this paper is organized as follows. The prin-
ciples of the distributed algorithm are reviewed in section 2.
In section 3, we describe an implementation of the algo-
rithm for a banyan MIN built from2�2 switches. Section 4
describes how network control protocols can be built upon
the contention resolution algorithm. Our conclusions are in
section 5.

2. Controlling banyan networks

A banyan network is a class of multistage interconnec-
tion network (MIN) that provides a unique path between
any pair of nodes. A banyan network interconnectingN =
kn processors is built withn stages ofN=k switches, where
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Figure 1. A reverse cube network.

each switch is a cross-bar switch of sizek � k. The dis-
tributed algorithm for creating network states is based on a
commonly used banyan network structure called a Bi-Delta
network[4].

2.1. Self-routing in banyan networks.

Banyan networks are distinguished by the interconnec-
tion pattern between the network stages. For example, the
network shown in Figure 1 is called the “reverse cube” net-
work for N = 8 andk = 2. The source and destination
nodes are labeled withn radix-k digits.

The messages from each source node can only pass
through a subset of the switches in the network. The
switches that can be used for messages from inputs 0 and
1 are highlighted in Figure 1.

The path from a source node to a destination node can be
described by the sequence of digits that label the successive
outputs of the switches at each stage of the network. This
sequence ofn digits is called apath descriptor. For exam-
ple, using the switch port labels in Figure 1 we see that the
descriptor for the path between input node 0 and destination
node 5 is101. We can also define areverse path descriptor
describing the route backwards through the network from a
destination to an input node.

Delta networks are a class of banyan network with the
property that the path descriptor for a destination node is a
permutation of then radix-k digits of the node address[4,
7]. This property is known asself-routing. This means that
the output port used at a switch does not depend on the ad-
dress of the node originating the message.

The self-routing property allows each switch to be la-
beled with a single descriptor for the path used to reach it.
This descriptor is independent of the input node from which
the path originates. At a given stage, several switches can
have the same descriptor. For switches at stage 0, no routing
is needed and the descriptor is empty.

A Bi-Delta network is a Delta network in both direc-
tions. That is, the path from a destination node back through
the network to an input node can also be obtained by self-

routing based on the address of the input node. The switches
in Figure 1 are labeled with reverse path descriptors. Many
of the commonly studied banyan networks are Bi-Delta net-
works, including the Omega, cube, baseline, flip, and but-
terfly networks.

2.2. Distributed network control

We define aswitch groupto be a set of switches with the
same reverse path descriptor. Switches at different stages of
the network have different length descriptors and thus are
in different switch groups. LetGi be the set of all switch
groups at stagei. Each switch groupS 2 Gi consists of
switches with the same reverse path descriptor. Clearly,
these switch groups are disjoint. For every switch group
S 2 Gi, there is a corresponding set of input nodesIS such
that every node inIS has a path to every switch inS. De-
fine this group of nodes to be theinput groupfor that switch
group.

As shown in Figure 1, all switches in stage 2 have an
empty path descriptor and form a single switch group. The
corresponding input group consists of all eight input nodes.
At network stage 1, the two switches with the descriptor (0)
form a group for the group of input nodes 0, 1, 2, and 3.
Since each switch at stage 0 has a unique descriptor, each
switch is a group for the two attached input nodes.

The following theorem describes an efficient distributed
algorithm for resolving contention for switches and devel-
oping a network state. The proof of the Theorem is based
on the self-routing properties of Bi-Delta networks.

Theorem 1: In a Bi-Delta network, the following dis-
tributed procedure can be used to develop a network state.
For each network stagei from 0 ton� 1,

1. Exchange switch state requirements for switch group
S at stagei with all processors whose address differs
only in the position corresponding to the reverse path
routing descriptor for stagei.

2. Resolve contention for the switches inS and deter-
mine the combined requirements from input groupIS
for switches at subsequent stages of the network.

2

The required state of all switches can therefore be deter-
mined in acontrol cycleof n steps, proceeding from stage
0 to stagen� 1.

3. Developing the network state.

In this section, we consider an implementation of the
above algorithm for a network withk = 2. We describe
how processors specify their circuit requirements for uni-
cast connections and resolve contention to create network



states that satisfy these requirements, subject to the block-
ing characteristics of the network. The discussion and ex-
ample are based on the reverse cube network shown in Fig-
ure 1 with eight processors.

3.1. Overview

Each processor requests a circuit by placing its switch
state requirements into acontrol message. At step i of
the algorithm, processors exchange control messages. Con-
tention is resolved for the switches in the switch group at
stagei and the resulting states are retained for later use
in setting the network state. Since each message contains
the requirements from an entire input group, it may contain
requests for several circuits. Each circuit requires exactly
one switch in each switch group. For circuits that can be
provided through stagei, the switch states required at later
stages of the network are merged into a control message for
stepi + 1. Requests that are not satisfied are dropped and
must be resubmitted later by the originating processor.

Whenk = 2, information is exchanged between pairs of
processors. To set the switches at stagei in the eight node
reverse cube network, processoro = (o2o1o0) exchanges
its request message with the processor that has a different
value of bitoi.

For example, to resolve contention for switches at stage
1, nodes 1 and 3 exchange request messages since their
addresses differ in bit position 1. The message from pro-
cessor 1 contains the combined requirements of its input
group at stage 0, which consists of processors 0 and 1. Sim-
ilarly, processors 0 and 2 exchange messages. After the ex-
changes, all four processors will have complete information
about the states requested for the switches in the group at
stage 1. Thus, all processors in the input group can resolve
contention and merge control messages in a consistent man-
ner.

3.2. Request messages.

Each processor creates a control message that specifies,
for all switches to which it can be connected, the states re-
quired to form a circuit to the desired destination. While the
network containsN

2
logN switches, each processor can be

connected to onlyN � 1 of them.
For unicast communication, a2 � 2 switch can be set

in either the “straight” or “cross” state. Since all switches
accessible to a processor appear in the control message,
switches which are not required for a connection are indi-
cated with a “don’t care” marking. In the following exam-
ples we will use the notation “x ” to indicate a cross state,
“=” to indicate a straight state, and “- ” to denote “don’t
care”.

The desired state of each switch can easily be computed
from the source and destination addresses using the self-
routing properties of the network. The request for each
switch is placed in the control message in a location (i.e.
a stage and offset) that allows the physical relationship be-
tween switches to be determined. From the location of the
state in the control message, a simple mapping function can
be used to locate the requested states of the switches con-
nected to the upper and lower output ports.

For example, to connect processor 0 to processor 5 re-
quires the following (see Figure 1):

� The top switch at stage 0 must be in the cross state (x ).

� The second switch at stage 1 must be in the straight
state (=).

� The second switch at stage 2 must be in the cross state
(x ).

� The state of the other four switches to which proces-
sor 0 could be connected do not affect this connection.
They are marked as “don’t care” (- ).

These switch states are placed in a control message and or-
dered by switch position within stage, so that the control
message from processor 0 is (x -= -x-- ).

3.3. Resolving contention

At stepi of the algorithm, contention is resolved for each
of the2i switches in a switch group. Circuits from the suc-
cessful request(s) are traced through the control message
and switch requirements are inserted into a merged control
message that will be used at stepi+ 1. Switches for which
there is no specific request are marked in the merged mes-
sage with “don’t care”. A circuit is traced through the con-
trol message using the mapping function. For each switch,
the following contention is possible.

� Both requests specify the same setting for a switch in
the current stage. There is no contention, and both re-
quests can be satisfied. Note that these two requests
can not have conflicting requirements at any subse-
quent stage of the network.

� One request contains “don’t care” for the switch.
Again, there is no contention. If the other request spec-
ifies a switch setting, it is successful.

� Two requests indicate “don’t care” for the state of the
switch. The switch can be set arbitrarily.

� The requests are for different switch settings, indicat-
ing contention. One request is chosen to be successful,
based on the contention resolution algorithm. The un-
successful request has become blocked and is dropped



Source Dest. Request Step 0
Message Switch Merged

setting request
0 5 x -= -x-- x x= -xx-
1 6 x x- --x- x x= -xx-
2 5 x -x -x-- x xx =x--
3 0 x x- =--- x xx =x--
4 5 x -= -=-- x -= -=--
5 3 = -x ---x x -= -=--
6 2 = =- --x- = =- --x-
7 0 x x- x--- = =- --x-

Table 1. Resolving contention (part 1).

S. Step 1 Step 2 Final Need
Switch Merged Switch State Met
setting request setting

0 x= =xx- =xx- x x= =xx- Yes
1 x= =xx- =xx- x x= =xx- Yes
2 x= =xx- =xx- x x= =xx- No
3 x= =xx- =xx- x x= =xx- Yes
4 == -=x- =xx- x == =xx- No
5 == -=x- =xx- x == =xx- No
6 == -=x- =xx- = == =xx- Yes
7 == -=x- =xx- = == =xx- No

Table 2. Resolving contention (part 2).

from further processing. The circuit from the success-
ful request is traced and the switch requirements are
inserted into the merged control message.

3.4. An example.

Let the connections desired by the processors and the as-
sociated control messages be those shown in the first three
columns of Table 1. Contention resolution at step 0 pro-
duces the results shown in the last two columns of the table.
For example:

� Both processors 0 and 1 request the (x ) setting for the
stage 0 switch. There is no contention. The cross state
is selected for the switch at stage 0 and the merged
message for the remaining switches is (x= -xx- ).

� Processors 6 and 7 have conflicting requests for the
stage 0 switch. For this example, we will use a fixed
priority scheme with the request from the processor
with lowest address having the higher priority. The
request from processor 7 is blocked, and the stage 0
switch will be used in the straight state. The merged
message for the remaining switches is (=- --x- ).

Column 5 of Table 1 shows the control message developed
for stage 1 after resolving contention for switches at stage
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Figure 2. After step 2.

0. At step 1, consider the requests exchanged between pro-
cessors 0/1 and 2/3. These requests must be processed for
each switch in the switch group.

� Both requests for the uppermost switch at stage 1 spec-
ify the cross state. There is no contention, and circuits
for both requests are inserted into the merged control
request. This stage 1 switch will be set in the cross
state, and both paths through it will be used. The
merged message for stage 2 switches based on this
stage 1 switch is (=-x- ).

� The requests conflict for the lower switch at stage 1.
Contention is resolved and the switch will be set in the
straight state. The circuit requested by processors 0
and 1 is traced and (-x-- ) is inserted into the merged
message. The complete control message for the next
step is therefore (=xx- ).

In the final step, the state of all switches in the final stage
is determined. There is no need to merge requests. The
control register of each switch can then be loaded with the
required state by a processor associated with the switch. For
example, processors with even (or odd) numbered addresses
may be assigned to load the registers for then switches in
the corresponding row of the network. By comparing the
network state after stage 2 to its initial request, each pro-
cessor can determine if the circuit it requested will be es-
tablished. The final network state information contained in
each processor is shown in column 5 of Table 2. For this
example, four circuits will be established from processor 0
to 5, 1 to 6, 3 to 0, and 6 to 2, as shown in Figure 2. The
successful requests are shown as a dark solid line, while re-
quests that have become blocked are shown as a dashed line
extending to the switch where the blocking occurred.

Since control message processing does not require a
large amount of computation or memory, it could be per-
formed by network interface hardware.

4. Implementation alternatives.

The number of network states required for control com-
munication depends on the topology of the banyan network.
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We can multiplex these states for network control together
with states for data communication to implement dynamic,
distributed control of the circuit switched network. Various
network control protocols can be developed by describing
sets of rules which govern how control cycles can alter the
states used for data communication.

4.1. Allocating network bandwidth.

To allow the control communication pattern to be im-
plemented without blocking the network must be partition-
able into contention-free and channel-balanced disjointk-
ary cubes, as described in [3]. The processors that must
communicate in each step of the distributed procedure form
a k-ary 1-cube. From [3], a cube banyan network (and by
symmetry, the reverse cube network of Figure 1) has the re-
quired property. Thus, the communication required for each
step of the distributed algorithm can be accomplished with
a single network state.

Control communication therefore requiresn network
states corresponding to then steps of the algorithm. In
addition, data transmission requires one or more network
states. The required states can be provided in a sequence
using TDM. In an optical network they can also be provided
using wavelength division multiplexing (WDM), or with a
combination of WDM and TDM. In the remainder of this
paper we will illustrate the use of the algorithm with TDM.
In general, the length of a time slot for data communication
may differ from the length of a time slot for control com-
munication.

A sequence ofn network states for control can be inter-
leaved with a sequence ofK states for data in many dif-
ferent ways. One approach is to determine, after each time
slot, whether the state in the following time slot is to be
taken from the same sequence or not. We call the use of
a control state following each data statedata interleaving.
Similarly, when a data state always follows a control state,
we call it control interleaving. The time slot following the
final state in each sequence always contains a state of the
opposite type. This approach can be used to produce the se-
quences shown in Figure 3. For example, control interleav-
ing alone produces a sequence in which every control state
and every data state (except for theKth one) is followed
by a data state. TheKth data state is always followed by a

control state.
In these methods, the control cycle is repeated for each

data state to establish circuits for requests that are new or
were blocked. Once established, circuits for data commu-
nication are provided in the same time slot until a control
cycle ofn steps has been completed for each of theK data
states. After this time the network state may change, as de-
termined by the rules of the protocol. Many characteristics
of the network can be computed from the manner in which
the two sequences are interleaved and the lengths of the data
and control time slots. This includes, for example, the mini-
mum latency to build a network state, the minimum number
of times a state can be used before it may be rebuilt, and the
percent of network bandwidth used for control.

Determining the optimal multiplexing method is a com-
plex task beyond the scope of this paper. Performance is
affected by many factors, including the rate and burstiness
of communication requests, switch contention within the
communication pattern, the use of blocking communication
or other synchronization, the use of variable length mes-
sages, higher level protocol requirements (e.g.reverse paths
required for acknowledgments), the frequency with which
processors require new circuits, and the relative size of data
and control time slots. Further, the time between the receipt
of a control message and transmission of the merged mes-
sage must allow for contention resolution processing. De-
pending on the interleaving method and data slot size, the
control slot size may need to be extended to allow sufficient
processing time.

These same factors also influence the choice of the op-
timal multiplexing degree. This value may change as the
communication activity of the program changes. The value
can be dynamically chosen using a distributed algorithm
that adds information to the request messages. It may be
easy to add an additional state to the sequence of data states
being multiplexed. The difficulty of removing a state from
the sequence depends on the network control protocol.

4.2. Network control protocols.

Network control protocols provide rules governing how
data states are created. One approach is to begin each con-
trol cycle with an empty set of circuits. Once established,
each circuit is available for a fixed amount of time that can
be computed from the network parameters. We call this
Reservation with Fixed Expiration (RFE). Connection re-
quests may be processed in any control cycle. Circuits are
released automatically when the state that provided them
has been rebuilt. Even when the communication require-
ments of the program do not change, RFE requires control
operations to rebuild states as they expire. RFE is suited to
programs that use fixed length messages which can be trans-
mitted in a single time slot and to programs with frequently



changing communication patterns.
Another approach is to update each network state, and

process only requests that do not alter existing straight or
cross switch settings. This allows processors to request cir-
cuits only once and to keep them indefinitely. As a conse-
quence, there may be restrictions on the states into which
a request can be processed. By selecting this state care-
fully, it may be possible to optimize the number of circuits
used in each network state. To avoid the need to continu-
ally increase the multiplexing degree to accommodate new
circuits, an explicit release message is required. Thus, this
protocol is called Reservation with Explicit Release (RER).
A “use count” must be kept for each switch to accurately re-
flect available (“don’t care”) switches. The contention res-
olution process can be extended with aroll-back algorithm
to maintain this use count. RER depends on processors to
be well-behaved and release unneeded circuits. RER may
be most appropriate for programs that send variable length
messages, and for programs that require infrequent changes
to the communication pattern.

The control communication pattern allows additional in-
formation to be added to a control message and used to
make other decisions in a distributed fashion. For exam-
ple, a flag could be added to support an algorithm to change
the protocol used based on the communication needs of the
program. The choice of RFE or RER could then be made
dynamically to adjust the performance of the network con-
trol protocol to suit the program’s needs.

5. Conclusions

We have presented a distributed algorithm for resolv-
ing contention and developing network states in Bi-Delta
banyan networks built from simple switches. The algorithm
can be used as the basis of dynamic network control proto-
cols which provide unicast communications.

Multiplexing can be used not only to interleave control
and data in the same network, but to increase the number
of paths that can coexist in a network and thus reduce the
frequency of control operations. Various techniques can be
used to multiplex the control protocol with data communi-
cation in a single network. In future work, we will inves-
tigate how the choice of control protocol and multiplexing
technique can be made to match the capabilities of the net-
work to a program’s communication requirements.
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