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Abstract

In this paper, we present nearly optimal algorithms
for broadcast on a d-dimenstonaln x n x ...x n torus
that supports all-port communication and wormhole
routing. Let T(n) denote the number of communi-
cation steps performed to broadcast a message. We
present algorithms that achieve the following perfor-
mance: (1) T(n) = d[logygy n]+1 when n is odd, and
(i) T(n) = d[logyg i (n — 1)] + [d/2] + 1 when n is
even. The lower bound is [dlogyy,y n]. Our algorithm
15 the first one that works for arbitrary n, and is opti-
mal up to the constant term. Previous algorithms with
comparable performance only work for the case that ei-
ther d 1s 2 or 3, or n is a power of 2d + 1. For special
cases such as d = 2 or 3, we can improve the algorithm
so0 that T'(n) = d[logygyq 1] for any n.

1 Introduction

Broadcast, in which a source processor broadcasts
a message to all other processors, is one of the most
fundamental collective communications, and 1s often
used for synchronization, initialization, diagnosis, or
algorithm execution. In this paper, we study the
problem of performing broadcast on a d-dimensional
nxnx...xn torus that supports wormhole routing and
all-port communication. Notice that torus is one of the
most important architectures that have attracted in-
tensive attention and have been used for building paral-
lel computers. A number of recent research have aimed
to develop optimal algorithms for collective communi-
cations on torus with wormhole and all-port routing
[11, 1, 8, 10, 13, 14, 15]. Let T'(n) denote the number
of communication steps performed by a communica-
tion algorithm. The main contribution of this paper is

in developing a broadcast algorithm on a d-dimensional
nxnx...xn torus, with T(n) = d[log 24417+ 1 when
n 18 odd. When n is even, the algorithm can be modi-
fied to perform broadcast with 7'(n) = d[log244+1(n —
1)1+ [d/2] + 1. The lower bound is [dlogys,, n]. No-
tice that our algorithm is optimal upto the constant
term. There are several recent research presenting al-
gorithms with comparable performance. In [14], Tseng
presents an algorithm that takes 2[logg n] on an x n
torus. He also proposes an approach to generalize his
algorithm to run on a n; X ny torus with time bound
[logs n1] + [logs %5+ [ +[logs 2] +3. In [15], Tseng and
Wang presents an algorithm that takes 3[log, n] + 2
on a 3-dimensional n x n xn torus. Both the algorithms
in [14] and [15] use only dimensional order routing. In
[8], Park and Choi present the first algorithm that are
efficient for arbitrary dimension d. Although the algo-
rithm presented in [8] achieves the optimal bound, it
works only for the case that n i1s a power of 2d + 1,
and requires arbitrary routing capability. Our algo-
rithm is the first one that work for arbitrary d and
n, and requires simple routing that is an extension of
the dimensional order routing. Moreover, when d = 2
or 3, our algorithm can be further improved so that
T(n) = d[logyg,, n| for arbitrary n.

The rest of this paper is organized as follows. Sec-
tion 2 gives preliminaries. Sections 3, 4 and 5 gives
the algorithm for the case that n is a power of 2d + 1.
Section 6 sketches modifications of the algorithm for
other cases. Section 7 gives further remarks. Due to
page limitation, some details are omitted in this paper.

All the details can be found in [12].

2 Preliminaries

A d-dimensional n x n x ... x n torus, denoted
as T,a, 1s an undirected graph that consists of nodes
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(x1,...,2q) with 0 < z; <n—1,1<1{<d, where #;
is the coordinate of that node in dimension i. Nodes
(x1,...,24) and (y1,...,yq) are connected by an edge
iff there exists a k, 1 < k < d, so that |z — ye| = 1 or
n—1,and z; = y;, for Vi £ k and 1 < i< d.

In this paper, we consider the problem of performing
broadcast in torus that supports all-port communica-
tion and wormbhole routing. In all-port communication,
every node can send/receive a message at each of its
communication links at every communication step. In
wormhole routing, a message is partitioned into flits
that are pipelined over the communication path [2, 7].
We also assume the routing always finishes going one
dimension before turning to another dimension as in
dimension order routing. However, we assume a path
can start at any dimension, and then follow the cyclic
order of the dimensions until the destination is reached.
Namely, assume the coordinates of a source node and a
destination node differ at dimensions iy, is, ..., #; with
11 <1 < ...< 1. If the routing starts at dimension i;,
1 < j < k, the subsequent dimensions are i(;11)modk >
-+ > U(j+k—1)modk- In each dimension, the direction of a
path can be either positive, i.e. coordinate-increasing,
or negative, i.e. coordinate-decreasing. We assume a
path must follow the same direction in all dimensions.
We call this type of routing as cyclic dimension order.
In cyclic dimension order routing, a path is determined
by a starting dimension and a direction.

When there is no edge congestion in the communi-
cation paths, the communication latency of wormhole
routing is very insensitive to the path length. We thus
measure the complexity of a communication algorithm
by the number of its communication steps. In each
communication step, each processor can compute upto
2d destinations, determine a path for each destination,
and then send/receive one message at each of its com-
munication links. Such a measure has been used in
the analysis of communication algorithms developed on
wormhole-routed models [11, 1, 8, 10, 13, 14, 15].

Since at any step, a node can send to at most 2d
destination nodes, any broadcast algorithm will take
at least [dlogagp1n] communication steps. We thus
have the following lower bound.

Lemma 1 Any algorithm for broadcast on a d-
dimenstonalnxnx...xn all-port and wormhole-routed
torus takes at least [d1ogagrin] communication steps.

For any two nodes p; and py in 7,4, define the
dimension distance, denoted as dd(p1,p2), to be the
number of dimensions where their coordinates dif-
fer. TFor example dd((0,...,0),(1,...,1)) = d, and
dd((1,...,1,0),(1,...,1,3)) = 1. 1In this paper, we

will frequently partition T,« into n*, 0 < h < d, dis-
joint (d — h)-dimensional subtori by fixing the coordi-
nates in the last & dimensions. We thus, in this pa-
per, define a (d — h)-dimensional subtorus to be the
subgraph in 7,4 induced by all the nodes with the
same coordinates in the last h dimensions, i.e. by all

nodes (#1,...,%4-h,€1,...,¢1), where 0 < u; <n—1,
1 <i<d—h,and ¢, ..., ¢ are some fixed con-
stants. Given a node s = (®1,...,%4-h,C1,...,Ch)

in a (d — h)-dimensional subtorus, and a vector v =
(v1,...,04-1,0,...,0) withv; € {1,-1},1 < i< d—h,
the diagonal generated by s and v, denoted as L(s, v),
consists of the sequence of nodes s, s + v, s + 2v, ...,
s+(n—1)v, where s+mv = (y(x1+muv1),...,y(x4—n+
MUG_), Td—ht1s- - 2d), 0 < m < n—1,and y(z) =
z mod n is the modulo over n.

Consider a diagonal L(s,v) = sg,s1,...,8,-1 with
si = s+ w. Let S = s;,,8i,,...,5, be a subsequence
of nodes in L(s,v). Define the gap between s;, and
8i(;41)moar 1O D€ (?(j+1)modk —%;+1) mod n that denotes
the number of nodes in L(s, v) that lie between s;, and
Si(i41ymeax - Lhe following gives a recursive scheme to
grow a subsequence so that the gap between consecu-
tive nodes can differ by at most 1.

Lemma 2 Let S1 = s;,,...,5, be a subsequence of
nodes in L(s,v) so that the gap between two consecu-
tive nodes in S1 can differ by at most 1. We can form
a larger subsequence Sy by adding ¢ new nodes between
every two consecutive nodes in S so that the gap be-
tween any two consecutive nodes i Sy can differ by at
most 1.

proof: We consider the case when the gap between any
two consecutive nodes in S; can be either [ or [ — 1.
Consider the following four integers [; = [c-I—Ll]’ I, =

Lc-|+1J’ I3 = fi:_ﬂ, and Iy = LZ_—H Let p; and ps be
two consecutive nodes in S;. WLOG, assume the gap
between p; and p— 2 is . Let m = [ mod (¢ 4+ 1). We
will use {; as the gap to take the first m nodes, and [,
as the gap to take another ¢ —m nodes, starting at the
position of p;. Similarly, when their gap 1s [ — 1, we use
l3 and l; as gaps to take ¢ nodes between them. Since
l; and [y can differ by at most 1, the gap between any

two consecutive nodes in Sy can differ by at most 1. O

In each phase of our algorithms that will be pre-
sented later, we will select a set of diagonals as desti-
nations, and run [log,;,; n| steps to send the message
to nodes in the selected diagonal. Above lemma gives
us a scheme to take nodes as destinations in every step
so that the destinations are distributed evenly in each
diagonal.



3 Outline of the Algorithm

To simplify the discussion, we will first present an
algorithm for the case that n = (2d+1)" for some posi-
tive integer . We will explain later in Section 7 how to
modify the algorithm for other cases. WLOG, we as-
sume that node (0, ..., 0) is the source of the broadcast
operation.

The algorithm consists of d phases. After phase h,
1 < h < d, the nodes that already receive the message
will be distributed in the n” (d—h)-dimensional subtori
so that each subtorus has exactly one such node. We do
this by forwarding the message to the nodes in the main
diagonal, i.e. the diagonal consists of nodes (i,...,1),
0 < ¢ < n—1, in the first phase. In phase h, 2 <
h < d—1, we will select a diagonal in each of the
n"~1 (d — h + 1)-dimensional subtori as destinations,
and then forward the message to all the nodes in the
selected diagonals. The message is finally forwarded to
all the nodes in the last phase. In any communication
step, we say that a node is a source node if it already
receives the message, and a node is a destination node
if it is selected to receive the message in that step.
The main difficulty in developing the algorithm is how
to select the diagonals, and to assign destinations to
each source node so that, in every communication step,
every source node can forward the message to 2d new
destinations with congestion-free paths.

Let Dpp, 1 < h < dand 0 <k < r denote the
set of all nodes that have received the message after
communication step k of phase h. Notice that D; o =
{(0,0,...,0)}, and D, 41 ¢ will consist of all the nodes
in the torus. In the remainder of this paper, we will
explain how to perform each of phases 1 to d — 1 in
r steps, and the final phase in r 4+ 1 steps, when n =
(2d+1)". Therefore, the time bound of above algorithm
will be dr + 1.

4 Broadcast on the Main Diagonal

In this section, we explain how to broadcast the
message from source node (0,...,0) to all the other
nodes in the main diagonal, i.e. nodes (¢,...,%) for
1 < i < n—1 This will be done in r(= [log,,]
in general) communication steps as follows. In the
first step, we will choose 2d destinations for source
node (0,...,0). In each subsequent steps, we will
choose 2d destinations from nodes between two con-
secutive source nodes, using i m as the
gap. In other words, D1y, D11, ..., D1, are de-
fined as follows. Dyo = {(0,...,0)}, and Dy; =
le = 0,...,(2d + 1)F — 1}. We
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will iterate the following steps for £ = 1,...,r, and af-
ter the kth iteration, all the nodes in Dy will receive
the message. Recall that y(x) = « mod n.

For £k =1,2,...,r, do the following two steps.

1. For each source node s = (i,4,...,4) in Dy p_1, se-
lect the following 2d destination nodes Ny(s,j) =
(7(i + ]lk)a e 'a7(i + ]lk))’ and NZ(Saj) = (7(1 -
I, . ,y(@ = jly)), for 1 < j < d. Note that the
union of nodes in D; ;_; and their selected desti-
nations are Dy 1.

2. For each source node s = (4,7,...,4) in Dy p_1,
forward the message to Ny(s,j), resp. Na(s,j),
along a path that start at dimension j in positive,
resp. negative, direction, for j =1,...,d.

It is clear that every node in Dy — Dj3—1 is se-
lected by exactly one node in D; _; as its destination
in communication step k. Thus, after above process,
all nodes in the main diagonal will receive the mes-
sage. We show in [12] that there is no edge congestion
in every communication step.

Theorem 1 Phase 1 to broadcast a message from node
(0,0,...,0) to all the nodes (i,i,...,i), 1 < i <
n — 1, can be done in r communication steps on a d-
dimensional n x n X ... x n torus with wormhole and
all-port routing, where n = (2d + 1)".

5 Broadcast from Diagonals to Diago-
nals

In this section, we explain how to perform phases
2 to d — 1. Notice that after phase h, 2 < h <d —1,
each (d—h)-dimensional subtorus will have exactly one
node that has received the message. We achieve this in
phase h by first choosing n*~! diagonals, one in each
of the n"~1 (d — h + 1)-dimensional subtori, and then
perform r communication steps to send the message
to all the nodes in the selected diagonals. We next
explain how to choose diagonals, assign destinations to
each source node, and select routing paths, for phase

h,2<h<d-1.
5.1 Choosing Diagonals

In this section, we explain how to choose diagonals
to receive the message in phase h, 2 < h < d—1, and
prove some properties of the chosen diagonals that will
be used later. Recall that Dy, o denotes the set of nodes
that are the source nodes in the beginning of phase
h. We will choose the diagonals so that the nodes in
Dy o are evenly distributed in the torus with one node
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Figure 1. The dotted line is diagonal
L((i,4,3), (1,—1,0)).

in each (d — h + 1)-dimensional subtorus. We choose

diagonals for phase h as follows. Let s = (z1,...,24)
be a node in Dy, and v = (1,...,1,—-1,0,...,0) be
———’
d—h

a vector. Choose the diagonal L(s,v) generated by s
and v. Namely, L(s,v) consists of the nodes (y(z; +
m), ..., y(@a—n + m), Y(Ta—ht1 — M), Za—htz, .- -, Xd),
0 <m < n-—1. (Recall that y(z) = # mod n.) Figure
1 shows one diagonal chosen in the first step of phase
2 on a 3-dimensional torus. The following lemma can
be derived from the way we choose the diagonals.

Lemma 3

1. D1o=1{(0,0,...,0)}
2. Dzyoz{(k,k,,k)|0§k§n—1}

3. Dy = {(v(zr + m),.. .., y(xg—pt1 +
m), Y(Ta—ni2 - m), Td—h+3, - - - Td)
(21,29,...,24) € Dp_10, and 0 < m < n — 1},
for3 < h <d.

Proof: immediate from the way we choose the diago-
nals. O

Notice that the first d — h + 1 coordinates of any
node in Dy, ¢ is the same. We thus can denote a node
in Dy as (zo,. . .y Zn—1). Recall that a (d —
h+1)-dimensional subtorus consists of the nodes whose
coordinates in the last h — 1 dimensions are fixed. The
following lemma is clear from above discussion.

<y 20y 21y -

Lemma 4 Fach (d—h+1)-dimensional subtorus con-
tains exactly one node in Dy g.

Proof: immediate from the definition of Dy . O

Corollary 1 |Dj, o] = n~!

Proof: The lemmais clear as there are n"~! (d—h+1)-
dimensional subtori. O

Let p; and py be two nodes in the torus. Recall that
the dimension distance dd(p1,p2) between p; and ps
be the number of dimensions where their coordinates

differ.

Lemma 5 For any two nodes p1 and ps in the same
diagonal chosen in phase h, 1 < h < d—1, dd(p1,p2) >
2 when d > 2.

Proof: immediate from the definition of diagonal. O

Lemma 6 For any two different nodes p1 and psy in
Dpo, 2 < h < d, dd(p1,p2) > 2, when n is odd and
d> 2.

Proof: We sketch a proof of this lemma. For de-
tails, please see [12]. It is clear that above lemma
is true for h = 2 since Dy = {(k,k,..., k)0 <
k < n—1}. Assume above lemma is true for Dy g,
h > 2. Consider two nodes p; = (zp,...,20,21,..., 1)
and po = (Yo,.--, Y0, ¥1,-.-,¥n) in Dpp1 0. Assume
dd(p1,p2) = 1. By Lemma 4, p; and ps must be in
different (d — h)-dimensional subtori. Thus, p; and ps
must differ in one of the last A dimension; otherwise,
they will be in the same (d — h)-dimensional subtorus.
Thus, the first d — h coordinates of p; and p, must
be the same. We will derive contradiction for the fol-
lowing cases (1) z1 # w1, and (ii) z; # y; for some j,
2<j<h

Assume z; # y1. Since dd(p1,p2) = 1, we have
z; = y;, for all 2 < 7 < h. Thus, p; and po are in the
same diagonal chosen from a (d — h 4 1)-dimensional
subtorus in phase h. By Lemma 5, dd(p1,p2) > 2 as
they are in the same chosen diagonal. This contradicts
our assumption that dd(py, p2) = 1.

Assume z; # yj;, for some j, 2 < j < h. By the
way we chose the diagonal in phases j+1, ..., h, there
exists my;, mj_1, ..., mg so that 0 < m, <n —1, for
J>q>2,and zp, z1, ..., zj—1 can be derived in the
following equations.

zj—1 = (2 —m;) modn
zj—2 = (2z; +my —mj_1) mod n

z1=(2+mj +mj_1+ ...+ mg—my)modn
z0=1(% +m; +mj_1+ ...+ ms+my) modn

By algegraic calculation, we show in [12] that above
equations imply that dd(py, p2) > 2 which contradicts
our assumption. O

In next subsection, we will use Lemma 6 to select
edge disjoint paths in every communication step.



Lemma 7 Given xo, e xi_1q, and
Tjq1, ..., Tn, we can determine a unique x; so that
(zo,...,%0,21,...,2n) s a node in Dypyq o, for any h,
1<h<d-1.

Proof: Note that there can not be two such nodes; oth-
erwise, their dimension distance will be 1, and Lemma
6 will be violated. We next show that such a node
exists.

When h = 1, it is clear that z; = zq since Dy =
{(xg,...,20)|0 < @y < n—1}. When h > 2, assume

(zo,...,%0,21,...,25)1s anodein Dpiq o. By the way
we choose nodes in phases 1, 2, ..., h, there exist my,
Mp—1, ..., Mg sothat 0 <my <n—1,for h >¢q> 2,

and we have the following equations.

zh_1 = (zp — mp) mod n
th_z = (xp + mp — mp_1) mod n

Zip1 = (zp +mp +mp_1 + ...+ mjys —mjys) modn
x; = (xh +myp+mp_1+ ...+ Mo —m]'_|_1) mod n
i1 = (zp +mp+ ...+ mjps+ mjy —my) modn

z1 = (zp +mp+mp_1+...+mzg—my) modn
2o = (zp +mp +mp_1+...+ mz+my) modn

Given zp, Zp—1, ..., Tj4+1, we can derive the values of
Mp, Mh—1, ..., Mj4o from the first h—j—1 equations.
Given zy, ®1, ..., &j_1, we derive the values of ma,
ma, ..., mjy1 from the last j + 1 equations. Given

M2, Mz, ..., My, we can compute the valus of z; so
that xg, x1, ..., xp satisfies above equations, and hence
that (zo,...,%0,21,...,25) Is anode in Dypyq 0. O

Lemma 7 will be used to choose destinations for ev-
ery source nodes in next subsection.

5.2 Assigning Destinations

In this section, we explain how each node in
Dy -1 determines 2d destinations from nodes in
Dnr — Dy -1, In communication step & of phase
h.  Recall that I, = n/(2d + 1)* is the gap
used to choose destinations in step k& of phase h.
Dy consists of all nodes (y(zo + eli),...,v(xo +
clp),y(xo — clp), @1, ..., en1), 0 < ¢ < (2d + 1)¥,
for every node (zo,...,%0,%1,...,2p-1) In Dpp. In
other words, we can define Dy ; from Dy ;1 as fol-
lows. Dupp = {(v(xo + jl), ..., v(mo + jlx), (21 —
J), ea,ws, . xp)| (o, ..o, Lo, X1, e, Ty ..o, Th) €
Dy -1, —d < j < d}.

We say that two nodes in Dy, ; are in the same col-
umn if they are nodes in the same diagonal chosen in
phase h. In each step k& of phase h, we assign a rank

to nodes in Dy 1, according to their positions in their
diagonals. Namely, for every node p in Dy 1, the rank
of node p, denoted as rank(p), is ¢ iff p = (y(wo +
cle), .. y(xo + ), y(eo — elp), w1, 20, .., Th-1),
where (xg,...,%0,%1,22,...,25-1) Is a node in Dy p,
and 0 < ¢ < (2d + 1)*.

We say that two nodes in Dy, 1 are in the same row
iff they have the same rank in Dp ;. Let s be a node
in Dy -1, and the rank of s in Dy,  is ¢. For any node
pin Dy, we say that p and s are in the same row
group iff the rank of p is in the range [y(c—d),y(c+d)].
Note that nodes in Dj, j, are partitioned into |Dp 1| =
n"=1(2d+1)*~! row groups. In step k of phase h, node
s will determine 2d destinations from nodes in the same
row group, 2(d — h + 1) of them from the column of s,
and 2(h — 1) of them from other columns. We next
explain the details.

Let s = (y(wo + )y, v(xo + elp),y(wo —
elg), 21, 22,...,25-1) be a node in Dy ;1 with rank
cin Dpyp. In step k& of phase h, node s chooses

the 2(d — h + 1) destinations from Dy that are in
the column of s, and have their ranks in the range
[y(c—d+h—1),y(c=1)] or [y(c+1),y(c+d—h+1)].
Namely, for 1 < j <d—h+ 1, s chooses the following
Ni(s,j) and Na(s,j) from its column as its destina-
tions.

Ni(s,j) = (v(@o + (e + k), - y(@o + (e + )k),
Y(xg — (e + i), 21, ., Tho1)
Na(s, j) = (v(wo + (c = Dlx), ... y(@o + (¢ = j)li),

7($0 - (c_j)lk),$1, sy Th—1

Note that the coordinates of Ni(s,j), resp. Na(s,j),
and s differ only in the first d—h+1 dimensions. Thus,
node s can send the message to nodes in Ni(s,j) and
Ns(s, j) with paths totally within the subtorus contain-
ing s.

Node s chooses another 2(h — 1) destinations as
follows. For every j, 1 < j < h — 1, s will choose
nodes Ns(s, j) and N4(s, j) as destinations so that the
ranks of Ns(s,j) and Ny(s,j) are y(c+d—h+1+7)
and y(c — d 4+ h — 1 — j), respectively. Further-
more, the dimension distance dd(s, N3(s,j)) = 2 and
dd(s, Na(s,j)) = 2. Ns(s,j) and Ny(s,j) are defined
as follows.

Let s1 = (xo,...,%0,%1,...,24-1) be a node in
Dpo. Let yo = ~v(wo — (d — h+ 14 j)lg). For
1 < j < h —1, we can determine a unique node
so = (Yo, Y0, 21, ..., 21, Y(j), Tj41,...,2p_1) I
Dy o by Lemma 7. Note that y(j) # =z;; otherwise,
we will have two different nodes s; and ss in the
same (d — h + 1) dimensional subtorus as z¢ # yo,
and violate Lemma 4. Ns(s,j) is the node in the
column of s; with rank v(¢c +d — h+ 14+ j). Sim-



ilarly, for 1 < 57 < h — 1, we can derive a node
s3 = (z0,...,%20,%1,...,%8-1,2(j), €j41,...,2p_1) I
Dy o with z0 = y(zo+ (d—h+ 14 j)lp) and z(j) # =;.
Ny(s,j) is the node in the column of sz with rank
Ye—d4+h—=1=7). Let y(j) and z(j), 1 <j<h-1,
be defined as above discussion. We have the following.

Ns(s,j) = (v(wo +clp), ..o, y(mo + cl), y(xo — el —
20d—h+14+)l), 21, ..., 2521, 90), Zj41, - -, Tho1)
Na(s,7) = (y(wo +eliy), ..y y(wo + elyy), y(wo — elp+
20d—h+14+)l), 21, ..., 25-1,2(0), 241, -, The1)

Note that the coordinates of s and Nj(s,j), resp.
Ny(s, ), differ in dimensions d—h+1 and d—h+147.
Node s can send the message to Ns(s,j) and Ny(s, j)
with paths consisting of exactly two edges. Further-
more, under above destination assignment, no distinct
nodes in Dy ;1 choose the same node as their desti-
nation. For details of the proof, please see [12].

5.3 Routing Paths

Let s be a source node in Dy ;. Node s will send
the message to its 2d destinations as follows.

1. For 1 < j < d—-h+1, s sends the message to
Ni(s,j), resp. Na(s,j), along a path that starts
with dimension j in positive, resp. negative, di-
rection.

2. For 1 < j < h—1, s sends the message to N3(s, j),
resp. Ny(s,j), along a path that starts with di-
mension d — h+ 1 + j in positive, resp. negative,
direction.

Lemma 8 There is no edge congestion among the
paths used to send the messages in the same communi-
cation step of above algorithm.

Proof: Consider the paths for two distinct source-
destination pairs s1,d; and ss,ds in step k of phase
h. Note that di # d2. Suppose P; is the path from
s1 to so, and Ps is the path from s; to ds. Assume P
and P, share some edge in the same direction. We say
that a local edge 1s an edge connecting two nodes in the
same subtorus, and a global edge is an edge connecting
two nodes in two different subtori. We classify the two
paths into the following cases.

Case 1. Both P, and P use only local edges. Assume
P, and P5 share some edge in the same direction.
We have all the edges in P, and P» are in the same
(d — h + 1)-dimensional subtorus, and s1, dy, sa,
and ds are in the same (d — h + 1)-dimensional
subtorus. We thus can show that P, and Ps does
not share any edge by a proof similar to that in
lemma ?7.

Case 2. Both paths use one global edge and one lo-
cal edge. WLOG, assume ¢, resp. ¢2, is the in-
termediate node in Py, resp P,. Assume P; and
P, share the same global edge in the same direc-
tion. We have s; = s9, and ¢ = ¢». This is
impossible since all the paths originating from s
in the positive direction start at different dimen-
sions. Assume P; and P share the same local
edge. We have dd(dy,d2) < 1. This impossible
since dd(dy, d2) > 2 as proved in Lemma 6. There-
fore, P; and P> does not share any edge in the
same direction.

Case 3. One path consists of only local edges, and
the other consists of a global edge and a local
edge. WLOG, assume P; consists of only local
edges, and P> consists of a global edge and a lo-
cal edge. Let ¢ be the intermediate node in P;.
The common edge of P, and P» must be the local
edge (¢,d1) of Pi, which is an edge along dimen-
sion d — h 4+ 1. Since di and d» are in the same
subtorus, and hence in the same diagonal, d; and
dy can be denoted as (zg, ..., 20, ®1,¢1,...,Ch—1)
and (yo,...,Y0,¥1,¢1,...,¢p—1) With 2p # yo and
1 # y1. Since zg # yo and x1 # y1, it is impos-
sible for Py to pass through dy. Thus, edge (¢,d1)
is not in P. Therefore, P; and P does not share
the same edge in the same direction.

O

Theorem 2 Phase h, 0 < h < d —1, can be done
m r communication steps on a d-dimensional n X n X
... X n torus with all-port and wormhole routing when

n=(2d+ 1y
6 The Final Phase

Note that after phase (d — 1), each 1-dimensional
subtorus, referred as a column, will contains exactly
one node that has received the message. In the first
step of phase d, we will first send the message to nodes
in the following set: S = {('y(zglzz i), Xay ..., 2q)]0 <
z; < n—1,2 <i<d}. Tt is clear it can be done in
one communication step. Nodes in S has the following

property.

Lemma 9 For any j, 2 < j < d, the nodes in S that
are in the same xix;-plane form a diagonal in that
plane.

Proof: Consider a z,x;-plane that consists of all nodes
(x1,...,2q4) with 22 = ca, ...
Cjt1, -+, Tq Where ca, ...

y Lj—1 = Cj—1, Lj41 =

, Cj—1, Cj, ..., Cq are some



constants. Let ¢ = v(ca + -+ ¢j_1 + ¢ + -+ ¢q).
Consider a node (y1,...,y4) of S in that plane. We
have y; = 'y(zglzz yi) = v(y; + ¢). Thus, all the nodes
of S in that plane form a diagonal. O

Let I = n/(2d + 1)*, and Sy = S. De-
fine Sy, Sa, ..., S, as follows: S = {(y(=1 +
), xa, .. za)|(z1,. .., 2q) € 5,0 < e < (2d + 1)*}.

We say that the rank of node (y(x1 + ¢li), 2, ..., 24)
in Sy is ¢. By an argument similar to that used in the
proof of Lemma 9, we can prove the following lemma.

Lemma 10 For any j, 2 < j < d, the nodes wn S that
are in the same xix;-plane, and have the same rank
form a diagonal in that plane.

Note that Sip41 can be defined from S} as follows:

Sk+1 = e+ Jlk) 2, 24
(x1,22,...,24) € Sp,and ,—d < j < d}. Let s =
(z1,...,24) be a node in Sg, we use G*t(s,i), resp.
GG~ (s,1), to denote the node (y(x1 + ily), 2, ..., 24q),

and resp. (y(wy —ily), 22, ..., 2q), for 1 < i< d. We
say that node GT(s,4), resp. GG~ (s,4) is the ith desti-
nation generated from s in the positive, resp. negative,
direction. Note that Sp41 consists of the union of Sy
and all the destinations generated from nodes in Sj.
We do the following operations in the final phase.

1. For k=1,2,...,7, do the following steps.

(a) For each node s in Sp_y, choose 2d desti-
nations from nodes in S; — Si_1 as follows.
For each dimension j, along the positive di-
rection of dimension j, choose the jth node,
denoted as Nj(s,j), that are in S — Sp_1,
and similarly, choose the jth node, denoted as
Ns(s, j), along the negative direction. Note
that the coordinates of s and Ny (s, j), resp.
Ns(s, j), differ only in dimension j.

(b) For 1 < j < d, each node s in Sj_; forwards
the message to Ny(s, j) along the positive di-
rection, and to Na(s,j) along the negative
direction.

The following lemma gives the correctness of above
algorithm.

Lemma 11 In iteration k of above algorithm, every
node in Sy — Sp_1 will receive the message from ex-
actly one node in Sy_1. Furthermore, there is no edge
congestion in every step.

Proof: The proof is based on the following observa-
tion. Consider all the nodes in S; that are in the same
zixj-plane. Note that in that x;z;-plane, the source

nodes will form (2d + 1)*~! diagonals, and the desti-
nation nodes will form 2d(2d + 1)*~! diagonals. Fur-
thermore, the destination diagonals are distributed so
that there are 2d destination diagonals between every
two consecutive source diagonals. O

Theorem 3 Phase d can be done in v+ 1 communi-
cation steps on a d-dimenstonal n X n X ...x n torus
with all-port and wormhole routing when = (2d + 1)*.

Theorem 4 In dr + 1 communication steps, we can
broadcast a message from a source node to all other
nodes on a d-dimensional torus with wormhole and all-
port routing when n = (2d + 1)".

7 Modifications for Other Cases

In this section, we discuss how to modify our algo-
rithms to handle the case when n is not a power of
2d 4+ 1. We will first discuss the case when n is odd.
When n is even, we will first run the algorithm on a
(n—1)x(n—1)x...x(n—1) subtorus, and then per-
form an extra phase to forward the message to nodes
not in the subtorus.

When n is odd, it is possible that n can not be di-
vided by (2d + 1)*. Thus, in step k of any phase, we
can not simply use m as the gap to take 2d desti-
nations between two consecutive source nodes. We use
the scheme presented in Lemma 2. Since at any step,
the gaps between any consecutive source nodes can dif-
fer by at most 1, all nodes in the any chosen diagonal
will be selected as destinations after [log, g, n] steps.
Since the destination assignment are based on ranks
on each column, we can follow similar approach as pre-
sented in Section 5.2 to determine the destinations of
every source node. Each source sends the message to
its destinations in the same approach as presented in
Section 5.3.

Theorem 5 In d[log, ., n]+1 communication steps,
we can broadcast a message from a source node to all
other nodes on a d-dimensional torus with wormhole
and all-port routing, when n is odd.

When n is even, we will first run the algorithm for
odd dimension sizeona(n—1)x (n—1)x...x (n—1)
subtorus by skipping the nodes with n — 1 in some
of their coordinates. Note that this can be done in
[dlogsgy1(n—1)] +1, assuming the wrap-around edge
is simulated by a path of length 2 in the original torus.
We then perform an extra phase to finish the broadcast,
which will be done in [d/2] steps as follows.

Assume all the nodes (z1,...,24) with 0 < #; <
n—2,1<1<d, already receive the message. We need



to forward the message to all the nodes (#1,...,24)
with at least one z; = n—1, 1 <i < d. We will do this
in [d/2] steps as follows.

Let p1 = (#1,...,24) be some nodes with exactly
one coordinate ; = n— 1, and «; # n —1Vj # ¢
Node p will receive the message from the node s; =
(x1,. .. @i—1,n — 2,241, ..., 24) from edge (s1,p1) in
the positive direction.

Let p2 = (x1,...,24) be some nodes with ex-
actly two coordinates 2; = «; = n — 1, and «;, #
n—1Vt # iandt # j. WLOG, assume i < j.
Node p; will receive the message from node sy, =
(z1,...,2i-1,0, %41, ..., 2;-1,0,241,...,2q4) from a
path that consists of two edges in the negative direc-
tion.

Thus, in one communication step, all the nodes with
coordinate n — 1 in one or two dimensions will receive
the message. Assume all the nodes with coordinate
n — 1 in no more than k, & > 2, dimensions have re-
ceived the message. Similarly, in one communication
step, we can forward the message to all the nodes with
coordinate n—11in k41 or k42 dimensions from nodes
with coordinate n—11in k—1 or k& dimensions, consider-
ing subproblems on (d — m)-dimensional subtori with
coordinate n — 1 in m dimensions. Thus, the extra
phase can be done in [d/2] communication steps.

Theorem 6 In d[logy;, i n]| + [d/2] + 1 communica-
tion steps, we can broadcast a message from a source
node to all other nodes on a d-dimensional torus with
wormhole and all-port routing, when n is cven.

8 Further Remarks

In this paper, we first present an algorithm for per-
forming broadcast on a d-dimensionaln xnxn...xn
torus that supports all-port and wormhole routing with
cyclic dimension order, when n 1s a power of 2d+1. We
then explain how to modify the algorithm to handle the
case that n is not a power of 2d+1. Our algorithms are
optimal up to the constant term for arbitrary dimen-
sion size n. Previous algorithms that achieves compa-
rable performance only work for the case that either
d =2 [14] or 3 [15], or n is a power of 2d+ 1 [8]. When
d = 2 or 3, our algorithms can be further improved
to achieve the performance that mathes the current
best bound achieved in [14] and [15]. Currently, we are
trying to improve the performance of our algorithm es-
pecially for the case that n is even. When d = 3, we are
able to eliminate the extra phase for even n. We expect
to eliminate the extra phase for arbitrary dimensions
in the future.
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