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Abstract

In this paper, we present nearly optimal algorithms
for broadcast on a d-dimensional n� n� : : :� n torus
that supports all-port communication and wormhole
routing. Let T (n) denote the number of communi-
cation steps performed to broadcast a message. We
present algorithms that achieve the following perfor-
mance: (i) T (n) = ddlog2d+1 ne+1 when n is odd, and
(ii) T (n) = ddlog2d+1(n � 1)e + dd=2e + 1 when n is
even. The lower bound is dd log2d+1 ne. Our algorithm
is the �rst one that works for arbitrary n, and is opti-
mal up to the constant term. Previous algorithms with
comparable performance only work for the case that ei-
ther d is 2 or 3, or n is a power of 2d+ 1. For special
cases such as d = 2 or 3, we can improve the algorithm
so that T (n) = ddlog2d+1 ne for any n.

1 Introduction

Broadcast, in which a source processor broadcasts
a message to all other processors, is one of the most
fundamental collective communications, and is often
used for synchronization, initialization, diagnosis, or
algorithm execution. In this paper, we study the
problem of performing broadcast on a d-dimensional
n�n�: : :�n torus that supports wormhole routing and
all-port communication. Notice that torus is one of the
most important architectures that have attracted in-
tensive attention and have been used for building paral-
lel computers. A number of recent research have aimed
to develop optimal algorithms for collective communi-
cations on torus with wormhole and all-port routing
[11, 1, 8, 10, 13, 14, 15]. Let T (n) denote the number
of communication steps performed by a communica-
tion algorithm. The main contribution of this paper is

in developing a broadcast algorithm on a d-dimensional
n�n�: : :�n torus, with T (n) = ddlog 2d+1ne+1 when
n is odd. When n is even, the algorithm can be modi-
�ed to perform broadcast with T (n) = ddlog 2d+1(n �
1)e+ dd=2e+ 1. The lower bound is dd log2d+1 ne. No-
tice that our algorithm is optimal upto the constant
term. There are several recent research presenting al-
gorithms with comparable performance. In [14], Tseng
presents an algorithm that takes 2dlog5 ne on a n � n
torus. He also proposes an approach to generalize his
algorithm to run on a n1 � n2 torus with time bound
dlog5 n1e+dlog5

n1
2 e+dlog5

n2
n1
e+3. In [15], Tseng and

Wang presents an algorithm that takes 3dlog7 ne + 2
on a 3-dimensional n�n�n torus. Both the algorithms
in [14] and [15] use only dimensional order routing. In
[8], Park and Choi present the �rst algorithm that are
e�cient for arbitrary dimension d. Although the algo-
rithm presented in [8] achieves the optimal bound, it
works only for the case that n is a power of 2d + 1,
and requires arbitrary routing capability. Our algo-
rithm is the �rst one that work for arbitrary d and
n, and requires simple routing that is an extension of
the dimensional order routing. Moreover, when d = 2
or 3, our algorithm can be further improved so that
T (n) = ddlog2d+1 ne for arbitrary n.

The rest of this paper is organized as follows. Sec-
tion 2 gives preliminaries. Sections 3, 4 and 5 gives
the algorithm for the case that n is a power of 2d+ 1.
Section 6 sketches modi�cations of the algorithm for
other cases. Section 7 gives further remarks. Due to
page limitation, some details are omitted in this paper.
All the details can be found in [12].

2 Preliminaries

A d-dimensional n � n � : : : � n torus, denoted
as Tnd , is an undirected graph that consists of nodes

IPPS/SPDP 1998

 1063-7133/98 
$10.00 (c) 1998 IEEE



(x1; : : : ; xd) with 0 � xi � n � 1, 1 � i � d, where xi
is the coordinate of that node in dimension i. Nodes
(x1; : : : ; xd) and (y1; : : : ; yd) are connected by an edge
i� there exists a k, 1 � k � d, so that jxk � ykj = 1 or
n� 1, and xi = yi, for 8i 6= k and 1 � i � d.

In this paper, we consider the problem of performing
broadcast in torus that supports all-port communica-
tion and wormhole routing. In all-port communication,
every node can send/receive a message at each of its
communication links at every communication step. In
wormhole routing, a message is partitioned into 
its
that are pipelined over the communication path [2, 7].
We also assume the routing always �nishes going one
dimension before turning to another dimension as in
dimension order routing. However, we assume a path
can start at any dimension, and then follow the cyclic
order of the dimensions until the destination is reached.
Namely, assume the coordinates of a source node and a
destination node di�er at dimensions i1; i2; : : : ; ik with
i1 < i2 < : : : < ik. If the routing starts at dimension ij ,
1 � j � k, the subsequent dimensions are i(j+1)modk,
: : : , i(j+k�1)modk. In each dimension, the direction of a
path can be either positive, i.e. coordinate-increasing,
or negative, i.e. coordinate-decreasing. We assume a
path must follow the same direction in all dimensions.
We call this type of routing as cyclic dimension order.
In cyclic dimension order routing, a path is determined
by a starting dimension and a direction.

When there is no edge congestion in the communi-
cation paths, the communication latency of wormhole
routing is very insensitive to the path length. We thus
measure the complexity of a communication algorithm
by the number of its communication steps. In each
communication step, each processor can compute upto
2d destinations, determine a path for each destination,
and then send/receive one message at each of its com-
munication links. Such a measure has been used in
the analysis of communication algorithms developed on
wormhole-routed models [11, 1, 8, 10, 13, 14, 15].

Since at any step, a node can send to at most 2d
destination nodes, any broadcast algorithm will take
at least dd log 2d+1ne communication steps. We thus
have the following lower bound.

Lemma 1 Any algorithm for broadcast on a d-
dimensional n�n�: : :�n all-port and wormhole-routed
torus takes at least dd log 2d+1ne communication steps.

For any two nodes p1 and p2 in Tnd , de�ne the
dimension distance, denoted as dd(p1; p2), to be the
number of dimensions where their coordinates dif-
fer. For example dd((0; : : : ; 0); (1; : : : ; 1)) = d, and
dd((1; : : : ; 1; 0); (1; : : : ; 1; 3)) = 1. In this paper, we

will frequently partition Tnd into nh, 0 � h � d, dis-
joint (d� h)-dimensional subtori by �xing the coordi-
nates in the last h dimensions. We thus, in this pa-
per, de�ne a (d � h)-dimensional subtorus to be the
subgraph in Tnd induced by all the nodes with the
same coordinates in the last h dimensions, i.e. by all
nodes (x1; : : : ; xd�h; c1; : : : ; ch), where 0 � xi � n� 1,
1 � i � d � h, and c1, : : : , ch are some �xed con-
stants. Given a node s = (x1; : : : ; xd�h; c1; : : : ; ch)
in a (d � h)-dimensional subtorus, and a vector v =
(v1; : : : ; vd�h; 0; : : : ; 0) with vi 2 f1;�1g, 1 � i � d�h,
the diagonal generated by s and v, denoted as L(s; v),
consists of the sequence of nodes s, s + v, s + 2v, : : : ,
s+(n�1)v, where s+mv = (
(x1+mv1); : : : ; 
(xd�h+
mvd�h); xd�h+1; : : : ; xd), 0 � m � n � 1, and 
(x) =
x mod n is the modulo over n.

Consider a diagonal L(s; v) = s0; s1; : : : ; sn�1 with
si = s + iv. Let S = si1 ; si2 ; : : : ; sik be a subsequence
of nodes in L(s; v). De�ne the gap between sij and
si(j+1)modk

to be (i(j+1)modk�ij+1) mod n that denotes
the number of nodes in L(s; v) that lie between sij and
si(j+1)modk

. The following gives a recursive scheme to
grow a subsequence so that the gap between consecu-
tive nodes can di�er by at most 1.

Lemma 2 Let S1 = si1 ; : : : ; sik be a subsequence of
nodes in L(s; v) so that the gap between two consecu-
tive nodes in S1 can di�er by at most 1. We can form
a larger subsequence S2 by adding c new nodes between
every two consecutive nodes in S1 so that the gap be-
tween any two consecutive nodes in S2 can di�er by at
most 1.

proof: We consider the case when the gap between any
two consecutive nodes in S1 can be either l or l � 1.
Consider the following four integers l1 = d l

c+1e, l2 =

b l
c+1c, l3 = d l�1

c+1e, and l4 = b l�1
c+1c. Let p1 and p2 be

two consecutive nodes in S1. WLOG, assume the gap
between p1 and p� 2 is l. Let m = l mod (c + 1). We
will use l1 as the gap to take the �rst m nodes, and l2
as the gap to take another c�m nodes, starting at the
position of p1. Similarly, when their gap is l�1, we use
l3 and l4 as gaps to take c nodes between them. Since
l1 and l4 can di�er by at most 1, the gap between any
two consecutive nodes in S2 can di�er by at most 1. 2

In each phase of our algorithms that will be pre-
sented later, we will select a set of diagonals as desti-
nations, and run dlog2d+1 ne steps to send the message
to nodes in the selected diagonal. Above lemma gives
us a scheme to take nodes as destinations in every step
so that the destinations are distributed evenly in each
diagonal.
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3 Outline of the Algorithm

To simplify the discussion, we will �rst present an
algorithm for the case that n = (2d+1)r for some posi-
tive integer r. We will explain later in Section 7 how to
modify the algorithm for other cases. WLOG, we as-
sume that node (0; : : : ; 0) is the source of the broadcast
operation.

The algorithm consists of d phases. After phase h,
1 � h � d, the nodes that already receive the message
will be distributed in the nh (d�h)-dimensional subtori
so that each subtorus has exactly one such node. We do
this by forwarding the message to the nodes in themain
diagonal, i.e. the diagonal consists of nodes (i; : : : ; i),
0 � i � n � 1, in the �rst phase. In phase h, 2 �
h � d � 1, we will select a diagonal in each of the
nh�1 (d � h + 1)-dimensional subtori as destinations,
and then forward the message to all the nodes in the
selected diagonals. The message is �nally forwarded to
all the nodes in the last phase. In any communication
step, we say that a node is a source node if it already
receives the message, and a node is a destination node
if it is selected to receive the message in that step.
The main di�culty in developing the algorithm is how
to select the diagonals, and to assign destinations to
each source node so that, in every communication step,
every source node can forward the message to 2d new
destinations with congestion-free paths.

Let Dh;k, 1 � h � d and 0 � k � r denote the
set of all nodes that have received the message after
communication step k of phase h. Notice that D1;0 =
f(0; 0; : : :; 0)g, and Dr+1;0 will consist of all the nodes
in the torus. In the remainder of this paper, we will
explain how to perform each of phases 1 to d � 1 in
r steps, and the �nal phase in r + 1 steps, when n =
(2d+1)r. Therefore, the time bound of above algorithm
will be dr+ 1.

4 Broadcast on the Main Diagonal

In this section, we explain how to broadcast the
message from source node (0; : : : ; 0) to all the other
nodes in the main diagonal, i.e. nodes (i; : : : ; i) for
1 � i � n � 1. This will be done in r(= dlogn2d+1e
in general) communication steps as follows. In the
�rst step, we will choose 2d destinations for source
node (0; : : : ; 0). In each subsequent steps, we will
choose 2d destinations from nodes between two con-
secutive source nodes, using lk = n

(2d+1)k as the

gap. In other words, D1;0, D1;1, : : : , D1;r are de-
�ned as follows. D1;0 = f(0; : : : ; 0)g, and D1;k =
f( cn

(2d+1)k ; : : : ;
cn

(2d+1)k )jc = 0; : : : ; (2d + 1)k � 1g. We

will iterate the following steps for k = 1; : : : ; r, and af-
ter the kth iteration, all the nodes in D1;k will receive
the message. Recall that 
(x) = x mod n.

For k = 1; 2; : : : ; r, do the following two steps.

1. For each source node s = (i; i; : : : ; i) in D1;k�1, se-
lect the following 2d destination nodes N1(s; j) =
(
(i + jlk); : : : ; 
(i + jlk)), and N2(s; j) = (
(i �
jlk); : : : ; 
(i � jlk)), for 1 � j � d. Note that the
union of nodes in D1;k�1 and their selected desti-
nations are D1;k.

2. For each source node s = (i; i; : : : ; i) in D1;k�1,
forward the message to N1(s; j), resp. N2(s; j),
along a path that start at dimension j in positive,
resp. negative, direction, for j = 1; : : : ; d.

It is clear that every node in D1;k � D1;k�1 is se-
lected by exactly one node in D1;k�1 as its destination
in communication step k. Thus, after above process,
all nodes in the main diagonal will receive the mes-
sage. We show in [12] that there is no edge congestion
in every communication step.

Theorem 1 Phase 1 to broadcast a message from node
(0; 0; : : : ; 0) to all the nodes (i; i; : : : ; i), 1 � i �
n � 1, can be done in r communication steps on a d-
dimensional n � n � : : :� n torus with wormhole and
all-port routing, where n = (2d+ 1)r.

5 Broadcast from Diagonals to Diago-
nals

In this section, we explain how to perform phases
2 to d � 1. Notice that after phase h, 2 � h � d � 1,
each (d�h)-dimensional subtorus will have exactly one
node that has received the message. We achieve this in
phase h by �rst choosing nh�1 diagonals, one in each
of the nh�1 (d� h + 1)-dimensional subtori, and then
perform r communication steps to send the message
to all the nodes in the selected diagonals. We next
explain how to choose diagonals, assign destinations to
each source node, and select routing paths, for phase
h, 2 � h � d� 1.

5.1 Choosing Diagonals

In this section, we explain how to choose diagonals
to receive the message in phase h, 2 � h � d� 1, and
prove some properties of the chosen diagonals that will
be used later. Recall thatDh;0 denotes the set of nodes
that are the source nodes in the beginning of phase
h. We will choose the diagonals so that the nodes in
Dh;0 are evenly distributed in the torus with one node
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Figure 1. The dotted line is diagonal
L((i; i; i); (1;�1; 0)).

in each (d � h + 1)-dimensional subtorus. We choose
diagonals for phase h as follows. Let s = (x1; : : : ; xd)
be a node in Dh;0, and v = (1; : : : ; 1| {z }

d�h

;�1; 0; : : :; 0) be

a vector. Choose the diagonal L(s; v) generated by s
and v. Namely, L(s; v) consists of the nodes (
(x1 +
m); : : : ; 
(xd�h + m); 
(xd�h+1 � m); xd�h+2; : : : ; xd),
0 � m � n� 1. (Recall that 
(x) = x mod n.) Figure
1 shows one diagonal chosen in the �rst step of phase
2 on a 3-dimensional torus. The following lemma can
be derived from the way we choose the diagonals.

Lemma 3 1. D1;0 = f(0; 0; : : : ; 0)g

2. D2;0 = f(k; k; : : : ; k)j0 � k � n� 1g

3. Dh;0 = f(
(x1 + m); : : : ; 
(xd�h+1 +
m); 
(xd�h+2 � m); xd�h+3; : : : ; xd)j
(x1; x2; : : : ; xd) 2 Dh�1;0, and 0 � m � n � 1g,
for 3 � h � d.

Proof: immediate from the way we choose the diago-
nals. 2

Notice that the �rst d � h + 1 coordinates of any
node in Dh;0 is the same. We thus can denote a node
in Dh;0 as (z0; : : : ; z0; z1; : : : ; zh�1). Recall that a (d�
h+1)-dimensional subtorus consists of the nodes whose
coordinates in the last h� 1 dimensions are �xed. The
following lemma is clear from above discussion.

Lemma 4 Each (d�h+1)-dimensional subtorus con-
tains exactly one node in Dh;0.

Proof: immediate from the de�nition of Dh;0. 2

Corollary 1 jDh;0j = nh�1

Proof: The lemma is clear as there are nh�1 (d�h+1)-
dimensional subtori. 2

Let p1 and p2 be two nodes in the torus. Recall that
the dimension distance dd(p1; p2) between p1 and p2
be the number of dimensions where their coordinates
di�er.

Lemma 5 For any two nodes p1 and p2 in the same
diagonal chosen in phase h, 1 � h � d�1, dd(p1; p2) �
2 when d � 2.

Proof: immediate from the de�nition of diagonal. 2

Lemma 6 For any two di�erent nodes p1 and p2 in
Dh;0, 2 � h � d, dd(p1; p2) � 2, when n is odd and
d � 2.

Proof: We sketch a proof of this lemma. For de-
tails, please see [12]. It is clear that above lemma
is true for h = 2 since D2;0 = f(k; k; : : : ; k)j0 �
k � n � 1g. Assume above lemma is true for Dh;0,
h � 2. Consider two nodes p1 = (z0; : : : ; z0; z1; : : : ; zh)
and p2 = (y0; : : : ; y0; y1; : : : ; yh) in Dh+1;0. Assume
dd(p1; p2) = 1. By Lemma 4, p1 and p2 must be in
di�erent (d� h)-dimensional subtori. Thus, p1 and p2
must di�er in one of the last h dimension; otherwise,
they will be in the same (d� h)-dimensional subtorus.
Thus, the �rst d � h coordinates of p1 and p2 must
be the same. We will derive contradiction for the fol-
lowing cases (i) z1 6= y1, and (ii) zj 6= yj for some j,
2 � j � h.

Assume z1 6= y1. Since dd(p1; p2) = 1, we have
zj = yj, for all 2 � j � h. Thus, p1 and p2 are in the
same diagonal chosen from a (d � h + 1)-dimensional
subtorus in phase h. By Lemma 5, dd(p1; p2) � 2 as
they are in the same chosen diagonal. This contradicts
our assumption that dd(p1; p2) = 1.

Assume zj 6= yj , for some j, 2 � j � h. By the
way we chose the diagonal in phases j+1, : : : , h, there
exists mj , mj�1, : : : , m2 so that 0 � mq � n � 1, for
j � q � 2, and z0, z1, : : : , zj�1 can be derived in the
following equations.

zj�1 = (zj �mj) mod n
zj�2 = (zj +mj �mj�1) mod n

...
z1 = (zj +mj +mj�1 + : : :+m3 �m2) mod n
z0 = (zj +mj +mj�1 + : : :+m3 +m2) mod n

By algegraic calculation, we show in [12] that above
equations imply that dd(p1; p2) � 2 which contradicts
our assumption. 2

In next subsection, we will use Lemma 6 to select
edge disjoint paths in every communication step.
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Lemma 7 Given x0, : : : , xj�1, and
xj+1, : : : , xh, we can determine a unique xj so that
(x0; : : : ; x0; x1; : : : ; xh) is a node in Dh+1;0, for any h,
1 � h � d� 1.

Proof: Note that there can not be two such nodes; oth-
erwise, their dimension distance will be 1, and Lemma
6 will be violated. We next show that such a node
exists.

When h = 1, it is clear that x1 = x0 since D2;0 =
f(x0; : : : ; x0)j0 � x0 � n � 1g. When h � 2, assume
(x0; : : : ; x0; x1; : : : ; xh) is a node inDh+1;0. By the way
we choose nodes in phases 1, 2, : : : , h, there exist mh,
mh�1, : : : , m2 so that 0 � mq � n� 1, for h � q � 2,
and we have the following equations.

xh�1 = (xh �mh) mod n
xh�2 = (xh +mh �mh�1) mod n

...
xj+1 = (xh +mh +mh�1 + : : :+mj+3 �mj+2) mod n
xj = (xh +mh +mh�1 + : : :+mj+2 �mj+1) mod n
xj�1 = (xh +mh + : : :+mj+3 +mj+1 �mj) mod n

...
x1 = (xh +mh +mh�1 + : : :+m3 �m2) mod n
x0 = (xh +mh +mh�1 + : : :+m3 +m2) mod n

Given xh, xh�1, : : : , xj+1, we can derive the values of
mh, mh�1, : : : , mj+2 from the �rst h�j�1 equations.
Given x0, x1, : : : , xj�1, we derive the values of m2,
m3, : : : , mj+1 from the last j + 1 equations. Given
m2, m3, : : : , mh, we can compute the valus of xj so
that x0, x1, : : : , xh satis�es above equations, and hence
that (x0; : : : ; x0; x1; : : : ; xh) is a node in Dh+1;0. 2

Lemma 7 will be used to choose destinations for ev-
ery source nodes in next subsection.

5.2 Assigning Destinations

In this section, we explain how each node in
Dh;k�1 determines 2d destinations from nodes in
Dh;k � Dh;k�1, in communication step k of phase
h. Recall that lk = n=(2d + 1)k is the gap
used to choose destinations in step k of phase h.
Dh;k consists of all nodes (
(x0 + clk); : : : ; 
(x0 +
clk); 
(x0 � clk); x1; : : : ; xh�1), 0 � c < (2d + 1)k,
for every node (x0; : : : ; x0; x1; : : : ; xh�1) in Dh;0. In
other words, we can de�ne Dh;k from Dh;k�1 as fol-
lows. Dh;k = f(
(x0 + jlk); : : : ; 
(x0 + jlk); 
(x1 �
jlk); x2; x3; : : : ; xh)j(x0; : : : ; x0; x1; x2; x3; : : : ; xh) 2
Dh;k�1;�d � j � dg.

We say that two nodes in Dh;k are in the same col-
umn if they are nodes in the same diagonal chosen in
phase h. In each step k of phase h, we assign a rank

to nodes in Dh;k according to their positions in their
diagonals. Namely, for every node p in Dh;k, the rank
of node p, denoted as rank(p), is c i� p = (
(x0 +
clk); : : : ; 
(x0 + clk); 
(x0 � clk); x1; x2; : : : ; xh�1),
where (x0; : : : ; x0; x1; x2; : : : ; xh�1) is a node in Dh;0,
and 0 � c < (2d+ 1)k.

We say that two nodes in Dh;k are in the same row
i� they have the same rank in Dh;k. Let s be a node
in Dh;k�1, and the rank of s in Dh;k is c. For any node
p in Dh;k, we say that p and s are in the same row
group i� the rank of p is in the range [
(c�d); 
(c+d)].
Note that nodes inDh;k are partitioned into jDh;k�1j =
nh�1(2d+1)k�1 row groups. In step k of phase h, node
s will determine 2d destinations from nodes in the same
row group, 2(d� h+ 1) of them from the column of s,
and 2(h � 1) of them from other columns. We next
explain the details.

Let s = (
(x0 + clk); : : : ; 
(x0 + clk); 
(x0 �
clk); x1; x2; : : : ; xh�1) be a node in Dh;k�1 with rank
c in Dh;k. In step k of phase h, node s chooses
the 2(d � h + 1) destinations from Dh;k that are in
the column of s, and have their ranks in the range
[
(c�d+h�1); 
(c�1)] or [
(c+1); 
(c+d�h+1)].
Namely, for 1 � j � d� h + 1, s chooses the following
N1(s; j) and N2(s; j) from its column as its destina-
tions.

N1(s; j) = (
(x0 + (c + j)lk); : : : ; 
(x0 + (c+ j)lk),

(x0 � (c + j)lk); x1; : : : ; xh�1)

N2(s; j) = (
(x0 + (c � j)lk); : : : ; 
(x0 + (c� j)lk),

(x0 � (c � j)lk); x1; : : : ; xh�1)

Note that the coordinates of N1(s; j), resp. N2(s; j),
and s di�er only in the �rst d�h+1 dimensions. Thus,
node s can send the message to nodes in N1(s; j) and
N2(s; j) with paths totally within the subtorus contain-
ing s.

Node s chooses another 2(h � 1) destinations as
follows. For every j, 1 � j � h � 1, s will choose
nodes N3(s; j) and N4(s; j) as destinations so that the
ranks of N3(s; j) and N4(s; j) are 
(c + d� h+ 1 + j)
and 
(c � d + h � 1 � j), respectively. Further-
more, the dimension distance dd(s;N3(s; j)) = 2 and
dd(s;N4(s; j)) = 2. N3(s; j) and N4(s; j) are de�ned
as follows.

Let s1 = (x0; : : : ; x0; x1; : : : ; xh�1) be a node in
Dh;0. Let y0 = 
(x0 � (d � h + 1 + j)lk). For
1 � j � h � 1, we can determine a unique node
s2 = (y0; : : : ; y0; x1; : : : ; xj�1; y(j); xj+1; : : : ; xh�1) in
Dh;0 by Lemma 7. Note that y(j) 6= xj; otherwise,
we will have two di�erent nodes s1 and s2 in the
same (d � h + 1) dimensional subtorus as x0 6= y0,
and violate Lemma 4. N3(s; j) is the node in the
column of s2 with rank 
(c + d � h + 1 + j). Sim-
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ilarly, for 1 � j � h � 1, we can derive a node
s3 = (z0; : : : ; z0; x1; : : : ; xj�1; z(j); xj+1; : : : ; xh�1) in
Dh;0 with z0 = 
(x0+(d�h+1+ j)lk ) and z(j) 6= xj .
N4(s; j) is the node in the column of s3 with rank

(c� d+ h� 1� j). Let y(j) and z(j), 1 � j � h� 1,
be de�ned as above discussion. We have the following.

N3(s; j) = (
(x0 + clk); : : : ; 
(x0 + clk); 
(x0 � clk�
2(d� h+ 1 + j)lk); x1; : : : ; xj�1; y(j); xj+1; : : : ; xh�1)
N4(s; j) = (
(x0 + clk); : : : ; 
(x0 + clk); 
(x0 � clk+
2(d� h+ 1 + j)lk); x1; : : : ; xj�1; z(j); xj+1; : : : ; xh�1)

Note that the coordinates of s and N3(s; j), resp.
N4(s; j), di�er in dimensions d�h+1 and d�h+1+j.
Node s can send the message to N3(s; j) and N4(s; j)
with paths consisting of exactly two edges. Further-
more, under above destination assignment, no distinct
nodes in Dh;k�1 choose the same node as their desti-
nation. For details of the proof, please see [12].

5.3 Routing Paths

Let s be a source node in Dh;k. Node s will send
the message to its 2d destinations as follows.

1. For 1 � j � d � h + 1, s sends the message to
N1(s; j), resp. N2(s; j), along a path that starts
with dimension j in positive, resp. negative, di-
rection.

2. For 1 � j � h�1, s sends the message to N3(s; j),
resp. N4(s; j), along a path that starts with di-
mension d � h+ 1 + j in positive, resp. negative,
direction.

Lemma 8 There is no edge congestion among the
paths used to send the messages in the same communi-
cation step of above algorithm.

Proof: Consider the paths for two distinct source-
destination pairs s1; d1 and s2; d2 in step k of phase
h. Note that d1 6= d2. Suppose P1 is the path from
s1 to s2, and P2 is the path from s2 to d2. Assume P1
and P2 share some edge in the same direction. We say
that a local edge is an edge connecting two nodes in the
same subtorus, and a global edge is an edge connecting
two nodes in two di�erent subtori. We classify the two
paths into the following cases.

Case 1. Both P1 and P2 use only local edges. Assume
P1 and P2 share some edge in the same direction.
We have all the edges in P1 and P2 are in the same
(d � h + 1)-dimensional subtorus, and s1, d1, s2,
and d2 are in the same (d � h + 1)-dimensional
subtorus. We thus can show that P1 and P2 does
not share any edge by a proof similar to that in
lemma ??.

Case 2. Both paths use one global edge and one lo-
cal edge. WLOG, assume q1, resp. q2, is the in-
termediate node in P1, resp P2. Assume P1 and
P2 share the same global edge in the same direc-
tion. We have s1 = s2, and q1 = q2. This is
impossible since all the paths originating from s
in the positive direction start at di�erent dimen-
sions. Assume P1 and P2 share the same local
edge. We have dd(d1; d2) � 1. This impossible
since dd(d1; d2) � 2 as proved in Lemma 6. There-
fore, P1 and P2 does not share any edge in the
same direction.

Case 3. One path consists of only local edges, and
the other consists of a global edge and a local
edge. WLOG, assume P1 consists of only local
edges, and P2 consists of a global edge and a lo-
cal edge. Let q be the intermediate node in P1.
The common edge of P1 and P2 must be the local
edge (q; d1) of P1, which is an edge along dimen-
sion d � h + 1. Since d1 and d2 are in the same
subtorus, and hence in the same diagonal, d1 and
d2 can be denoted as (x0; : : : ; x0; x1; c1; : : : ; ch�1)
and (y0; : : : ; y0; y1; c1; : : : ; ch�1) with x0 6= y0 and
x1 6= y1. Since x0 6= y0 and x1 6= y1, it is impos-
sible for P2 to pass through d1. Thus, edge (q; d1)
is not in P2. Therefore, P1 and P2 does not share
the same edge in the same direction.

2

Theorem 2 Phase h, 0 � h � d � 1, can be done
in r communication steps on a d-dimensional n� n�
: : :� n torus with all-port and wormhole routing when
n = (2d+ 1)r .

6 The Final Phase

Note that after phase (d � 1), each 1-dimensional
subtorus, referred as a column, will contains exactly
one node that has received the message. In the �rst
step of phase d, we will �rst send the message to nodes
in the following set: S = f(
(

Pd

i=2 xi); x2; : : : ; xd)j0 �
xi � n � 1; 2 � i � dg: It is clear it can be done in
one communication step. Nodes in S has the following
property.

Lemma 9 For any j, 2 � j � d, the nodes in S that
are in the same x1xj-plane form a diagonal in that
plane.

Proof: Consider a x1xj-plane that consists of all nodes
(x1; : : : ; xd) with x2 = c2, : : : , xj�1 = cj�1, xj+1 =
cj+1, : : : , xd where c2, : : : , cj�1, cj , : : : , cd are some
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constants. Let c = 
(c2 + � � �+ cj�1 + cj + � � �+ cd).
Consider a node (y1; : : : ; yd) of S in that plane. We

have y1 = 
(
Pd

i=2 yi) = 
(yj + c). Thus, all the nodes
of S in that plane form a diagonal. 2

Let lk = n=(2d + 1)k, and S0 = S. De-
�ne S1, S2, : : : , Sr as follows: Sk = f(
(x1 +
clk); x2; : : : ; xd)j(x1; : : : ; xd) 2 S; 0 � c < (2d + 1)kg.
We say that the rank of node (
(x1 + clk); x2; : : : ; xd)
in Sk is c. By an argument similar to that used in the
proof of Lemma 9, we can prove the following lemma.

Lemma 10 For any j, 2 � j � d, the nodes in S that
are in the same x1xj-plane, and have the same rank
form a diagonal in that plane.

Note that Sk+1 can be de�ned from Sk as follows:
Sk+1 = f(
(x1 + jlk); x2; : : : ; xd)j
(x1; x2; : : : ; xd) 2 Sk, and ;�d � j � dg. Let s =
(x1; : : : ; xd) be a node in Sk, we use G+(s; i), resp.
G�(s; i), to denote the node (
(x1 + ilk); x2; : : : ; xd),
and resp. (
(x1 � ilk); x2; : : : ; xd), for 1 � i � d. We
say that node G+(s; i), resp. G�(s; i) is the ith desti-
nation generated from s in the positive, resp. negative,
direction. Note that Sk+1 consists of the union of Sk

and all the destinations generated from nodes in Sk.
We do the following operations in the �nal phase.

1. For k = 1; 2; : : :; r, do the following steps.

(a) For each node s in Sk�1, choose 2d desti-
nations from nodes in Sk � Sk�1 as follows.
For each dimension j, along the positive di-
rection of dimension j, choose the jth node,
denoted as N1(s; j), that are in Sk � Sk�1,
and similarly, choose the jth node, denoted as
N2(s; j), along the negative direction. Note
that the coordinates of s and N1(s; j), resp.
N2(s; j), di�er only in dimension j.

(b) For 1 � j � d, each node s in Sk�1 forwards
the message to N1(s; j) along the positive di-
rection, and to N2(s; j) along the negative
direction.

The following lemma gives the correctness of above
algorithm.

Lemma 11 In iteration k of above algorithm, every
node in Sk � Sk�1 will receive the message from ex-
actly one node in Sk�1. Furthermore, there is no edge
congestion in every step.

Proof: The proof is based on the following observa-
tion. Consider all the nodes in Sk that are in the same
x1xj-plane. Note that in that x1xj-plane, the source

nodes will form (2d + 1)k�1 diagonals, and the desti-
nation nodes will form 2d(2d + 1)k�1 diagonals. Fur-
thermore, the destination diagonals are distributed so
that there are 2d destination diagonals between every
two consecutive source diagonals. 2

Theorem 3 Phase d can be done in r + 1 communi-
cation steps on a d-dimensional n � n � : : :� n torus
with all-port and wormhole routing when = (2d+ 1)k.

Theorem 4 In dr + 1 communication steps, we can
broadcast a message from a source node to all other
nodes on a d-dimensional torus with wormhole and all-
port routing when n = (2d+ 1)r.

7 Modi�cations for Other Cases

In this section, we discuss how to modify our algo-
rithms to handle the case when n is not a power of
2d + 1. We will �rst discuss the case when n is odd.
When n is even, we will �rst run the algorithm on a
(n�1)� (n�1)� : : :� (n�1) subtorus, and then per-
form an extra phase to forward the message to nodes
not in the subtorus.

When n is odd, it is possible that n can not be di-
vided by (2d + 1)k. Thus, in step k of any phase, we
can not simply use n

(2d+1)k as the gap to take 2d desti-

nations between two consecutive source nodes. We use
the scheme presented in Lemma 2. Since at any step,
the gaps between any consecutive source nodes can dif-
fer by at most 1, all nodes in the any chosen diagonal
will be selected as destinations after dlog2d+1 ne steps.
Since the destination assignment are based on ranks
on each column, we can follow similar approach as pre-
sented in Section 5.2 to determine the destinations of
every source node. Each source sends the message to
its destinations in the same approach as presented in
Section 5.3.

Theorem 5 In ddlog2d+1 ne+1 communication steps,
we can broadcast a message from a source node to all
other nodes on a d-dimensional torus with wormhole
and all-port routing, when n is odd.

When n is even, we will �rst run the algorithm for
odd dimension size on a (n�1)� (n�1)� : : :� (n�1)
subtorus by skipping the nodes with n � 1 in some
of their coordinates. Note that this can be done in
dd log2d+1(n� 1)e+1, assuming the wrap-around edge
is simulated by a path of length 2 in the original torus.
We then perform an extra phase to �nish the broadcast,
which will be done in dd=2e steps as follows.

Assume all the nodes (x1; : : : ; xd) with 0 � xi �
n�2, 1 � i � d, already receive the message. We need
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to forward the message to all the nodes (x1; : : : ; xd)
with at least one xi = n�1, 1 � i � d. We will do this
in dd=2e steps as follows.

Let p1 = (x1; : : : ; xd) be some nodes with exactly
one coordinate xi = n � 1, and xj 6= n � 1 8j 6= i.
Node p will receive the message from the node s1 =
(x1; : : : ; xi�1; n� 2; xi+1; : : : ; xd) from edge (s1; p1) in
the positive direction.

Let p2 = (x1; : : : ; xd) be some nodes with ex-
actly two coordinates xi = xj = n � 1, and xt 6=
n � 1 8t 6= i and t 6= j. WLOG, assume i < j.
Node p2 will receive the message from node s2 =
(x1; : : : ; xi�1; 0; xi+1; : : : ; xj�1; 0; xj+1; : : : ; xd) from a
path that consists of two edges in the negative direc-
tion.

Thus, in one communication step, all the nodes with
coordinate n � 1 in one or two dimensions will receive
the message. Assume all the nodes with coordinate
n � 1 in no more than k, k � 2, dimensions have re-
ceived the message. Similarly, in one communication
step, we can forward the message to all the nodes with
coordinate n�1 in k+1 or k+2 dimensions from nodes
with coordinate n�1 in k�1 or k dimensions, consider-
ing subproblems on (d � m)-dimensional subtori with
coordinate n � 1 in m dimensions. Thus, the extra
phase can be done in dd=2e communication steps.

Theorem 6 In ddlog2d+1 ne + dd=2e + 1 communica-
tion steps, we can broadcast a message from a source
node to all other nodes on a d-dimensional torus with
wormhole and all-port routing, when n is even.

8 Further Remarks

In this paper, we �rst present an algorithm for per-
forming broadcast on a d-dimensional n�n�n : : :�n
torus that supports all-port and wormhole routing with
cyclic dimension order, when n is a power of 2d+1. We
then explain how to modify the algorithm to handle the
case that n is not a power of 2d+1. Our algorithms are
optimal up to the constant term for arbitrary dimen-
sion size n. Previous algorithms that achieves compa-
rable performance only work for the case that either
d = 2 [14] or 3 [15], or n is a power of 2d+1 [8]. When
d = 2 or 3, our algorithms can be further improved
to achieve the performance that mathes the current
best bound achieved in [14] and [15]. Currently, we are
trying to improve the performance of our algorithm es-
pecially for the case that n is even. When d = 3, we are
able to eliminate the extra phase for even n. We expect
to eliminate the extra phase for arbitrary dimensions
in the future.
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