
A Generalized Framework for Global Communication Optimization

M. Kandemir�y P. Banerjeezx A. Choudharyzy J. Ramanujam{ N. Shenoyzy

Abstract

In distributed-memory message-passing architectures
reducing communication cost is extremely important. In this
paper, we present a technique to optimize communication
globally. Our approach is based on a combination of lin-
ear algebra framework and dataflow analysis, and can take
arbitrary control flow into account. The distinctive features
of the algorithm are its accuracy in keeping communica-
tion set information and its support for general alignments
and distributions including block-cyclic distributions. The
method is currently being implemented in the PARADIGM
compiler. The preliminary results show that the technique is
effective in reducing both number as well as volume of the
communication.

1. Introduction
Distributed-memory multiprocessors are attractive for

high performance computing in that they offer potentially
high levels of flexibility, scalability and performance. But
the need for explicit message passing resulting from the
lack of a globally shared address space renders program-
ming these machines a difficult task. The main objective
behind the efforts such as High Performance Fortran (HPF)
is to raise the level of programming by allowing the user
write programs with a shared address space view augmented
with directives that specify data mapping. The compilers
for such languages are responsible for partitioning compu-
tation, inserting necessary commands that implement re-
quired message passing for access to non-local data.

On such machines, cost to access non-local data is usu-
ally orders of magnitude higher than accessing local data.
Therefore, it is imperative to reduce the frequency and vol-
ume of non-local accesses as much as possible. Several ef-
forts have been aimed at reducing communication overhead

�EECS Dept., Syracuse University, Syracuse, NY 13244. e-
mail:mtk@ece.nwu.edu

ySupported in part by NSF Young Investigator Award CCR-9357840,
NSF grant CCR-9509143, and Air Force Materials Command under con-
tract F30602-97-C-0026.

zECE Dept., Northwestern University, Evanston, IL 60208. e-
mail:fbanerjee,choudhar,nagaraj g@ece.nwu.edu

xSupported in part by NSF under grant CCR-9526325 and in part by
DARPA under contract DABT-63-97-C-0035.

{ECE Dept., Louisiana State University, Baton Rouge, LA 70803. e-
mail:jxr@ee.lsu.edu . Supported in part by NSF Young Investigator
Award CCR-9457768 and NSF grant CCR-9210422.

incurred. The most common optimization technique used
by previous researchers is message vectorization [7, 3]. In
message vectorization, instead of naively insertingsend
and recv operations just before references to non-local
data, communication is hoisted to outer loops. Essentially
this optimization replaces many small messages with one
large message reducing the number of messages. Some
researchers [7] have also considered message coalescing
which combines messages due to different references to the
same array, and message aggregation which combines mes-
sages due to references to different arrays to the same desti-
nation processor into a single message. Many of these tech-
niques are limited to a single loop nest.

Recently a number of authors have proposed techniques
based on dataflow analysis to optimize communication
across multiple loop nests [5, 6, 10]. Almost all of the
approaches use a variant of Regular Section Descriptors
(RSD) introduced by Callahan and Kennedy [4]. For each
array referenced in the program, an RSD is defined which
describes the portion of the array that is referenced. Al-
though this representation is convenient for simple array
sections such as those found in pure block or cyclic distri-
butions, it is hard to embed alignment and general distribu-
tion information into it. Apart from inadequate support for
block-cyclic distributions, working with section descriptors
may sometimes result in overestimation of the communica-
tion sets.

In this paper, we show that the problem of global com-
munication optimization can be cast in a linear algebra
framework. This allows the compiler to easily apply tra-
ditional loop-based optimization techniques such as mes-
sage vectorization, message coalescing as well as global
optimizations such as redundant communication elimina-
tion and communication hoisting. Using the linear algebra
framework proposed by Ancourt et al. [2], our technique is
able to handle the optimization problem at the granularity
of individual array elements. The task of code generation is
made easier by our use of the Omega library [9] from the
University of Maryland. The global communication sets re-
sulted from our dataflow analysis can be manipulated by the
Omega system. Our approach gives the compiler the capa-
bility to represent communication sets globally as equalities
and inequalities as well as to use polyhedron scanning tech-
niques to perform optimizations such as redundant commu-
nication elimination and global message coalescing which

IPPS/SPDP 1998
 1063-7133/98 $10.00 (c) 1998 IEEE

were not possible under the loop nest based communica-
tion optimization schemes. We assume reader’s familiar-
ity with basic dataflow concepts such as control flow graph
(CFG), basic block, and interval analysis as well as basic
HPF directives. We also assume that prior to our analysis,
the compiler has performed all loop-level transformations
to enhance parallelism (e.g., loop permutation, loop distri-
bution). Our technique is based on interval analysis per-
formed on the CFG. The interval analysis [1] consists of a
contraction phase and an elimination phase. In this paper,
an interval corresponds to a loop and depending on the con-
text the term ‘node’ is used for a statement, a basic block or
a reduced interval.

2. Dataflow analysis
Consider the following program fragment annotated by

HPF-like directives.

real X(al:au)
!HPF$ template T(tl:tu)
!HPF$ processors PROC(pl:pu)
!HPF$ align X(j) with T(�*j+�)
!HPF$ distribute T(cyclic(C)) onto PROC

do i = il, iu
X(L*i+�L) = � � � X(R*i+�R) � � �

enddo

LetRL = X(L*i+ �L) andRR = X(R*i+ �R) . Assum-
ing p andq denote two processors, the following sets can
be defined:

Own(X; q) = fd j d 2 X and is owned byqg

Compute(X;RL; q) = fi j L � i + �L 2 Own(X; q)

andil � i � iug

View(X;RR; q) = fd j 9{ st. { 2 Compute(X;RL; q) and

d = X(R � {+ �R) andil � { � iug

CommSet(X;RR; p; q) = Own(X; q) \ View(X;RR; p):

Intuitively, the setOwn(X,q) refers to the elements
mapped onto processorq through compiler directives. The
set of iterations to be executed byq due to a LHS reference
RL is given byCompute(X, RL,q) . Of course, during
the execution of this iteration set, some elements (local or
non-local) accessed by RHS referenceRR will be required;
the setView(X, RR,q) defines these elements. Finally,
CommSet(X, RR,p,q) defines the elements that should
be communicated from processorq to processorp due to
referenceRR. It should be noted that in general there may
be more than one RHS reference, and the computation may
involve multi-dimensional arrays and a multi-level nest in
which cased and i denote data and iteration vectors re-
spectively. Also in the most general case,�, L andR are
matrices, and�, �L and�R are vectors.

The definition of theOwnset above is rather informal.
For a more precise definition, we take into account the

block-cyclic distribution and define theOwnset as

Own(X; q) = fd j 9t; c; l such thatt = � � d+ � and

t = C � P � c+ C � q+ l andal � d � au and

pl � q � pu andtl � t � tu and0 � l � C � 1g;

where P =pu � pl + 1. In this formulation,t = � � d+ �

represents alignment information andt = C�P �c+C�q+l

denotes the distribution information. SimpleBLOCKand
CYCLIC(1) distributions can easily be handled within this
framework by settingc=0 andl =0, respectively. See [2] for
the details.

A communication descriptorcan be defined as a pair
hR;Si, whereR is an array identifier (name) andS is the
communication setassociated withR. The exact definition
of a communication set depends on the context in which it
is used. Throughout our analysis, a set is defined asf �d j �d is
owned byq and is required by (or should be transferred to
or has already been transferred to)pg except for theKILL
set, which defines the set of elements written (killed) byq.
Since we define a communication set as a list of equalities
and inequalities, it can be represented asS = f �d j P(�d)g
whereP(:) is a predicate. Letf �d j P(�d)g andf �d j Q(�d)g
be two communication sets. We define the operations+c,
�c, and\c on communication sets as follows:

f �d j P(�d)g+c f �d j Q(�d)g = f �d j P(�d) orQ(�d)g

f �d j P(�d)g �c f �d j Q(�d)g = f �d j P(�d) and not(Q(�d))g

f �d j P(�d)g \c f �d j Q(�d)g = f �d j P(�d) andQ(�d)g

Note that the operations ‘or’, ‘and’ and ‘not’ can easily be
performed by the corresponding Omega operations on sets
which contain equalities and inequalities.

Let D = hR;Si be a communication descriptor. We
define two functions: a functionN from communication
descriptors space to array identifiers space; and a function
M from communication descriptors space to communica-
tion sets space such thatN (D) = R andM(D) = S.

SupposeDS1 andDS2 are two communication descrip-
tor sets. Three operations, namely+d, �d, and\d, are de-
fined on these sets as follows:

DS1 +d DS2 = fD j D 2 DS1 and8D0 2 DS2 N (D) 6= N (D0)g

[fD j D 2 DS2 and8D0 2 DS1 N (D) 6= N (D0)g

[fD j 9D0 2 DS1;D
00 2 DS2 st.

N (D) = N (D0) = N (D00) and

M(D) =M(D0) +c M(D00)g

DS1 �d DS2 = fD j D 2 DS1 and8D0 2 DS2 N (D) 6= N (D0)g

[fD j 9D0 2 DS1;D
00 2 DS2 st.

N (D) = N (D0) = N (D00) and

M(D) =M(D0) �c M(D00)g

DS1 \d DS2 = fD j 9D0 2 DS1;D
00 2 DS2 st.

N (D) = N (D0) = N (D00) and

M(D) =M(D0) \c M(D00)g

In this paper, we sometimes use[c and[d instead of+c

and+d, respectively. It should be noted that although these
operations are similar to those presented by Gong et al. [5],
there is an important difference. Since we keep the commu-
nication sets accurately in terms of equalities and inequali-
ties, we can optimize (e.g., coalesce) communication mes-
sages even if the messages do not have the same commu-
nication pattern (e.g., broadcast, point-to-point) or identical
sender/receiver sets.

2.1. Local (Intra-Interval) Analysis

The local analysis part of our framework computes
KILL , GENand POSTGENsets for each interval. Then
the interval is reduced to a single node and annotated with
this information.

Let RL(�i) andRR(�i) be the data elements obtained
from referencesRL andRR respectively with a specific it-
eration vector�i. The computation of theKILL set proceeds
in the forward direction; that is, the nodes within the interval
are traversed in topological sort order. LetKILL(i,q) be
the set of elements written (killed) by processorq in node
i , andModified(i,q) be the set of elements that may
be killed along any path from the beginning of the interval
to nodei (including nodei). Then,

KILL(i; q) = f �d j �d 2 Own(X; q) and9�{ st.
�d = RL(�{) and�il � �{ � �iug;

Modified(i; q) = [
[

j2pred(i)

Modified(j; q)] [KILL(i; q)

assuming thatModified(pred(first(i)),q) = ;
wherefirst(i) is the first node ini . If last(i) is the
last node ini , then

KILL(i; q) = Modified(last(i); q):

This last equation is used to reduce an interval into a node.
GEN(i,p,q) is the set of elements required by proces-

sorp from processorq at nodei with no preceding write
(assignment) to them. The computation of theGENpro-
ceeds in the backward direction, i.e., the nodes within each
interval are traversed in reverse topological sort order. The
elements that can be communicated at the beginning of a
node are the elements required by any RHS reference within
the node except the ones that are written before being refer-
enced.

Assuming�{ = ({1; :::; {n) and�{0 = ({01; :::; {
0
n), let �{0 � �{

mean that�{0 is lexicographically less than or equal to�{; and
�{0�k�{ mean that{0j = {j for all j < k, and({0k; :::; {

0
n) �

({k; :::; {n). Since a node can refer to multiple RHS refer-
ences, we define

GEN(i; p; q) =
[
RR

GEN(i;RR; p; q):

For the sake of simplicity, we assume one RHS reference
per node, and useGEN(i,p,q) in the following. Let

Comm(i,p,q) be the set of elements that may be commu-
nicated at the beginning of intervali to satisfy communica-
tion requirements from the beginning ofi to the last node
of i . Then, assuming thatComm(succ(last(i)),q)
= ;, we have

GEN(i; p; q) = f �d j 9�{ st. �il � �{ � �iu and �d 2 Own(X; q) and
�d = RR(�{) andRL(�{) 2 Own(X; p) and not

(9�|;RL
0 st. �il � �| � �iu and �d = RL

0(�|) and

�|�level(i)�{)g;

Comm(i; p; q) = [
\

s2succ(i)

Comm(s; p; q)] [GEN(i; p; q):

In addition, we use the following equation to reduce an
interval into a single node:

GEN(i; p; q) = Comm(First(i); p; q):

In the definition ofGEN, RR denotes the RHS reference,
andRL denotes the LHS reference of the same statement.
RL

0, on the other hand, refers to any LHS reference within
the same interval. Notice that whileRL

0 is a reference to
the same array asRR, RL can be a reference to any array.
level(i) gives the nesting level of the interval (loop), 1
corresponding to the outermost loop in the nest.

After the interval is reduced, theGEN set for it is
recorded, and an operatorF is applied to the last part of
thisGENset to propagate it to the outer interval:

F(�|�k�{) = �|�(k�1)�{:

We should emphasize that computation of theGENsets
gives us all the communication that can be vectorized above
a loop nest; that is, our analysis easily handles message vec-
torization. Finally,POSTGEN(i,p,q) is the set of ele-
ments required by processorp from processorq at nodei
with no subsequent write to them:

POST GEN(i; p; q) = f �d j 9�{ st. �il � �{ � �iu and �d 2 Own(X; q)

and �d = RR(�{) andRL(�{) 2 Own(X; p)

and not(9�|;RL
0 st. �il � �| � �iu and

�d = RL
0(�|) and�{�level(i)�|)g:

The computation ofPOSTGEN(i,p,q) proceeds in the
forward direction. Its computation is similar to those of
KILL(i,q) andGEN(i,p,q) sets.
2.2. Dataow Equations

We concentrate on the computation of therecv sets
only. Similar analysis applies tosend sets as well ex-
cept for the fact that the definition of the communica-
tion set should be modified accordingly. Our dataflow
analysis framework consists of a backward and a forward
pass. In the backward pass, the compiler determines sets
of data elements that can safely be communicated at spe-
cific points. The forward pass, on the other hand, elim-
inates redundant communication and determines the final

Backward Analysis:

SAFE OUT(i; p; q) =
\

s2succ(i)

SAFE IN(s; p; q) (1)

SAFE IN(i; p; q) =

n
GEN(i; p; q) if P(i)
(SAFE OUT(i; p; q)�d KILL(i; q)) +d GEN(i; p; q) otherwise

(2)

Forward Analysis:

RECV IN(i; p; q) =
\

j2pred(i)

RECV OUT(j; p; q) (3)

RECV(i; p; q) =

n
GEN(i; p; q) �d RECV IN(i; p; q) if 9 k 2 succ(i) andk =2 dom(i)
SAFE IN(i; p; q)�d RECV IN(i; p; q) otherwise

(4)

RECV OUT(i; p; q) =

n
RECV IN(i; p; q)�d KILL(i; q) if 9 k 2 succ(i) andk =2 dom(i)
((RECV(i; p; q) +d RECV IN(i; p; q)) �d KILL(i; q)) +d POST GEN(i; p; q) otherwise

(5)

Figure 1. Dataflow equations for optimizing communication.

set of elements (if any) that should be communicated at
the beginning of each nodei . The input for the equa-
tions consists of theGEN(i,p,q) , KILL(i,q) and
POSTGEN(i,p,q) sets as computed during the local
analysis. The dataflow equations for the backward analy-
sis are given by Equations (1) and (2) in Figure 1. Note that
\ in this figure denotes\d.

SAFEIN(i,p,q) and SAFE OUT(i,p,q) are the
sets of communication descriptors which denote the ele-
ments thatcansafely be communicated at the beginning and
end of nodei , respectively. Equation (1) says that an ele-
ment should be communicated at a point if and only if it
will be used in all of the following paths in the CFG. Equa-
tion (2), on the other hand, gives the set of elements that
can safely be communicated at the beginning of nodei ,
and makes use of theGENandKILL sets. Intuitively, an
element can be communicated at the beginning of nodei if
and only if it is either required (generated) by nodei or it
reaches at the end of nodei and is not overwritten (killed)
in it. P(i) is a predicate used to control how far the com-
munications should be hoisted. It should be noted that if the
elements contained inSAFEIN sets are directly communi-
cated without any further analysis, there would be signifi-
cant amounts of redundant communication. The task of the
forward analysis phase is to eliminate redundant communi-
cation.

The dataflow equations for the forward analysis are
given by Equations (3), (4) and (5) in Figure 1.
RECVIN(i,p,q) and RECVOUT(i,p,q) denote the
set of communication descriptors which contain the ele-
ments thathave beencommunicated so far (at the begin-
ning and end of the nodei respectively) fromq to p. On
the other hand,RECV(i,p,q) denotes the set of commu-
nication descriptors which contain elements thatshouldbe
communicated fromq to p at the beginning of nodei and

is finally used by the communication generation portion of
the compiler to generate the actualrecv commands. Equa-
tion (3) simply says that the communication set arriving in
a join node can be found by intersecting the sets for all the
joining paths. Equation (4) is used to compute theRECV
set which corresponds to the elements that can be commu-
nicated at the beginning of the node except the ones that
have already been communicated (RECVIN). The elements
that have been communicated at the end of nodei (that is,
RECVOUTset) are simply the union of the elements com-
municated up to the beginning ofi , the elements commu-
nicated at the beginning ofi provided that the condition
in equation (5) is not satisfied (except the ones which have
been overwritten (killed) ini) and the elements communi-
cated ini and not written subsequently (POSTGEN), again
provided that the condition in the equation is not satisfied. It
should be emphasized that all these sets are communication
descriptor sets, and the order of operations as indicated by
the parentheses is important.
2.3 Global Dataow Analysis

Our approach starts by computing theGEN, KILL and
POSTGENsets for each node. Then the contraction phase
of the analysis reduces the intervals from innermost to out-
ermost and annotates them withGEN, KILL andPOSTGEN
sets. When a reduced CFG with no cycles is reached, the
expansion phase starts andRECVsets for each interval is
computed, this time from outermost to innermost. There is
one important point to note: before starting to process the
next inner graph, theRECVIN set of the first node in this
graph is set to theRECVset of the interval that contains it.
More formally, in the expansion phase, we set

RECV IN(i; p; q)k
thpass = RECV(i; p; q)(k�1)thpass:

This assignment then triggers the next pass in the expan-
sion phase. Of course, before the expansion phase starts
RECV IN(i; p; q)1

stpass is set to;. Thesend sets are gen-

Table 1. Results of the static analysis for tomcatv on 8 nodes.

number of messages communication volume (in array elements)
program (BLOCK,*) (CYCLIC(4),*) (CYCLIC,*) (BLOCK,*) (CYCLIC(4),*) (CYCLIC,*)

base 112 128 128 57,120 1,040,000 4,161,600
opt 28 32 32 14,436 261,120 1,044,480

% imprv. 75% 75% 75% 75% 75% 75%

Table 2. Results of the static analysis for swim256 on 8 nodes.

number of messages communication volume (in array elements)
program (BLOCK,*) (CYCLIC(4),*) (CYCLIC,*) (BLOCK,*) (CYCLIC(4),*) (CYCLIC,*)

base 4,691 5,212 5,212 2,188,032 34,277,622 135,778,800
opt 2,489 2,770 2,770 1,270,230 18,936,460 73,517,520

% imprv. 47% 47% 47% 42% 45% 46%

erated analogously during the same process. We refer the
reader to [8] for the details of our approach.

3. Preliminary results

We measure the effectiveness of our approach stat-
ically in terms of number of messages and communi-
cation volume across all processors. Tables 1 and 2
present the results of static analysis for the tomcatv and
swim256 benchmarks (from Spec95 benchmark suite), re-
spectively, on8 processors with an input size of512 for
(BLOCK,*) , (CYCLIC(4),*) and(CYCLIC,*) dis-
tributions. base refers to the message vectorized version
whereasopt is the program resulted from our global opti-
mization framework. On the average, fortomcatv , there
is a 75% reduction in both number of messages and the
communication volume. Forswim256 , on the other hand,
there is a47% reduction in the number of messages, and
a44%reduction in the communication volume. The results
show that our approach is successful at reducing the number
of communication calls and communication volume.

4. Conclusions

In this paper, we presented a global communication opti-
mization scheme based on two complementary techniques:
dataflow analysis and linear algebra framework. The com-
bination of these techniques allows us to optimize commu-
nication globally for HPF-like alignments and distributions
including block-cyclic distributions. The cost of the analy-
sis is managed by keeping the communication sets symboli-
cally until the end of the dataflow analysis where the Omega
library is called to generate actual sets in terms of equalities
and inequalities. The preliminary experimental results show
the effectiveness of our approach in reducing the number of
messages and the volume of the data to be communicated.

References
[1] A. V. Aho, R. Sethi, and J. Ullman.Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, Reading, MA, second edition,
1986.

[2] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra
framework for static HPF code distribution. InProc. 4th Interna-
tional Workshop on Compilers for Parallel Computers, Delft, the
Netherlands, 1993.

[3] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. A compi-
lation approach for Fortran 90D/HPF compilers on distributed mem-
ory MIMD computers. InProc. 6th Annual Workshop on Languages
and Compilers for Parallel Computing, Portland, Oregon, August
1993.

[4] D. Callahan, and K. Kennedy. Analysis of inter-procedural side ef-
fects in a parallel programming environment. InJ. Parallel Dstrib.
Comput. 5, 5 (Oct. 1988), pp. 517–550.

[5] C. Gong, R. Gupta, and R. Melhem. Compilation techniques for opti-
mizing communication on distributed-memory systems. InProc. In-
ternational Conference on Parallel Processing, St. Charles, IL, Au-
gust 1993.

[6] M. Gupta, E. Schonberg, and H. Srinivasan. A unified dataflow
framework for optimizing communication. InProc. 7th Workshop on
Languages and Compilers for Parallel Computing, Ithaca NY, Au-
gust 1994.

[7] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D
for MIMD distributed-memory machines. InCommunications of the
ACM, 35(8):66–80, August 1992.

[8] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and N.
Shenoy. Optimizing communication using global dataflow analysis.
Technical Report, CPDC-TR-97-02, Northwestern University, Octo-
ber 1997.

[9] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and David
Wonnacott. The Omega Library interface guide. Technical Report
CS-TR-3445, CS Dept., University of Maryland, College Park,
March 1995.

[10] K. Kennedy, and A. Sethi. A constrained-based communication
placement framework, Technical Report CRPC-TR95515-S, CRPC,
Rice University, 1995.

