
An Efficient RMS Admission Control

and its Application to Multiprocessor Scheduling�

Sylvain Lauzac, Rami Melhem, Daniel Moss´e

University of Pittsburgh

Department of Computer Science

Pittsburgh, PA 15260

(lauzac, melhem, mosse)@cs.pitt.edu

Abstract

A real-time system must execute functionally correct
computations in a timely manner. In order to guarantee
that all tasks accepted in the system will meet their tim-
ing requirements, an admission control algorithm must be
used to only accept tasks whose requirements can be sat-
isfied. Rate-monotonic scheduling (RMS) is arguably the
best known scheduling policy for periodic real-time tasks
on uniprocessors. We propose a new and efficient admis-
sion control for rate-monotonic scheduling on a uniproces-
sor and analyze its performance. This admission control
is then modified to provide an admission control mecha-
nism for multiprocessor systems. Experimental results in-
dicate that this new admission control for multiprocessor
systems achieves a processor utilization of up to 96% for a
large number of tasks and has a low computational com-
plexity. The proposed admission control is also used to de-
rive a new and better multiprocessor schedulability bound
for RMS with provisions for periodic servers and for RMS
with tolerance to transient faults.

1 Introduction

A real-time system processes tasks that must produce
functionally correct results in a timely manner. This implies
that the tasks submitted to the system have known timing
requirements. These tasks are calledreal-time tasks. Many
of these real-time tasks (such as in process control) are pe-
riodic and modeled as follows. At the beginning of each
period a new instance of the task is generated and is im-

�This work has been supported by the Defense Advanced Research

Projects Agency (Contract DABT63-96-C-0044).

mediately available for processing. The processing of each
task instance must be completed by the end of the task’s pe-
riod, called thedeadlineof the instance. Traditionally, the
requirements of a periodic real-time task�i are character-
ized by a periodTi and a worst-case computation timeCi.

Given this task model, a real-time system must ensure
that each task instance will complete before its deadline.
This is done by using anadmission controland aschedul-
ing policy for the real-time system. The admission control
is an algorithm that depends on the scheduling policy and
ensures that only tasks that will meet their deadlines are ac-
cepted into the system. A task set that does not miss any
deadline is calledschedulable. The scheduling policy de-
termines which task instance is to be processed next.

One of the most widely used scheduling policies for pre-
emptive periodic real-time tasks is calledrate-monotonic
scheduling(RMS)[13]. RMS associates each task�i with
a fixed prioritypi = 1=Ti. At any time, the available task
with the highest priority is being processed. It is assumed
that preemption takes negligible time.

An admission control for RMS based on processor uti-
lization is also given in [13]. Theutilization of task�i is
defined to beCi=Ti and the utilization of a task set is the
sum of the utilizations of all the tasks in the task set. This
admission control compares the utilization of the task set to
a bound that depends only on the number of tasks in the set
and shows that a set ofm tasks will not miss any deadline
if

mX

i=1

Ci
Ti

� m(21=m � 1) (1)

Such an admission control has the advantage of being
computationally simple. However, Equation (1) is a suffi-
cient but not necessary condition for schedulability. As a

IPPS/SPDP 1998

 1063-7133/98
$10.00 (c) 1998 IEEE

consequence, the processor utilization achieved by this ad-
mission control may be lower than necessary, causing un-
der utilization of computing resources. This observation
leads to the first problem addressed by this paper:is there a
computationally simple admission control for RMS that
yields a processor utilization better than the classical
bound given by Equation (1)?

The RMS policy was defined only for uniprocessors.
However, since multiprocessor systems are becoming more
common for real-time applications [3], admission control
for multiprocessor systems is also an important problem.
RMS can be used on multiprocessor systems by doing
global schedulingor partitioning[7]. In a global scheduling
scheme, all instances are stored in a single queue and, at any
given time, the processors run the instances with the highest
priority. A partitioning scheme adds the constraint that all
instances of a task must execute on the same processor. Par-
titioning has the advantage of reducing the multiprocessor
scheduling problem to scheduling problems on individual
processors for which many results are known. Partitioning
may seem less powerful than global scheduling because it
has more constraints, but it has been proven [7] that global
scheduling with RMS can give an arbitrarily low processor
utilization. Therefore, this paper focuses only on partition-
ing schemes for multiprocessor systems.

When a partitioning scheme is used, the admission con-
trol must not only decide which tasks can be accepted, but
also create an assignment of tasks to processors. Finding
an optimal assignment of tasks to processors is known to be
NP-hard [12], therefore it is important that the complexity
of the admission control remains low. Partitioning schemes
are usually based on a bin-packing algorithm and a schedu-
lability bound. The bin-packing algorithm assigns tasks to
processors and uses the schedulability bound to determine
if a processor can accept a task. This defines the second
problem this paper addresses:what partitioning admis-
sion control for a multiprocessor gives a near optimal
processor utilization and has a low computational com-
plexity?

Many extensions to RMS have been proposed in the lit-
erature, including periodic servers [16], tolerance to tran-
sient faults [8] and task synchronization [15]. In order to
be practical, a new admission control should easily adapt
to these extensions of RMS. This defines the third problem
addressed by this paper:what admission control can be
easily adapted to and improve the processor utilization
of these RMS extensions?

The rest of the paper is organized as follows. Section
2 gives an overview of some related work. Section 3 de-
scribes two new admission control algorithms for a unipro-
cessor, T-BOUND and R-BOUND. In Section 4, we extend
the R-BOUND to multiprocessor systems and compare its
performance with other admission control algorithms for

multiprocessors. Sections 5 and 6 develop new schedula-
bility bounds based on the R-BOUND for periodic servers
and RMS with tolerance to transient faults. These bounds
perform best when used on a multiprocessor. The conclu-
sion is presented in Section 7.

2 Related work

2.1 Admission control for uniprocessors

As mentioned above, an admission control based on
Equation (1) usually under-utilizes the processor because
this schedulability condition is sufficient but not necessary.
A necessary and sufficient condition for rate-monotonic
schedulability is presented in [10]. The drawback of this
admission control is its computational complexity. A simi-
lar admission control can be based on the conditions given
in [1] and can achieve very high processor utilization.

Other work takes advantage of the knowledge of some
characteristics of the task set being scheduled in order to
get a more precise schedulability condition. In [2], knowl-
edge of the tasks periods is used to get a tighter bound and
increase the processor utilization.

2.2 Admission control for multiprocessors

Schedulability conditions for uniprocessors can be used
to partition tasks on a multiprocessor. An early admission
control for multiprocessors using partitioning was proposed
in [7]. This admission control uses two bin-packing algo-
rithms (Next Fit andFirst Fit) to assign tasks to processors.
For each processor, Equation (1) is used for admission con-
trol.

The processor utilization obtained by a partitioning
scheme can be increased in three ways. First, one can use a
better bin-packingalgorithm. In [6] an improved bin pack-
ing algorithm is used, where tasks are grouped in classes ac-
cording to their utilizations. In [14] the performance of the
Best Fitbin-packing algorithm is analyzed and it is shown
that its worst case performance is not better than the worst
case performance ofFirst Fit.

Second, one can use atighter boundfor the admission
control on each processor. The schedulability conditions
given in [10] and [1] can be used to create an admission con-
trol that yields a high utilization, but these admission con-
trol algorithms are computationally expensive. The bound
for multiprocessor admission control presented in [2] yields
a higher processor utilization than partitioning with Equa-
tion (1).

Third, the tasks can be ordered so thatcompatible tasks
are assigned to the same processor. Compatible tasks are
tasks that achieve a high processor utilization when sched-
uled on the same processor. For example, tasks that have the

same period are compatible and have a utilization bound of
100%. In [2] tasks that have periods closest to a power of
two are considered to be compatible. In general, the order in
which the tasks are presented to the bin packing algorithm
can also yield significant improvements. In [5] tasks are
sorted by decreasing utilization factor and then given to a
First Fit bin packing algorithm. The partitioning technique
proposed in this paper uses all three techniques to achieve a
high processor utilization.

3 Admission control for uniprocessors

3.1 T-BOUND

A more optimistic admission control bound than Equa-
tion (1) can be obtained by taking advantage of the knowl-
edge of the task characteristics [2, 8]. Similarly, we will use
knowledge of the tasks periods to get a tighter bound.

The T-BOUND admission control first transforms the
original task set, then applies an admission control to this
transformed task set. We will show in Lemma 2 that if this
transformed task set is schedulable, the original task set is
also schedulable. To prove Lemma 2, we first paraphrase a
Lemma which is proven in [2].

Lemma 1 Given a task setT = f(C1; T1), (C2; T2), : : :,
(Cm; Tm)g, if T cannot be scheduled on one processor
with RMS, the task setT 0 = f(2C1; 2T1), (C2; T2), : : :,
(Cm; Tm)g cannot be scheduled on one processor with
RMS either.

1 ScaleTaskSet (In:T , Out: T 0)
2 begin
3 for i = 1 tom� 1 do

4 T 0
i

= Ti2
logb

Tm

Ti
c

5 C
0
i

= Ci2
logb

Tm

Ti
c

6 endfor
7 sort the tasks inT 0 by increasing period
8 return (T 0)
9 end

Figure 1. Scale Task Set

Lemma 2 Given a task setT , let T 0 be the task set result-
ing from the application of the algorithmScale Task Setto
T . If T 0 is schedulable on one processor using RMS, then
T is schedulable on one processor with RMS.

PROOF: We first prove that each time a period and a com-
putation time are doubled (lines 4 and 5), the schedulabil-
ity property is conserved, that is, if the modified task set
is schedulable then the input task set is also schedulable.

Each time a period is doubled, the task set is transformed
fromf(C1; T1), (C2; T2), : : :, (Cm; Tm)g intof(2C1; 2T1),
(C2; T2), : : :, (Cm; Tm)g. The application of the converse
of Lemma 1 for each period transformation ensures that
Lemma 2 holds. 2

After performing the task set transformation, we apply
our admission control to the transformed task set. This ad-
mission control is based on the bound given by Lemma 3.
The proof of Theorem 4 in [13] shows that the computation
times that minimize the utilization are

Ci = Ti+1�Ti (i = 1; : : : ;m�1) and Cm = 2T1�Tm

It is easy to see that rewriting the task set utilization with
these computation times gives the bound of Lemma 3.

Lemma 3 Given a setT ofm tasks ordered by increasing
periods, and the restriction that the ratio between any task
periods is less than 2,T is schedulable if

mX

i=1

Ci
Ti

�
m�1X

i=1

[
Ti+1
Ti

] + 2
T1
Tm

�m (2)

Our goal is to use Lemma 3 to test the schedulability of
a task set. Since the bound of Lemma 3 requires all period
ratios to be less than 2, this bound can be used after the
task set is transformed byScale Task Set. This gives the
following theorem.

Theorem 1 Given a task setT , let T 0 = f(C 0

1; T
0

1),
(C 0

2; T
0

2), : : :, (C
0

m; T
0

m)g, be the task set resulting from the
application of the algorithmScale Task Setto T . If Equa-
tion (2) holds forT 0, thenT is schedulable on one proces-
sor with RMS.

PROOF: For each task� 0i (1 � i < m) in the transformed
task setT 0, we haveT 0

m=2 < T 0

i � T 0

m, and therefore the
ratio between any two periods is less than 2. This implies
that we can use Lemma 3 to test the schedulability ofT 0.
From Lemma 2, we know that the schedulability ofT 0 im-
plies the schedulability ofT . 2

The admission control based onScale Task Setand
Equation (2) is later referred to as T-BOUND. It should be
noted that if it is impossible to scheduleT 0 with T-BOUND,
we cannot infer anything about the schedulability ofT .

3.2 R-BOUND

This section derives a least upper bound on the processor
utilization for T-BOUND. Given a task set ofm tasks, letr
beTm=T1, whereT1 andTm are the minimum and max-
imum periods andr < 2. Let B(r;m) be the utilization
re-written from Equation (2).

B(r;m) =

m�1X

i=1

[
Ti+1
Ti

] +
2

r
�m (3)

B(r;m) depends onr, m and the periodsT1; : : : ; Tm. We
defineBmin(r;m) to be the minimum ofB(r;m) with re-
spect to the periods, that is, the least upper bound on the
processor utilization when using the T-BOUND. Theorem
2 shows what are the periods that minimizeB(r;m) and
the expression ofBmin(r;m) in this case.

Theorem 2 Consider a set ofm tasks ordered by increas-
ing periods, where the minimum and maximum periods are
fixed and known and the ratio of any two periods is less
than 2. The processor utilization for this task set is mini-
mum when the ratio between the periods of two consecutive
tasks is constant. In this case, the utilizationBmin(r;m) is

Bmin(r;m) = (m� 1)(r1=(m�1) � 1) + 2=r � 1 (4)

PROOF: B(r;m) is minimum when its derivative with re-
spect toTi is null for i = 2; : : : ;m� 1.

81 < i < m; dB(r;m)=dTi = 0

) �
Ti+1
T 2
i

+
1

Ti�1
= 0

) T 2
i = Ti+1Ti�1

This system of equations gives

T2
T1

=
T3
T2

= : : : =
Tm
Tm�1

= K

This implies

r =
Tm
T1

= Km�1 (5)

Combining (3) and (5), we obtain (4) to complete the proof.
2

Corollary 1 When m ! 1 the processor utilization
Bmin(r;m) approachesln r + 2=r � 1.

Figure 2 shows the processor utilization as a function of
r. Whenr is close to 1, the processor utilization is also close
to 1. We will use this observation in Section 4 to sched-
ule RMS tasks on a multiprocessor system. For a givenm
the utilization given by Equation (1) is the minimum of the
curveBmin(r;m) in Figure 2. An admission control based
on the bound (4) is from now on referred to as R-BOUND.

3.3 Comparison of T-BOUND and R-BOUND

We now wish to compare R-BOUND to T-BOUND and
determine the conditions for which R-BOUND is a good
approximation of T-BOUND. We defineBmax(r;m) to
be the maximum ofB(r;m) with respect to the periods.
If Bmax(r;m) is close toBmin(r;m) then R-BOUND
is a good approximation of T-BOUND, since the utiliza-
tion achieved by T-BOUND is betweenBmin(r;m) and
Bmax(r;m). The periods that maximizeB(r;m) and the
resultingBmax(r;m) are given by Theorem 3.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

B
m

in
(r

)

r

m=2
m=3
m=4

m=10
m=100

Figure 2. Minimum utilization of R-BOUND for
different values of m.

Theorem 3 Consider a set ofm tasks ordered by increas-
ing periods, where the minimum and maximum periods are
fixed and known and the ratio of any two periods is less than
2. The utilization for this task set is maximum when, for any
k = 1; : : : ;m

Ti = T1 (i = 1; : : : ; k) and Tj = Tm (j = k + 1; : : : ;m) (6)

In this case,

Bmax(r;m) = r + 2=r � 2

.

PROOF: When the periods are given by (6), we have from
(3)

Bmax(r;m) =

k�1X

i=1

[
T1
T1

] +
Tm
T1

+

m�1X

j=k+1

[
Tm
Tm

] + 2
T1
Tm

�m

= r + 2=r � 2 (7)

We now show that the utilization for any task set is less or
equal to (7). From (3),

B(r;m) =

m�1X

i=1

[
Ti+1
Ti

] +
2

r
� (m� 1)� 1

=

m�1X

i=1

[
Ti+1 � Ti

Ti
] +

2

r
� 1 (8)

Since the tasks are ordered by increasing periods, we have
T1 � Ti (81 � i � m), which implies from (8)

B(r;m) �

m�1X

i=1

[
Ti+1 � Ti

T1
] +

2

r
� 1

=

Pm�1
i=1 [Ti+1 � Ti]

T1
+

2

r
� 1

=
Tm � T1

T1
+

2

r
� 1

= r + 2=r � 2 = Bmax(r;m) (9)

2

Two facts worth noting from (9) are that the maximum
utilization is independent of the number of tasks and that for
m = 2, Bmax(r; 2) = Bmin(r; 2). The processor utiliza-
tion obtained by T-BOUND is always betweenBmax(r;m)
andBmin(r;m). From Figure 3, we see that whenr is close
to 1, the difference betweenBmax(r;m) andBmin(r;m) is
very small and therefore R-BOUND is a good approxima-
tion of T-BOUND. Section 4 shows how it is possible to
obtain small values ofr on each processor of a multipro-
cessor system when we use the R-BOUND for admission
control.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 1.2 1.4 1.6 1.8 2

B
m

ax
(r

)-
B

m
in

(r
)

r

m=infinity
m=10
m=6
m=3

Figure 3. Difference between upper and lower
bounds for T-BOUND

4 Admission control for multiprocessors

4.1 Admission control based on partitioning

In order to create an admission control for multiproces-
sor systems based on partitioning, we need to answer the
three following questions.

� What uniprocessor admission control should be used?
Clearly, a uniprocessor admission control with a high
processor utilization should be preferred for parti-
tioning. Further, because the uniprocessor bound is
evaluated multiple times per processor, the complex-
ity of the multiprocessor admission control increases

very rapidly when the uniprocessor bound is com-
plex. This implies that complexity of the uniproces-
sor admission control should be kept low. R-BOUND
meets both criteria and is selected as the uniprocessor
admission control.

� What is a criteria for compatible tasks? From Figure
2 we have observed that task sets withr close to one
yield high processor utilization when assigned to the
same processor. This gives us the criteria needed to
isolate compatible tasks: we should try to schedule
tasks with transformed periods close to each other on
the same processor.

� What bin-packing algorithm should be used? Be-
cause the schedulability test given in Lemma 3 re-
quires the tasks to be ordered by increasing periods,
the bin-packing algorithm used in the multiprocessor
admission control cannot reorder the tasks given as
input. This implies that bin-packing algorithms like
Decreasing First Fit[9] cannot be used. On the other
hand,Next Fit is not only a suitable algorithm, but
also has the advantage of working well with the com-
patibility criteria. Since the input tasks are sorted by
increasing periods, tasks with periods close to each
other are usually assigned to the same processor and
yield high utilization. The performance can be im-
proved further by using theFirst Fit algorithm.First
Fit also respects the compatibility criteria and im-
proves uponNext Fit by considering a processorP
for a future task even afterP rejected a task in the
past. As consequence,First Fit is selected as the bin
packing for partitioning tasks.

R-BOUND-MP, the multiprocessor admission control
algorithm uses R-BOUND as follows. First, algorithm
Scale Task Setis used to transform the original task set.
Second, transformed tasks are assigned to processors with a
First Fit bin packing algorithm. The bin packing algorithm
uses the R-BOUND to determine if a processor can accept
a new task. Finally, each original task is assigned to the
processor that its transformed task was assigned to.

4.2 Performance analysis

This section compares the performance of different parti-
tioning algorithms for multiprocessor systems. The perfor-
mance is measured in terms of average processor utilization
and complexity of the partitioning algorithm.

4.2.1 Experimental setup

Tasks are randomly generated according four parameters,
minimum and maximum task period (Tmin andTmax), min-
imum and maximum task utilization (Umin andUmax). The

worst-case computation timeC is randomly drawn from [1,
Tmin] with a uniform distribution and the periodT is ran-
domly drawn from [Tmin, Tmax] with a uniform distribu-
tion. For each task,Umin �

C
T � Umax must hold.

A fifth parameter,Utot, is used to generate a task set that
spans several processors. Tasks are generated and added to
the task set until the sum of their utilization exceedsUtot.
This task set is given to the partitioning algorithms and each
algorithm returns the number of processors needed to accept
this task set. If an admission control requiresP processors
to schedule a task set with total utilizationUtot, then we de-
fine the average processor utilization of this admission con-
trol to beUtot=P . Experiments are repeated 1,000 times per
algorithm and the achieved processor utilizations are aver-
aged.

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 p
ro

ce
ss

or
 u

til
iz

at
io

n

Task set utilization

EXACT-MP
R-BOUND-MP

BETA-MP
LL-MP

Figure 4. Average processor utilization for dif-
ferent multiprocessor admission control al-
gorithms

4.2.2 Average processor utilization

Figure 4 shows the average processor utilization obtained
with the experimental setup of section 4.2.1. The first thing
to note is that as the load increases, the average processor
utilization also increases. This is because when the number
of processors is large, the bin packing algorithm has more
freedom to assign compatible tasks to the same processor.

The algorithms compared are shown in Table 1. For high
loads, the best processor utilization is obtained by EXACT-
MP with aFirstFit bin-packing (97%), closely followed by
R-BOUND-MP (96%). BETA-MP achieves a processor uti-
lization of 87% and LL-MP with aFirstFit bin-packing has
the lowest processor utilization (72%). The reason why
R-BOUND-MP achieves such a high processor utilization
when the load is high is that when many processors are

needed, it is possible to assign tasks on a processor such that
r is close to 1 on each processor. In this case, the utilization
bound is close to 1. As a consequence, for high loads, R-
BOUND-MP yields a processor utilization comparable to
EXACT-MP. For these two admission control algorithms,
the schedulability bound is not the bottleneck anymore, but
the bin packing algorithm is.

4.2.3 Algorithms complexity

Admission Uniprocessor Complexity
control bound
EXACT-MP EXACT [10] O(m3pN)
R-BOUND-MP R-BOUND O(m(p+ logm))
BETA-MP BETA [2] O(m logm)
LL-MP LL [13] O(mp)

Table 1. Admission control algorithms for
multiprocessors

Table 1 also shows the complexity of the algorithms from
the previous section, wherem is the number of tasks,p the
number of processors andN =

Pm
i=1b

Tm
Ti
c. R-BOUND-

MP has a complexity ofO(m(p+logm)) explained as fol-
lows. First,Scale Task SettakesO(m logm), then theFirst
Fit bin-packing takesO(mp) to assign transformed tasks to
processors, and finally it takesO(m) to map back to the
original task set.

5 Periodic servers with priority exchange

Several solutions to service aperiodic tasks with a good
response time have been proposed for RMS on a unipro-
cessor [11, 16]. One of them is based onpriority exchange
[11], in addition to the periodic tasks�1, : : :, �m, a special
task�s services the aperiodic requests as they arrive.�s has
the highest priority and executes when an aperiodic task is
being serviced. When there is no aperiodic task to service,
�s exchanges its priority with the task of next highest pri-
ority to allow it to execute. If the periodic server�s has a
utilization of Us, whenm ! 1 the processor utilization
approaches [11]

U = Us + ln
2

Us + 1
(10)

Theorem 4 shows that the R-BOUND improves upon the
processor utilization of priority exchange given by Equation
(10).

Theorem 4 A set ofm tasks can be scheduled with RMS on
one processor with a priority exchange server of utilization

Us if the processor utilizationU is such that

U � Us + ((m� 1)(r1=(m�1) � 1) + 2=r � 1)(1� Us) (11)

wherer is the ratio between the largest and the smallest
transformed periods.

PROOF: One can consider the processorP with a process-
ing power of 1 as being composed of two smaller virtual
processorsP1 andP2. When a task set with a utilization
boundUb is scheduled on a virtual processor with process-
ing powerp, the resulting processor utilizationUp is

Up = pUb (12)

We assignP1 a processing powerUs andP2 a processing
power1 � Us. If task �s is scheduled onP1, its utilization
bound is 1 (since this is the only task on this virtual proces-
sor) and from (12) yields a processor utilizationUP1

UP1 = Us (13)

The remaining tasks�1, : : :, �m are assigned to virtual pro-
cessorP2. From (4) and (12) we derive the utilizationUP2
of the virtual processorP2 to be

UP2 = ((m� 1)(r1=(m�1) � 1) + 2=r � 1)(1� Us) (14)

Summing the utilization of the two virtual processors (13)
and (14) gives (11). 2

Corollary 2 Whenm ! 1 the processor utilization ap-
proaches

U ! Us + (ln r + 2=r � 1)(1� Us) (15)

Figure 5 plots the processor utilization obtained by
Equation (15) (curves R-BOUND-PE) versus the one ob-
tained from Equation (10) (curve PE). R-BOUND-PE
achieves a better processor utilization for all values ofr and
Us. When the tasks are assigned to a multiprocessor system
as described in Section 4, compatible tasks are assigned to
the same processor which implies thatr is close to 1. When
r < 1:1 on each processor, the processor utilization of the
whole system is always above 90%.

6 Tolerance to transient faults

When a transient fault occurs, a common recovery tech-
nique is to re-execute the faulty task. However, in a real-
time system, re-executing a task may delay other tasks and
cause them to miss their deadlines. The conditions for
recovery by task re-execution for RMS scheduling on a
uniprocessor are given in [8]. By using slack of utilization
Ub to re-execute faulty tasks, when at most one transient

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

Pr
oc

es
so

r
ut

ili
za

tio
n

Periodic server utilization

R-BOUND-PE (r=1.1)
R-BOUND-PE (r=1.3)

R-BOUND-PE (r=2)
PE

Figure 5. Processor utilization as a function
of the server utilization.

fault occurs withinTm + Tm�1, the processor utilization
UG�FT�RMS for a set ofm tasks has been shown [8] to be

UG�FT�RMS = m(21=m � 1)(1� Ub) (16)

Theorem 5 shows that using the R-BOUND increases the
processor utilization when transient faults are to be toler-
ated.

Theorem 5 A set ofm tasks can be scheduled with RMS on
one processor with a backup utilizationUb if the processor
utilizationU is such that

U � ((m� 1)(r1=(m�1) � 1) + 2=r � 1)(1� Ub) (17)

wherer is the ratio between the largest and the smallest
transformed periods.

PROOF: The first step is to transform the original task set
T with the algorithmScaleTaskSet. If the schedulability
condition derived for the transformed task setT 0 holds, then
T is schedulable. The same analysis as the one in [8] shows
that the processor utilizationU is minimum when

for 1 � i � m� 1 C 0

i = (T 0

i+1 � T 0

i)(1� Ub) (18)

and C 0

m = (2T 0

1 � T 0

m)(1� Ub)(19)

From (18) and (19) the resulting processor utilization is

U = (

m�1X

i=1

[
T 0

i+1

T 0

i

] + 2
T 0

1

T 0

m

�m)(1� Ub) (20)

Following the proof of Theorem 2 with (20) instead of (2),
the least upper bound for the processor utilization is (17).2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

Pr
oc

es
so

r
ut

ili
za

tio
n

Backup utilization

R-BOUND-FT (r=1.1)
R-BOUND-FT (r=1.3)
R-BOUND-FT (r=1.5)

G-FT-RMS

Figure 6. Processor utilization as a function
of the backup utilization.

Corollary 3 Whenm ! 1 the processor utilization ap-
proaches

U ! (ln r + 2=r � 1)(1� Ub) (21)

Figure 6 shows the improvement on the processor uti-
lization when Equation (21) is used (curves R-BOUND-FT)
instead of Equation (16) (curve G-FT-RMS) whenm!1.
The improvement of the processor utilization is larger (up
to 20%) whenr is close to 1.

7 Conclusion and further research

Rate-monotonic admission control for a uniprocessor ex-
hibits a tradeoff between its computational complexity and
the processor utilization it can achieve. Our work proposes
two new RMS admission control algorithms for uniproces-
sors, T-BOUND and R-BOUND. When R-BOUND is used
in a partitioning scheme to provide an RMS admission con-
trol for multiprocessor systems, experimental results show
that this multiprocessor admission control yields very good
processor utilization (up to 96% for a large number of tasks)
and has low computational complexity. R-BOUND is also
used to derive new and higher multiprocessor schedulability
bounds when RMS is used with a periodic server or when
transient faults need to be tolerated.

We are currently examining how R-BOUND can be
modified to be used for on-line scheduling with dynami-
cally changing task sets. We are also investigating how R-
BOUND can be extended to deadline-monotonic and pre-
emptive tasks with critical sections [15, 4].

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and
A. J. Wellings. Applying new scheduling theory to static pri-
ority preemptive scheduling.Software Engineering Journal,
8(5):284–292, September 1993.

[2] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New strate-
gies for assigning real-time tasks to multiprocessor systems.
IEEE Trans. on Computers, 44(12):1429–1442, 1995.

[3] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. AR-
INC659 acheduling: Problem definition. InProceedings of
the Real Time Systems Symposium, pages 165–169, Decem-
ber 1994.

[4] M. Chen and K. Lin. Dynamic Priority Ceilings: A Concur-
rency Control Protocol for Real-Time Systems.Journal of
Real-Time Systems, 2(4):325–346, 1990.

[5] S. Davari and S. K. Dhall. On a periodic real-time task al-
location problem. In19th Annual International Conference
on System Sciences, pages 133–141, 1986.

[6] S. Davari and S. K. Dhall. An on line algorithm for real-time
tasks allocation.IEEE Real-time Systems Symposium, pages
194–200, 1986.

[7] S. K. Dhall and C. L. Liu. On a real-time scheduling prob-
lem. Operations Research, 26(1):127–140, 1978.

[8] S. Ghosh, D. Moss´e, and R. Melhem. Fault-Tolerant Rate-
Monotonic Scheduling. Journal of Real-Time Systems,
1998. to appear.

[9] D. S. Johnson, A. Demers, et al. Worst case perfor-
mance bounds for simple one-dimensional packing algo-
rithms. SIAM Journal on Computing, 3:299–325, 1974.

[10] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling: Exact characterization and average case behav-
ior. IEEE Real-time Systems Symposium, pages 166–171,
1989.

[11] J. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperi-
odic responsiveness in hard real-time environments.IEEE
Real-time Systems Symp., pages 261–270, 1987.

[12] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks.Performance
Evaluation, 2:237–250, 1982.

[13] C. L. Liu and J. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment.Journal of
the ACM, 20(1):47–61, 1973.

[14] Y. Oh and S. H. Son. Tight performance bounds of heuristics
for a real-time scheduling problem. Technical Report CS-
93-24, University of Virginia, 1993.

[15] R. Rajkumar.Synchronization in Real-Time Systems: A Pri-
ority Inheritance Approach. Kluwer Academic Publishers,
1991.

[16] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task Schedul-
ing for Hard-Real-Time Systems.Journal of Real-Time Sys-
tems, pages 27–60, 1989.

