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Abstract linear equations (1) under the constraints of {3)

and given direction vectors to be tested simultaneously
In this paper, we generalize the test. The [1]. The Power and Omega tests gain more accurate
generalizedr test can be applied towards determining outcomes, but they have exponential worst-case time

whether there exist data dependences for coupled arraygomplexity [6, 7, 8]. For array references with
with both constant and variable limits under any givennonlinear subscripts, the range test can be applied to
direction vectors, improving the applicable range of thetest data dependency [5]. In the rest of this paper the
A test. Experimental data reflecting the effect of the organization is depicted as follows. In Section 2, the

generalizedr test are also presented. problem of data dependence is reviewed. The summary
accounts of thetest are presented. In Section 3, the
1. Introduction theoretical aspects and the worst-case time complexity

of the generalizedltest are described. Experimental

The study in [9] shows that about 46 percent andresy|ts showing the advantages of the generalizest
2 percent of examined two-dimensional and three-gre given in Section 4. Finally, brief conclusions are
dimensional array references, respectively, havegiven in Section 5.

coupled subscripts. The problem of data dependencé

analysis form-dimensional array references, each with 2 Background

n index variables, can be reduced to that of checking

whether a system of linear equations witim unknown It is assumed thas, and s, are two statements

variables has a simultaneous integer solution, WhICh\N|th|n a genera| |00p_ The genera| |00p is presumed to
satisfies the constraints for each variable in the systemegontain d common loops. Statements and s, are

It i_s assumed thamn linear equations in a system are postulated to be embeddeddap loops andi+q loops,
written as (¥1):  respectively. An arrayA is supposed to appear
Xyt e 80X =0y AnaXo b 48X, =0, WHere  gimyjtaneously within - statementss, and s, If
each a ; is an integer fori<si<sm and 1<j<n Itis  statements, uses the element of the arrAydefined
postulated that the constraints to each variable-th)(1 first by another statemers,, then s, is true-dependent

are represented as -@:  on s. If the statements, defines the element of the
r-1 r-1 . .

Ro+ z B Xs< X Qo +er,sXs, wherer, ;, @ o, B sand array A used first by another statemest, then s, is
&1 &1 anti-dependent ors . If the statement, redefines the

Qs are integers fori<r<n If each of ;andq sis  element of the arrayA defined first by another
zero in the limits of (22), then (£2) will be reduced to  statements , thens, is output-dependent of .
(1-3):R 0= X, =<Q o, Where 1<r<n That is, the bounds Coupled references are groups of reference
for each variablex, are constants. positions sharing one or more index variables [1, 6].
The Banerjee Test(Banerjee algorithmand The Banerjee inequalities are first applied to test each
Banerjee inequalitigsonly handles one linear equation €duation in (£1). If every equation intersecté, the
with the bounds of (42) or (:3) under given direction convex set defined by the constraints of each variable in
vectors [2]. The | test and the Direction Vector | test (1~1), then thea test is employed to simultaneously
figure out integer solutions for one linear equation with Cheéck every equation.The 2 test forms linear

constant bounds and given direction vectors [3, 4]. Thecombinations of coupled references that eliminate one
) test extends the Banerjee inequalities to alfow ©OF more instances of index variables when direction
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vectors are not considered. While direction vectors arecone that includes at least one nonzero vegtanust

considered, the A test generates new linear consists of the“ray” of i, namely {aX|szo}. Such
combinations that use a pair of relative index variables.

) : ; it jones can clearly be viewed as the union of rays. There
Simultaneous constrained real-valued solutions exist i

; . N,
and only if the Banerjee inequalities find solutions in are at mOS‘? w lines Wh'Ch. together_ divide® into at
all the linear combinations generated [1]. most 21 regions. Each region contains the zero vector.

Any one nonzero element and the zero vector in the
3. The Generalized A Test region forms the ray of, namely{gxﬂszo}. Therefore,

each region can be viewed as the union of the rays. It is
Suppose thatf, and g, are the lower bound ey ohvious from the defition of a cone that each
function and the upper bound function for the i-th region is a cone [1].
variable in (+1) with n unknown variables under the In the following, Lemmas 3L to 3-3 are an
constraints of (22), where 2<i<n The original extension of Lemmas 1 to 3 in [1], respectively;
constraints (22) for each variable in () are  Definitions 3-1 to 3-3 are cited from [1, 2] directly.

rewritten as PosX,<Q, and Lemma 3-1: Suppose that a bounded convex \¢et
fi(Xg, e, Xig) € Xi G5 (Xg, -, Xig), defined simply by the limits of (). If F,,, =0
it intersectsV for ever in ever line, then
Whefefi(X1,~~~,Xi_1)=F’.,o+ZF’.,SXS and v . Y ) yw.
£ Fy,» 2, =0 also intersecty for every (i, 4,) in R
i-1 .
gi(X1,~~~,Xi_1)=Qi,o+ZQi,sXs for 2<i<n. (31) _ .If the constraints of (-31).pllus dependence
£ directions defineV, we have a similar lemma. The

The theories of the proposed test method are started t®llowing definition cited from [2] will first define the
state from the case dgf=2, for the convenience of new limits for each pair of relative variables with a

presentation. given dependence direction.
_ _ Definition 3-1: Given m linear equations 1)
3.1. Two Dimensional Array References beneath the constraints of{B and a specific direction

. . vector 6 =(g,,---,64), Where d refers to the number of
In the case of two dimensional array references, .
two equations in (d1) are F,=0 and F,=0, where  common l00ps, it 0 {<, >}, 1<k<d, then the bounds

Fo=ao+a X, ++a X,forl<i<2 A linear equation ©f (3-1) for each pair of relative variables will be
' ' ' redefined, assumings,,_, 6, X, and X, and X,

refer to the same loop indexed variable. The new
constraints forx,,, and x,, are defined as follows: if

then

for convenience is directly referred as a hyperplane in
R". By [1], an arbitrary linear combination of the two
equations can be written asr, + A,F, =0. The domain

of (A,4,) is the wholer? space. LetF, ,, =MF; +AF; 6. 0{<¢

(3=2): faea(Xa, ) Xoe2) € Xkt € Gkt (X, o+, Xpip) =1

that IS F  =a.+Aa )X +tAa - +A,a )X . )
e =i ¥ A2 )% Ain * ool and fp (Xy, -, Xa1) =1+ Xoeq € Xaou € G (Xg, s Xgpen)i i

Froh, is viewed in two ways. Witha,, 2,) fixed, F,

6, 0{>}, then (3-3):
is a linear function of (X;,---,X,) in R". With ot (X0 Xop—2) € Xopt < Gorea(Xps -+ Xre_a)
(X1, Xy fixed, it is a linear function ofa;,4,) in R2. and fo Xy, -+, Xo1) < Xor € Xoeg 1= G (Xa, s Xe_)-
Furthermore, the coefficient of each variabledp ,, Then we should discuss the rule to select the minimum
is a linear function of ., in R?, ie., andmaximum limits for each pair of relative variables

when their corresponding dependence directions are
: _ _ given. Each dependence direction is known to relate a
1<is<n, is called aw equation. Eachw equation  unique pair of loop indices, which are associated with

wh=)a;+2,, forisisn  The equation w®=q,

corresponds to a line iRk?, which is called ay line. one of the common loops. Obviously, we should choose
Each v line separates the whole space into two closedhe new constraints {2) or (3-3) for each pair of
halfspacesw* ={(A;,4,) |¥® =20 and ™ ={(x, A,) |vD < relative variables and the original bounds-1B for

that intersect at the line. A nonempty set 0 R™ is a other variables not to be constrained by dependence

o - . . directions such that, ,, has the minimum value and
cone if a0c for eachaoc and exo0. It is obvious 17 A2

that each cone contains the zero vector. Moreover, &€ maximum value. Letb,;,, be the sum of the



coefficients of x,_, and x, in F,,,, where x,_, by the constraints of {B) only, then there are no more

and x,, are related by a dependence direction, i.e.,thann hyperplanes in the set [1]. If the bounds 6f3lL

® -2 . . . [1]. The as well as dependence dlrect|ons_‘. defihehen the_re
@12 =M@ 2t @ 21 * Ao(@: 2t B2 24) ' are no more thann® hyperplanes in the set [1]. It is at

minimum point and maximum point af, ,,, inV,in once concluded that the number ofplanes tested by

the presence of dependence directions, depend not onftjae generalized version of the test is the same as that

on the sign of the coefficient of each variable but alsoof A planes checked by the test.

on the sign ofo ;4. as clearly undertaken from We use the following example to explain the

statementstaove. Fron{1], the equation® s s =0 is enhanced power of the generalizedtest over the)

lled i Eacho i ds t test, when it is used to test data dependence for variable
cafled ae equation. Lachip equation corresponds 10 a ., 4s ynder given dependence directions.

o line in rR?. There are at most/2 ¢ lines. All ® Consider the following equations

lines and w lines divide R? space into at mosBn Xy =X, =0 (ex3)
regions. Each region is still a cone.

Lemma 3-2: Suppose that a bounded convex \¢as
denoted by the limits of (&) as well as dependence
directions. IfF, , ,,=0 intersectsv for each (A, 2,) in

~Xy+X3=0 (ex4)

subject to the bounds

1< X1 10,1 X5 10,1~ 2X; € X3 <10+ Xy andl - 2X, < X4 <10+ Xo,
and the limits of a direction vectar <x, and x,<x,.

According to Definition 31, the constraints for
intersects/ for every (a,, A,) in R?. X1, X2, X3 and  x, will be redefined by 1<x;<9,

As a matter of fact, it suffices to test a single 1+X;<X,<10, 1-2X;< X3=9+ X, and 1+ Xz< X, <10+ X,. The
point in eache line or eachw line for determining  Banerjee algorithm is first used to resolve the problem.
whether F, , ,, intersectsV for every (A;,4,) in those  The extreme values computed by the Banerjee
lines. algorithm to (ex3) are-19 and 25, respectively. The
Lemma 3-3: Suppose that a bounded convex \éd6 Banerjee algorithm assumes that there are real-valued
denoted by the limit of (3) and dependence directions. solutions because-19<0<25 Similarly, the extreme

Given a line in R? corresponding to an equation Vvalues for (ex4) are-27 and 8, respectively. The
al, +bA, =0, if F,,, =0 intersectsV in R" for any Banerjee algorithm also assumes that there are real-

_ ) ) ) valued solutions because27<o<s. Therefore, the
fixed point (A2,43)#(0, 0) in the line, then for every paneriee algorithm concludes that there may be real-
(A1.4z) intheline,F, ., =0 also intersecty. valued solutions. If the generalized test is then used
Definition 3-2: Given an equation of the form to resolve the same problem, the and » equations
al, +bl, =0 where a,b are not zero simultaneously, a are generated. The equations areo), +10A,=0 and
canonical solution of the equation is defined as10)+o0x=0. The w equations have two canonical
follows: (A, A,) =(1,0),if a=0; (A1, Ay) =(0,2),if b=0; (A, A) solutions (1, 0) and (0, 1). Each canonical solution
=(b,-a), if neither a, b is zero. yields one A plane corresponding to an original
Definition 3-3: The A set is denoted to be the set of hyperplane inferred from (ex3) or (ex4). The two

all canonical solutions te equations andv equations. Planes are not necessarily tested by the generalized
The hyperplane irrR" corresponding toyF, +A,F, = 0, test because the Banerjee algorithm has tested them.
The o equations arey; -1,=0 and -, +1,=0. The A

set from theo equations is easily determined={(1,
There are at most w equations iV is denoted 1)}. The canonical solution (1, 1) in the set gives the

by the bounds of 3) only. There are at mosty and A pl_ane: K17 X2t X3 7 Xa 20 Based on the Banerjee
2 o equations itV is defined by the limits of @) ~ l9orithm, the maximum value for tha plane is
and dependence directions. Each of the equationdmediately inferred to be-2. Similarly, the
generates a canonical solution according to DefinitionMinimum value to thex plane can also be derived to
3-2. Each canonical solution formsja plane in light ~ be -38 Since the maximum value for the plane is
of Definition 3-3. Obviously, A planes tested are at less than zero, the generalized test in light of
mostn if V is defined by the constraints ofB only, Lemmas 31 to 3-3 infers that there is no solution.

and are at mostn® if V is denoted by the bounds of
(3-1) as well as dependence directionsV i denoted

every ¢ line and everyw line, then F,,, =0 also
1 2

where (A, 4,) iS a canonical solution in thea set, is
called ax plane.

3.2. Multidimensional Array References



We take account ah linear equations in (1)
with m > 2 for generalizing the generalizedtest. All

m linear equations are assumed to be connected;
otherwise they can be partitioned into smaller systems."™

In the following, Lemmas -3 and 35 are an
extension of Lemmas 5 and 6 in [1], respectively.
Lemma 3-4: If F, ., =0 intersectsV for every

(A1, Ap) In every A line, then F, ., =0 also

As stated before, we can hypothesize that there are nimtersectsy for every(,,---,A,) in R™ space.

redundant equations. By [1], an arbitrary linear | emma 3-5: Given a line inR™ which crosses the
combination ofm linear equations can be written as origin of the coordinates, if, .., =0 intersectsV in

n m

m

Z/\iFi :O, Whel’e Fi :Zai‘jxi'j. Let F/\lv""/\m :Z/\il:i;

1= ]= 1=
m m )

and then Fa =(z/\jajvl)xl+~..+(z/\jaj,n)xn. Itis to
=1 =1

be determined whetheF, .., =0 intersectsV in R"

space for arbitrary,,---,A,). The coefficient of each
variable inF, .., is alinear function ofa,--,A,) in

m
R™, which is w(”:Z/\jaJ,i for 1<i<n The w
=

equationw® =0, 1<i<n, is called ay equation. Ay
equation corresponds to a hyperplanern, called a

R" space for any fixed poin@?,---,A%) #(0,---,0) in the
line, then for every(,,---,A,) in the line, F, ., =0
also intersecty.

There is a finite set of hyperplanes & space
such thatS intersectsV if and only if every hyperplane
in the set intersectg. If V is denoted by the constraints

of (1-3) only, then there are no more th%q”_lg

hyperplanes in the set [1]. f is defined by the limits
of (3-1) only, then the number of hyperplanes in the set

is also at moslgn”_lg If Vis denoted by the bounds of

(1-3) as well as dependence directions, then there are

w plane. Eachw plane divides the whole space into no more thangn”ii% hyperplanes in the set [1]. \f is

two closed halfspaceso; ={(/\1,~~,/\m)|w“>z o and
oF ={(/\1,~~~,/\m)|w“> <0 Let 1z be the sum of the

coefficients of X, and x, in F, .., where X,

defined by the limits of (@Bl) and dependence
directions, then the number of hyperplanes is also at

most ”f% in the set. It is right away derived that the

and x,, are related by a dependence direction, i.e.,number ofA planes tested in the generalizedtest is

m
D ox-1,20) = Z/\i (@ 2k1 +a 2). The equationd ;g 5 =0,
=

is called a® equation. A® equation corresponds to a
hyperplane inr™, which is called a» plane. Eache

the same as that af planes checked in the test. The
detail of the generalized test in the general case is
not considered since the discussion is similar to the case
ofm=2.

plane separates the whole space into two close® 3 Time Complexity

halfspaces and

S(ok-1,2¢) = (Alr"'v/\m)|q)(2k—l.2k)20}
S(ak-1.20) ={(/\1,~~~,/\m)|q>(2k_L2k)s o. If Vis defined by the

constraints of (31) only, then a nonempty sqé’t]gi,
i=1

where D{Qr,Qi‘}, is called aar region. If the bounds

of (3-1) as well as dependence directions dengte

then a nonempty set(ﬁgi)m(ﬁa(ZK_lZK)), where
i=1 k=1

fof D{Qr,Qi‘} and & 2 D{a(*zk_m),a(‘ZK_m)}, is called

a A region. The intersection @f,; 2 is taken for all

pairs of index variables, which are related by a

dependence direction. Eveny region is a cone irR™

space. Thex regions inrR™ space have several lines as .

the frame of their boundaries. Each line (called a
line) is the intersection of some and ¢ planes.

The common phases for the test and the
generalizedr test include (1) calculating values and
(2) examining eachx plane. A values are easily
determined according to equations,w equations and
Definition 3-2. It is clear that the time complexity to
computing ax value is oy) from Definition 3-2,
where y is a constant. Each value corresponds to a
A plane. Eachn plane is tested to see if it intersedfs
by checking its minimum and maximum values. The
extreme values can be calculated from the Banerjee
inequalities and also computed from the Banerjee
algorithm. The time complexity to the Banerjee
inequalities and the Banerjee algorithm avg) and

o(zz) respectively, where is the number of variables

in the A plane. Hence, the time complexity of the
test and the generalized test for examining ax



plane is at once derived to be(z) and 0(22) Second, the “success rate” of the generalizettst, by

respectively. The number ofi planes checked to the Which we mean how often a generalizedtest detects

) test and the generalized test is the same, and is at @ case where there is no data dependenceb betthe
number of the coupled subscripts found in our

experiments, and letbe the number that is detected to
dimensions and is the number of variables in coupled have no data dependence from the coupled subscripts.
references, in light of statements in Section 3.3 [1]. Thus the success rate is denoted to be equaitton
Therefore, the worst-case time complexity for the  our experiments, 17433 pairs of array references were
test and the generalized test is immediately inferred found to have coupled subscripts, and 10548 of them
to be o n/igﬂ(zw)a and o@”zﬁz@z%y% respectively.  Were found to ha_ve no data dependence. So tteess

-1 -18 rate in our experiments was about equal to 60.5 percent.
Two-dimensional arrays with coupled subscripts appeaiThe generalized test increases the success rate of the
quite frequently in real programs, as clearly indicated A test. The increasing success rate was about 21.9
from statements in Section 1. The number of examiningpercent.
A planes to each two-dimensional array tested is at In our experiments) planes always subsumed
most 3n/2 according to statements in Section 3.2 [1]. If the hyperplane from each dimension of an array
the A test and the generalized test are applied to reference. Note that the Banerjee algorithm needs first
deal with the array, then their worst-case time to test these hyperplanes. Comparing with the Banerjee
complexity is ofans2c(z+ ) and ofinrzch?+yf respectively. algorithm, the generalized test examined a total

] ) number of 17473 additionala planes in our

The number of checking planes is almost 1 due t0 oy nariments. That is, almost every generalizedest
the regularity of coefficients in coupled subscripts in 54 examined only one additional plane. In light of

real t){/_vo-dlmens;on_?l afr;zys tteitedaljﬁnce, thel_WO(;St'this fact, the additional time needed by the generalized
case time complexity of the test and the generalized s very small.

A test for testing those real two-dimensional arrays is Timing results are shown in Table 1. Each row

nearly equal too(z+y) and 0(22+y) respectively. The  shows how much additional time (compared with the
generalizeda test slightly decreases the efficiency of Banerjee algorithm) was needed in the generalized

most ”if% where m is the number of coupled

the 2 test because the number of variabes) the A test. For instance, the first row shows that there were 66
plane tested is generally very small. subroutines in which the generalizadtest consumed

. no more than 40 percent additional time. For most of
4. Experimental Results the subroutines (294 out of 310), the generalized

tests never need more than 100 percent additional time.

We tested the generalized test and performed Additional time was spent mostly on 1) calculating

experiments on Personal Computer Intel 80486 through -
the codes cited from five numerical packages EISPACK,ValueS’ and 2) examining eaghplane.

LINPACK, Parmllel loops, lee_rmore loops and Vector Testime increasel  Number of subroutthes
loops [11, 12]. The codes include more than 37000 0%-a0% 6
Iines_of_ statements, and 17433 pairs of array referen_ces 119%5-70% 105
consisting of the same pair of array references with 71%-90% 83
different direction vectors were found to have coupled 91%-100% 40
subscripts. Thex test detected that there were no data 101%-150% 1
dependences for 6722 pairs of coupled arrays under 200%250% 5

constant bounds and direction vectors. The generalized Table 1. Timing results of the generalizedtest.
A test checked that there were no data dependences for

3826 pairs of coupled arrays beneath variable limits and The Power test and the Omega test were also

direction vectors as well as 6722 pairs of coupled arra\ysen;|p|oyed to resolvs 1?54$hpalrst of atrra;ys with (f:oup(ljecti
subject to constant constraints and direction vectors. re ergnc;ehs, respectivety. i ese IENO etshs were ;lgn d 0
The generalizedr test in our experiments is acquire the same accurate results as the generalize

only applied to test those arrays with coupled subscriptsFeSt‘ Suppose thak, k, and k; are the execution time

The generalized test found 10548 cases that had no to treat data dependence problem of a coupled-subscript
data dependence. The improvement rate can be affected{Tay for the generalized test, Power test and Omega
by two factors. First, the frequency of coupled subscriptstest, subsequently. The speed-up in Table 2 is defined to



be the set ofk,/k, and k;/k,. Each row in table 2 references with linear subscripts. However, the cost of

shows how many times the execution time of the Powerth€ two tests is very expensive because the worst-case of
and Omega tests took longer than the execution time ofourier-Motzkin variable elimination is exponential in
the generalizeda test. For example, the first row the number of free variables [6, 7, 8]. Triolet [10] found
shows that there were 132 subroutines in which thdhat using Fourier-Motzkin variable elimination for
execution time of the two tests took from 16.4 to 22.7dependence testing takes from 22 to 28 times longer
times longer than that of the generalizedest. For all  than the Banerjee inequalities. The Range test is now

of the subroutines in our experiments, the executiontn® highest precision and the widest applicable range in

time of the two tests was indicated from Table 2 to taket"€ field of data dependence analysis for testing array

from 7.1 to 22.7 times longer than the execution time of €férences with - nonlinear —subscripts. ~ Inour
the generalized » test. This indicates that for €XPeriments, the generalized test, Power test and

multidimensional arrays with coupled subscripts the OMegda test share the same accurate results for 10548
efficiency of the generalized test is much better than Pairs of arrays with coupled references. However, the
that of the Power test and the Omega test efficiency of the generalized test is much better than

' that of the Power test and Omega test.

Speed-up Total number of The generalizedr test extends the applicgble
subroutines range of the A test and, according to the time
16.4-22.7 132 complexity analysis, only slightly decreases the
14.7-15.9 210 efficiency of thex test. Therefore, the generalizad
13.1-14.5 166 test seems to be a practical scheme to analyze data
12.512.9 80 dependence for coupled-subscript array references.
10.3-12.3 22
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