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Abstract

In this paper, we generalize the λ  test. The
generalized λ  test can be applied towards determining
whether there exist data dependences for coupled arrays
with both constant and variable limits under any given
direction vectors, improving the applicable range of the
λ  test. Experimental data reflecting the effect of the
generalized λ  test are also presented.

1.  Introduction

The study in [9] shows that about 46 percent and
2 percent of examined two-dimensional and three-
dimensional array references, respectively, have
coupled subscripts. The problem of data dependence
analysis for m-dimensional array references, each with
n index variables, can be reduced to that of checking
whether a system of m linear equations with n unknown
variables has a simultaneous integer solution, which
satisfies the constraints for each variable in the system.
It is assumed that m linear equations in a system are
written as (1−1):

+11 ,1 Xa   �  ,  ,0  ,1 �=+ nnXa ,0 ,11 , =++ nnmm XaXa �  where

each jia
 ,  is an integer for mi ≤≤1  and .1 nj ≤≤  It is

postulated that the constraints  to each variable in (1−1)
are represented as (1−2):
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rrssrr XQQXXPP where ,0 ,rP ,0 ,rQ srP  , and

srQ  ,  are integers for .1 nr ≤≤  If each of srP  , and sr  ,Q is

zero in the limits of (1−2), then (1−2) will be reduced to
(1−3):  ,0 ,0 , rrr QXP ≤≤ where .1 nr ≤≤  That is, the bounds

for each variable rX  are constants.
The Banerjee Test (Banerjee algorithm and

Banerjee inequalities) only handles one linear equation
with the bounds of (1−2) or (1−3) under given direction
vectors [2]. The I test and the Direction Vector I test
figure out integer solutions for one linear equation with
constant bounds and given direction vectors [3, 4]. The
λ  test extends the Banerjee inequalities to allow m

linear equations (1−1) under the constraints of (1−3)
and given direction vectors to be tested simultaneously
[1]. The Power and Omega tests gain more accurate
outcomes, but they have exponential worst-case time
complexity [6, 7, 8]. For array references with
nonlinear subscripts, the range test can be applied to
test data dependency [5]. In the rest of this paper the
organization is depicted as follows. In Section 2, the
problem of data dependence is reviewed. The summary
accounts of theλ test are presented. In Section 3, the
theoretical aspects and the worst-case time complexity
of the generalizedλ test are described. Experimental
results showing the advantages of the generalizedλ test
are given in Section 4. Finally, brief conclusions are
given in Section 5.

2.  Background

It is assumed that 1S  and 2
S  are two statements

within a general loop. The general loop is presumed to
contain d common loops. Statements 1S  and 2

S  are
postulated to be embedded in d+p loops and d+q loops,
respectively. An array A is supposed to appear
simultaneously within statements 1S  and .2

S  If
statement 2

S  uses the element of the array A defined
first by another statement 1S , then 2

S  is true-dependent
on 1

S . If the statement 2
S  defines the element of the

array A used first by another statement 1
S , then 2

S  is
anti-dependent on 1S . If the statement 2

S  redefines the
element of the array A defined first by another
statement 1

S , then 2
S  is output-dependent on 1

S .
Coupled references are groups of reference

positions sharing one or more index variables [1, 6].
The Banerjee inequalities are first applied to test each
equation in (1−1). If every equation intersects V, the
convex set defined by the constraints of each variable in
(1−1), then the λ  test is employed to simultaneously
check every equation. The λ  test forms linear
combinations of coupled references that eliminate one
or more instances of index variables when direction
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vectors are not considered. While direction vectors are
considered, the λ  test generates new linear
combinations that use a pair of relative index variables.
Simultaneous constrained real-valued solutions exist if
and only if the Banerjee inequalities find solutions in
all the linear combinations generated [1].

3. The Generalized  λ  Test

 Suppose that if  and ig  are the lower bound

function and the upper bound function for the i-th
variable in (1−1) with n unknown variables under the
constraints of (1−2), where .2 ni ≤≤  The original
constraints (1−2) for each variable in (1−1) are
rewritten as  0 ,110 ,1

QXP ≤≤  and

), , ,() , ,( 1111 −− ≤≤ iiiii XXgXXXf ��

where ∑
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The theories of the proposed test method are started to
state from the case of m=2, for the convenience of
presentation.

3.1. Two Dimensional Array References

In the case of two dimensional array references,
two equations in (1−1) are 01 =F  and ,02 =F  where

.21for     ,11 ,0 , ≤≤+++= iXaXaaF nniiii �  A linear equation

for convenience is directly referred as a hyperplane in
.nR  By [1], an arbitrary linear combination of the two

equations can be written as =+ 2211 FF λλ 0. The domain

of ) ,( 21 λλ  is the whole 2R  space. Let ; 2211 , 21
FFF λλλλ +=

that is .)(   )(  ,22 ,1111 ,221 ,11 , 21 nnn XaaXaaF λλλλλλ ++++= �

21  , λλF  is viewed in two ways. With ) ,( 21 λλ  fixed, 
21  , λλF

is a linear function of ), ,( 1 nXX �  in .nR  With

), ,( 1 nXX �  fixed, it is a linear function of ) ,( 21 λλ  in .2R

Furthermore, the coefficient of each variable in 
21   , λλF

is a linear function of ) ,( 21 λλ  in ,2R  i.e.,

.1for   ,22 ,11
)( niaa ii

i ≤≤+=Ψ λλ  The equation ,0)( =Ψ i

,1 ni ≤≤  is called a Ψ  equation. Each Ψ  equation

corresponds to a line in 2R , which is called a Ψ  line.
Each Ψ  line separates the whole space into two closed
halfspaces }0|) ,{( )(

21 ≥Ψ=Ψ+ i
i λλ  and }0|) ,{( )(

21 ≤Ψ=Ψ− i
i λλ

that intersect at the Ψ  line. A nonempty set mRC ⊂  is a
cone if C∈λε

&
 for each C∈λ

&
 and .0≥ε  It is obvious

that each cone contains the zero vector. Moreover, a

cone that includes at least one nonzero vector λ
&

 must
consists of theØ rayÙof ,λ

&

 namely { }.0≥ελε
&

 Such

cones can clearly be viewed as the union of rays. There
are at most n Ψ  lines which together divide 2R  into at
most 2n regions. Each region contains the zero vector.
Any one nonzero element λ

&
 and the zero vector in the

region forms the ray of ,λ
&

 namely { }.0≥ελε
&

 Therefore,

each region can be viewed as the union of the rays. It is
very obvious from the definition of a cone that each
region is a cone [1].

In the following, Lemmas 3−1 to 3−3 are an
extension of Lemmas 1 to 3 in [1], respectively;
Definitions 3−1 to 3−3 are cited from [1, 2] directly.
Lemma 3−1: Suppose that a bounded convex set V is
defined simply by the limits of (3−1). If 0,

21  =λλF

intersects V for every ) ,( 21 λλ  in every Ψ  line, then

0,
21  =λλF  also intersects V for every ) ,( 21 λλ  in .2R

If the constraints of (3−1) plus dependence
directions define V, we have a similar lemma. The
following definition cited from [2] will first define the
new limits for each pair of relative variables with a
given dependence direction.
Definition 3−1: Given m linear equations (1−1)
beneath the constraints of (3−1) and a specific direction
vector ), , ,( 1 dθθθ �

&

=  where d  refers to the number of

common loops, if ∈kθ  {<, >}, ,1 dk ≤≤  then the bounds

of (3−1) for each pair of relative variables will be
redefined, assuming kkk XX 212   θ−  and 12 −kX  and kX2

refer to the same loop indexed variable. The new
constraints for 12 −kX  and kX2  are defined as follows: if

{ }<∈kθ  then

(3−2): 1) , ,( ) , ,( 221121222112 −≤≤ −−−−− kkkkk XXgXXXf ��

and ); , ,(1) , ,( 12122121212 −−− ≤≤+= kkkkkk XXgXXXXf ��  if

kθ ∈ {>}, then (3−3):

) , ,( ) , ,( 221121222112 −−−−− ≤≤ kkkkk XXgXXXf ��

 and ). , ,(1) , ,( 12121221212 −−− =−≤≤ kkkkkk XXgXXXXf ��

Then we should discuss the rule to select the minimum
and maximum limits for each pair of relative variables
when their corresponding dependence directions are
given. Each dependence direction is known to relate a
unique pair of loop indices, which are associated with
one of the common loops. Obviously, we should choose
the new constraints (3−2) or (3−3) for each pair of
relative variables and the original bounds (3−1) for
other variables not to be constrained by dependence
directions such that 

21
 , λλF  has the minimum value and

the maximum value. Let )2 ,12( kk−Φ  be the sum of the



coefficients of 12 −kX  and kX2  in 
21

 , λλF  where 12 −kX

and kX2  are related by a dependence direction, i.e.,

) ,  ,() ,  ,( 221222211211)2,12( kkkkkk aaaa +++=Φ −−− λλ  [1]. The

minimum point and maximum point of 
21

 , λλF  in V, in

the presence of dependence directions, depend not only
on the sign of the coefficient of each variable but also
on the sign of ,)2 ,12( kk−Φ  as clearly undertaken from

statements above. From [1], the equation 0)2 ,12( =Φ − kk  is

called a Φ  equation. Each Φ  equation corresponds to a
Φ  line in .2R  There are at most n/2 Φ  lines. All Φ

lines and Ψ  lines divide 2R  space into at most 3n
regions. Each region is still a cone.
Lemma 3−2: Suppose that a bounded convex set V is
denoted by the limits of (3−1) as well as dependence
directions. If 0 ,

21
=λλF  intersects V for each ) ,( 21 λλ  in

every Φ  line and every Ψ  line, then 0 ,
21
=λλF  also

intersects V for every ) ,( 21 λλ  in .2R

As a matter of fact, it suffices to test a single
point in each Φ  line or each Ψ  line for determining
whether 

21
 , λλF  intersects V for every ) ,( 21 λλ  in those

lines.
Lemma 3−3: Suppose that a bounded convex set V is
denoted by the limit of (3−1) and dependence directions.
Given a line in 2R  corresponding to an equation

,021 =+ λλ ba  if 0 ,
21
=λλF  intersects V in nR  for any

fixed point ≠) ,( 0
2

0
1 λλ (0, 0) in the line, then for every

) ,( 21 λλ  in the line, 0 ,
21
=λλF  also intersects V.

Definition 3−2: Given an equation of the form
021 =+ λλ ba  where ba  ,  are not zero simultaneously, a

canonical solution of the equation is defined as
follows: ;0 if ),0 ,1() ,( 21 == aλλ ;0 if ),1 ,0() ,( 21 == bλλ ) ,( 21 λλ

 ), ,( ab −=  if neither     ,  ba  is zero.

Definition 3−3: The Λ  set is denoted to be the set of
all canonical solutions to Φ  equations and Ψ  equations.
The hyperplane in nR  corresponding to 2211 FF λλ +  = 0,
where ) ,( 21 λλ  is a canonical solution in the Λ  set, is
called a λ  plane.

There are at most n Ψ  equations if V is denoted
by the bounds of (3−1) only. There are at most n Ψ  and
n/2 Φ  equations if V is defined by the limits of (3−1)
and dependence directions. Each of the equations
generates a canonical solution according to Definition
3−2. Each canonical solution forms a λ  plane in light
of Definition 3−3. Obviously, λ  planes tested are at
most n if V is defined by the constraints of (3−1) only,
and are at most 3n/2 if V is denoted by the bounds of
(3−1) as well as dependence directions. If V is denoted

by the constraints of (1−3) only, then there are no more
than n hyperplanes in the set [1]. If the bounds of (1−3)
as well as dependence directions define V, then there
are no more than 3n/2 hyperplanes in the set [1]. It is at
once concluded that the number of λ  planes tested by
the generalized version of the λ  test is the same as that
of λ  planes checked by the λ  test.

We use the following example to explain the
enhanced power of the generalized λ  test over the λ
test, when it is used to test data dependence for variable
bounds under given dependence directions.
Consider the following equations

041 =− XX                                          (ex3)

032 =+− XX                                        (ex4)

subject to the bounds
,1021 and 102X1 ,10X1 ,101 24213121 XXXXXX +≤≤−+≤≤−≤≤≤≤

and the limits of a direction vector 21X X<  and .X 43 X<

According to Definition 3−1, the constraints for

321  , , XXX  and  4X will be redefined by ,91 1 ≤≤ X

,101 21 ≤≤+ XX 131 921 XXX +≤≤− and .101 243 XXX +≤≤+  The
Banerjee algorithm is first used to resolve the problem.
The extreme values computed by the Banerjee
algorithm to (ex3) are −19 and 25, respectively. The
Banerjee algorithm assumes that there are real-valued
solutions because .25019 ≤≤−  Similarly, the extreme
values for (ex4) are −27 and 8, respectively. The
Banerjee algorithm also assumes that there are real-
valued solutions because .8027 ≤≤−  Therefore, the
Banerjee algorithm concludes that there may be real-
valued solutions. If the generalized λ  test is then used
to resolve the same problem, the Ψ  and Φ  equations
are generated. The Ψ  equations are 010 21 =∗+∗ λλ  and

.001 21 =∗+∗ λλ  The Ψ  equations have two canonical
solutions (1, 0) and (0, 1). Each canonical solution
yields one λ  plane corresponding to an original
hyperplane inferred from (ex3) or (ex4). The two λ
planes are not necessarily tested by the generalized λ
test because the Banerjee algorithm has tested them.
The Φ  equations are 021 =− λλ  and .021 =+− λλ  The Λ

set from the Φ  equations is easily determined: Λ ={(1,
1)}. The canonical solution (1, 1) in the Λ  set gives the
λ  plane: .04321 =−+− XXXX  Based on the Banerjee
algorithm, the maximum value for the λ  plane is
immediately inferred to be .2−  Similarly, the
minimum value to the λ  plane can also be derived to
be .38−  Since the maximum value for the λ  plane is
less than zero, the generalized λ  test in light of
Lemmas 3−1 to 3−3 infers that there is no solution.

3.2. Multidimensional Array References



We take account of m linear equations in (1−1)
with m > 2 for generalizing the generalized λ  test. All
m linear equations are assumed to be connected;
otherwise they can be partitioned into smaller systems.
As stated before, we can hypothesize that there are no
redundant equations. By [1], an arbitrary linear
combination of m linear equations can be written as
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be determined whether 0 ,  ,1
=

m
F λλ �  intersects V in nR

space for arbitrary ). , ,( 1 mλλ �  The coefficient of each

variable in 
m

F λλ  ,  ,1 �
 is a linear function of ) , ,( 1 mλλ �  in

,mR  which is ij

m

j
j

i a  ,
1

)( ∑
=

=Ψ λ  for .1 ni ≤≤  The Ψ

equation ,0)( =Ψ i  ,1 ni ≤≤  is called a Ψ  equation. A Ψ

equation corresponds to a hyperplane in ,mR  called a

Ψ  plane. Each Ψ  plane divides the whole space into

two closed halfspaces }{ 0) , ,( )(
1 ≥Ψ=Ω + i

mi λλ �  and

}{ .0) , ,( )(
1 ≤Ψ=Ω − i

mi λλ �  Let )2 ,12( kk−Φ  be the sum of the

coefficients of 12 −kX  and kX 2  in 
m

F λλ  , ,1 �
 where 12 −kX

and kX2  are related by a dependence direction, i.e.,

).( 2 ,12 ,
1

)2 ,12( kiki

m

i
ikk aa +=Φ −

=
− ∑λ  The equation ,0)2 ,12( =Φ − kk

is called a Φ  equation. A Φ  equation corresponds to a
hyperplane in mR , which is called a Φ  plane. Each Φ
plane separates the whole space into two closed
halfspaces }{ 0) , ,( )2 ,12(1)2 ,12( ≥Φ= −

+
− kkmkk λλδ �  and

}{ .0) , ,( )2 ,12(1)2 ,12( ≤Φ= −
−

− kkmkk λλδ �  If V is defined by the

constraints of (3−1) only, then a nonempty set ,
1
�
n

i
i

=

Ω

where }{ , , −+ ΩΩ∈Ω iii  is called a λ  region. If the bounds

of (3−1) as well as dependence directions denote V,

then a nonempty set � ��

n

i

d

k
kki

1 1
)2 ,12( ,)()(

= =
−Ω δ  where

}{ −+ ΩΩ∈Ω iii  ,  and }{ , , )2 ,12()2 ,12()2 ,12(
−

−
+

−− ∈ kkkkkk δδδ  is called

a λ  region. The intersection of )2 ,12( kk−δ  is taken for all

pairs of index variables, which are related by a
dependence direction. Every λ  region is a cone in mR

space. The λ  regions in mR  space have several lines as
the frame of their boundaries. Each line (called a λ
line) is the intersection of some Ψ  and Φ  planes.

In the following, Lemmas 3−4 and 3−5 are an
extension of Lemmas 5 and 6 in [1], respectively.
Lemma 3−4: If 0 , ,1

=
m

F λλ �  intersects V for every

) , ,( 1 mλλ �  in every λ  line, then 0 , ,1
=

m
F λλ �  also

intersects V for every ) , ,( 1 mλλ �  in mR  space.

Lemma 3−5: Given a line in mR  which crosses the
origin of the coordinates, if 0 , ,1

=
m

F λλ �  intersects V in
nR  space for any fixed point 0) , ,0() , ,( 00

1 �� ≠mλλ  in the

line, then for every ) , ,( 1 mλλ �  in the line, 0 , ,1
=

m
F λλ �

also intersects V.
There is a finite set of hyperplanes in mR  space

such that S intersects V if and only if every hyperplane
in the set intersects V. If V is denoted by the constraints

of (1−3) only, then there are no more than 





−1m

n

hyperplanes in the set [1]. If V is defined by the limits
of (3−1) only, then the number of hyperplanes in the set

is also at most .
1





−m

n  If V is denoted by the bounds of

(1−3) as well as dependence directions, then there are

no more than 





−1

2/3

m

n  hyperplanes in the set [1]. If V is

defined by the limits of (3−1) and dependence
directions, then the number of hyperplanes is also at

most 





−1

2/3

m

n  in the set. It is right away derived that the

number of λ  planes tested in the generalized λ  test is
the same as that of λ  planes checked in the λ  test. The
detail of the generalized λ  test in the general case is
not considered since the discussion is similar to the case
of m = 2.

3.3 Time Complexity

The common phases for the λ  test and the
generalized λ  test include (1) calculating λ  values and
(2) examining each λ  plane. λ  values are easily
determined according to Φ  equations, Ψ  equations and
Definition 3−2. It is clear that the time complexity to
computing a λ  value is ( )yΟ  from Definition 3−2,
where y  is a constant. Each λ  value corresponds to a
λ  plane. Each λ  plane is tested to see if it intersects V,
by checking its minimum and maximum values. The
extreme values can be calculated from the Banerjee
inequalities and also computed from the Banerjee
algorithm. The time complexity to the Banerjee
inequalities and the Banerjee algorithm are ( )zΟ  and

( ),2zΟ  respectively, where z  is the number of variables
in the λ  plane. Hence, the time complexity of the λ
test and the generalized λ  test for examining a λ



plane is at once derived to be ( )zΟ  and ( ),2zΟ

respectively. The number of  λ  planes checked to the
λ  test and the generalized λ  test is the same, and is at

most ,
1

2/3






−m

n  where m is the number of coupled

dimensions and n is the number of variables in coupled
references, in light of statements in Section 3.3 [1].
Therefore, the worst-case time complexity for the λ
test and the generalized λ  test is immediately inferred

to be ( )







+∗












−

Ο yz
m

n

1

2/3  and ,2
1

2/3













 +∗











−

Ο yz
m

n  respectively.

Two-dimensional arrays with coupled subscripts appear
quite frequently in real programs, as clearly indicated
from statements in Section 1. The number of examining
λ  planes to each two-dimensional array tested is at
most 2/3n  according to statements in Section 3.2 [1]. If
the λ  test and the generalized λ  test are applied to
deal with the array, then their worst-case time

complexity is ( )( )yzn +∗Ο 2/3  and ,22/3 








 +∗Ο yzn  respectively.

The number of checking λ  planes is almost 1 due to
the regularity of coefficients in coupled subscripts in
real two-dimensional arrays tested. Hence, the worst-
case time complexity of the λ  test and the generalized
λ  test for testing those real two-dimensional arrays is
nearly equal to ( )yz +Ο  and ( ),2 yz +Ο  respectively. The
generalized λ  test slightly decreases the efficiency of
the λ  test because the number of variables, z, in the λ
plane tested is generally very small.

4. Experimental Results

We tested the generalized λ  test and performed
experiments on Personal Computer Intel 80486 through
the codes cited from five numerical packages EISPACK,
LINPACK, Parallel loops, Livermore loops and Vector
loops [11, 12].  The codes include more than 37000
lines of statements, and 17433 pairs of array references
consisting of the same pair of array references with
different direction vectors were found to have coupled
subscripts. The λ  test detected that there were no data
dependences for 6722 pairs of coupled arrays under
constant bounds and direction vectors. The generalized
λ  test checked that there were no data dependences for
3826 pairs of coupled arrays beneath variable limits and
direction vectors as well as 6722 pairs of coupled arrays
subject to constant constraints and direction vectors.

The generalized λ  test in our experiments is
only applied to test those arrays with coupled subscripts.
The generalized λ  test found 10548 cases that had no
data dependence. The improvement rate can be affected
by two factors. First, the frequency of coupled subscripts.

Second, the “success rate” of the generalized λ  test, by
which we mean how often a generalized λ  test detects
a case where there is no data dependence. Let b be the
number of the coupled subscripts found in our
experiments, and let c be the number that is detected to
have no data dependence from the coupled subscripts.
Thus the success rate is denoted to be equal to ./ bc  In
our experiments, 17433 pairs of array references were
found to have coupled subscripts, and 10548 of them
were found to have no data dependence. So the success
rate in our experiments was about equal to 60.5 percent.
The generalized λ  test increases the success rate of the
λ  test. The increasing success rate was about 21.9
percent.

In our experiments, λ  planes always subsumed
the hyperplane from each dimension of an array
reference. Note that the Banerjee algorithm needs first
to test these hyperplanes. Comparing with the Banerjee
algorithm, the generalized λ  test examined a total
number of 17473 additional λ  planes in our
experiments. That is, almost every generalized λ  test
had examined only one additional λ  plane. In light of
this fact, the additional time needed by the generalized
λ  test is very small.

Timing results are shown in Table 1. Each row
shows how much additional time (compared with the
Banerjee algorithm) was needed in the generalized λ
test. For instance, the first row shows that there were 66
subroutines in which the generalized λ  test consumed
no more than 40 percent additional time. For most of
the subroutines (294 out of 310), the generalized λ
tests never need more than 100 percent additional time.
Additional time was spent mostly on 1) calculating λ
values, and 2) examining each λ  plane.

Test time increase Number of subroutines
0%−40% 66

41%−70% 105
71%−90% 83
91%−100% 40
101%−150% 11
200%−250% 5

Table 1. Timing results of the generalized λ  test.

The Power test and the Omega test were also
employed to resolve 10548 pairs of arrays with coupled
references, respectively. These two tests were found to
acquire the same accurate results as the generalized λ
test. Suppose that ,1k  2k  and 3k  are the execution time

to treat data dependence problem of a coupled-subscript
array for the generalized λ  test, Power test and Omega
test, subsequently. The speed-up in Table 2 is defined to



be the set of 12 / kk  and ./ 13 kk  Each row in table 2

shows how many times the execution time of the Power
and Omega tests took longer than the execution time of
the generalized λ  test. For example, the first row
shows that there were 132 subroutines in which the
execution time of the two tests took from 16.4 to 22.7
times longer than that of the generalized λ  test. For all
of the subroutines in our experiments, the execution
time of the two tests was indicated from Table 2 to take
from 7.1 to 22.7 times longer than the execution time of
the generalized λ  test. This indicates that for
multidimensional arrays with coupled subscripts the
efficiency of the generalized λ  test is much better than
that of the Power test and the Omega test.

Speed-up Total number of
subroutines

16.4−22.7 132
14.7−15.9 210
13.1−14.5 166
12.5−12.9 80
10.3−12.3 22

7.1−8.3 10

      Table 2. The speed-up of the generalized λ  test
      when compared with the Power and Omega tests.

5. Conclusions

The generalized λ  test enhances significantly
data dependence analysis of λ  test when there are
coupled subscripts in multidimensional array references.
The generalized λ  test only ascertains whether real-
valued solutions exist because, like the λ  test, it is
based on equality consistency checking. The
generalized λ  test is exactly equivalent to a
multidimensional version of the Banerjee algorithm
because it can determine simultaneous constrained real-
valued solutions. Li [1] found that the λ  test for
coupled array references under constant bounds usually
increases the cost of the Banerjee inequalities by a
factor of two or less. The generalized λ  test for coupled
array references beneath variable limits usually also
increases the cost of the Banerjee algorithm by a factor
of two or less, as shown from our experimental results.

The Power test is a combination of Fourier-
Motzkin variable elimination with an extension of
Euclid's GCD algorithm [6, 7]. The Omega test
combines new methods for eliminating equality
constraints with an extension of Fourier-Motzkin
variable elimination [8]. The two tests currently have
the highest precision and the widest applicable range in
the field of data dependence analysis for testing array

references with linear subscripts. However, the cost of
the two tests is very expensive because the worst-case of
Fourier-Motzkin variable elimination is exponential in
the number of free variables [6, 7, 8]. Triolet [10] found
that using Fourier-Motzkin variable elimination for
dependence testing takes from 22 to 28 times longer
than the Banerjee inequalities. The Range test is now
the highest precision and the widest applicable range in
the field of data dependence analysis for testing array
references with nonlinear subscripts.  In our
experiments, the generalized λ  test, Power test and
Omega test share the same accurate results for 10548
pairs of arrays with coupled references. However, the
efficiency of the generalized λ  test is much better than
that of the Power test and Omega test.

The generalized λ  test extends the applicable
range of the λ  test and, according to the time
complexity analysis, only slightly decreases the
efficiency of the λ  test. Therefore, the generalized λ
test seems to be a practical scheme to analyze data
dependence for coupled-subscript array references.
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