
NOW Based Parallel Reconstruction of Functional Images

F. Munz1, T. Stephan2, U. Maier2, T. Ludwig2, A. Bode2,
S. Ziegler1, S. Nekolla1, P. Bartenstein1 and M. Schwaiger1

1Nuklearmedizinische Klinik und Poliklinik
des Klinikums rechts der Isar,

Technische Universit¨at München,
81675 München, Germany

email:Munz@Informatik.TU-Muenchen.DE

2Lehrstuhl für Rechnertechnik
und Rechnerorganisation

Technische Universit¨at München,
80290 München, Germany

Abstract

This paper deals with the parallel implementation of re-
construction algorithms for functional imaging on a net-
work of workstations (NOW). Algorithms which provide the
best image quality are not used in clinical routine, be-
cause they have a runtime of up to 60 hours with real clin-
ical data sets of several hundred megabytes. After giving
an overview of currently used image reconstruction algo-
rithms, we describe a general parallel implementation of
these algorithms with almost linear speedup and high effi-
ciency which cuts down the runtime to a feasible limit. The
high load which is caused by the parallel application con-
flicts with the predominantly interactive usage of clinical
workstations, therefore we address load balancing with an
application oriented, adaptive mechanism in order to pre-
serve the ownership of workstations. Furthermore we ex-
plain how the integration of MATLAB and IDL based ap-
plications with a conventional distributed queuing system
(DQS) can be achieved and why this significantly improves
usage in clinical routine.

1. Introduction

Tomographic imaging has become a key technology
for modern medical diagnosis. Recently technologies
like positron-emission-tomography(PET) or single-photon-
emission- tomography (SPECT) have been developed
which enable the direct measurement of function whereas
traditional technologies such as computer tomography (CT)
are only capable of imaging the morphological structure.
PET or SPECT images are acquired by measuring the decay
of radioisotopes attached to molecules with known physio-
logical properties such as water, sugar or molecules binding

to a particular type of neuronal receptor. Reconstructing the
measured projection data is a complex task and there is a lot
of ongoing research in this area [2]. This text deals with the
benefits and caveats of parallel algorithms for PET, how-
ever, due to the similarity most of it is applicable to SPECT
as well. Most PET scanners consist of several rings of small
detectors. Axial collimation is provided by retractable tung-
sten septa between the rings. Retracting the septa switches
from 2-D to 3-D mode, see fig. 1. Then cross plane events
are also detected and sensitivity but also scatter fraction is
increased.

Radioactive decay of the actual tracer distribution
�(x; y; z) is characterised by the emission of a positron,
its subsequent annihilation and emission of two high en-
ergy gamma rays. These are measured in coincidence
along lines of response (LOR) and stored dependant of
its angle � and distance from the centre of the scan-
ner s in a data structure termed sinogramp(s; �). Each
sinogram value represents the line integral of tracer dis-
tribution with f = �(x; y; (z = fixed)): p(s; �) =R
f(s cos�� t sin�; s sin�+ t cos�) dt. The Radon trans-

form of �(x; y; z) is p(s; �) and calculating a PET image
corresponds to inverting the transform [6].

3-D mode

septa

detector

2-D mode

Figure 1. PET scanner operation modes (ge-
ometry not to scale)

IPPS/SPDP 1998

 1063-7133/98
$10.00 (c) 1998 IEEE

2. Parallel Image Reconstruction from Projec-
tions

2.1. 2-D Algorithms

Ignoring the measurement of noise leads to the classical
filtered backprojection(FBP) algorithm. The relationship
between parallel projectionp(s; �) and the original tracer
distribution is given by the projection-slice theorem:

P (�; �) = F (� cos�; � sin�) (1)

For reconstruction, each projectionp(s; �) is convolved
with a shift invariant kernel to emphasize small structures
and reduce frequencies above a certain limit. Then the fil-
tered projection valuepF (s; �) is redistributed uniformly
along the straight line(s; �):

fR(x; y) =

�Z

0

pF (x cos�+ y sin�; �) d� (2)

This method can cause strong streak artifacts and is less
suitable for low count situations.

Iterative methodswere introduced to overcome the dis-
advantages of FBP. They are based on the discrete nature of
data and incorporate physical phenomena such as scatter or
attenuation directly into the model. It is generally acknowl-
edged that iterative methods yield images with improved
diagnostic quality in low count situations. Shepp and Vardi
presented an algorithm tomaximize the likelihoodof the
reconstructed data (ML)[4]. They modelled the projection
data as random variables with means equal to the true tracer
distribution. The aim of the reconstruction algorithm is then
to maximize a set of Poisson processes that give rise to the
projection data.

Other researchers claim that the data is not Poisson dis-
tributed due to a precorrection done by the PET scanner.
Fessler defines aweighted least squares objective function
to describe the similarity of the forward projected iterated
image compared to the measured data and apenalty func-
tion (PWLS) is introduced to cope with noise. Compared to
the other algorithms, PWLS has the longest runtime and the
highest demands for main memory, because it uses a very
large system matrix describing the physical properties of
the scanner. It is therefore seldom found in clinical routine,
although it yields best image quality [2].

2.2. 3-D Algorithms

The most common approach to reconstruct 3-D data is
the3-D reprojectionalgorithm (3DRP) which is an exten-
sion of the filtered backprojection algorithm (FBP) to 3-D

that estimates data not measured by the scanner. The recon-
struction is typically done on a special purpose hardware.

Another way to reconstruct 3-D data arerebinning algo-
rithms. They first sort the 3-D data into ordinary two di-
mensional sinograms representing transaxial planes, which
can then be reconstructed using e.g. FBP or PWLS. This
approach is significantly faster becauseO(n2) oblique sino-
grams are reduced toO(n) ordinary sinograms. Depending
on the way cross ring decays are redistributed to ordinary
sinograms there are various algorithms termedsingle slice
rebinning(SSRB),multislice rebinning(MSRB) or Fourier
rebinning (FORE) [1]. Functional decomposition of these
algorithms cannot be easily done due to their complex nu-
merical and statistical nature and decomposing the highly
optimized system matrix for PWLS is impossible without
redesigning the whole algorithm.

2.3. Related Work

Other researchers describe a simple data parallel imple-
mentation of one particular algorithm [7]. To our knowl-
edge there was no previous work at any PET center de-
scribing a general approach that works for most available
reconstruction algorithms, in particular PWLS, and deals
with load balancing and queuing issues.

2.4. Design of a Data Parallel PWLS Prototype

Building a data parallel program raises the question of
granularity. Possibilities are LORs, planes or frames1.
Other partitioning schemes like assigning certain parts of
sinograms to individual processors increase the complexity
of algorithms. The easiest solution regarding the amount of
interprocess communication needed and the complexity of
algorithms, is setting granularity of a data parallel imple-
mentation to the plane level.

This approach works for FBP, iterative algorithms and
it can be used for rebinned 3-D data. The remainder of this
paper deals with an implementation of the PWLS algorithm,
which is a state of the art iterative algorithm and explains
why a straightforward data-parallel implementation isnot
feasible in clinical routine.

2.5. Implementation of the Prototype

Data parallelism as described above was exploited. Sin-
gle planes were assigned to processors in a round robin way.
The first implementation was straightforward without queu-
ing, sophisticated load balancing or fault tolerance. The im-
plementation was based on PVM 3.3.7[5]. The time needed
to reconstruct one plane was about 2-3 minutes depending

1a set of planes acquired at one point of time during a dynamic study

on the image size and number of iterations2 on a single
CPU, provided that the workstation was equipped with suf-
ficient memory. Main memory is a key issue because other-
wise the dynamic allocation of memory for the system ma-
trix P , typically some 50 MB, causes the machine to page
virtual memory onto disk and this slows down the process
by several orders of magnitude. Common setup values for
the slave processes are multicast usingpvm mcast() to
all slave processes, e.g. parameters to create the sparse sys-
tem matrixP .

Memory requirements could be reduced for all involved
workstations compared to the serial program. The master
process does not setup the sparse system matrix, it only
holds a stack of sinograms, whereas the slaves need to setup
the system matrix. They only allocate memory for a single
plane and later on this memory is reused. Also the sys-
tem matrix is not transferred across the network, only a few
parameters which describe the scanner geometry are mul-
ticasted and the system matrix is set up according to these
parameters. The main memory chunks for a typical serial
reconstruction process (with some 80 MB total) are sino-
gram data (23 %), the system matrix (76 %), other data and
code area (1 %).

2.6. Performance Values

Performance measurements were done on cluster of 30
HP 9000/720 workstations running HP-UX release 9.01, in-
terconnected via 10 MBit/s Ethernet, all machines where in
the same IP subnet. Our target architecture for the imple-
mentation was SGI and SUN. Results of speedup and effi-
ciency measurements are shown in fig. 2.

0.0 10.0 20.0 30.0
number of workstations

0.0

10.0

20.0

30.0

sp
ee

du
p

0.0 10.0 20.0 30.0
number of workstations

0.80

0.85

0.90

0.95

ef
fic

ie
nc

y

Figure 2. Speedup and Efficiency on HP Clus-
ter

2the number of iterations was fixed for all further tests

3. Distributed Processing in a Clinical
Environment

Speedup and efficiency values presented in the former
sections show that the performance of the data parallel im-
plementation is excellent, however, the application blocks
all involved computers completely for up to one day. Hardly
any clinical institute ownes a massively parallel computer,
waiting queues at a computer center are typically too long
and too unpredictable for clinical routine and even a ded-
icated NOW is quite expensive. Thus a new strategy was
needed which finally made it possible to process even whole
body PET scans (see fig. 3) iteratively, which consists of up
to 500 transverse slices.

Figure 3. Whole-Body PET Scan

3.1. Batch Queuing

An interface to DQS was implemented in the program.
DQS offers distributed queues using a centralqmaster
anddqs execd daemons on every host. Typically med-
ical applications are interactive with an IDL (Interactive
Data Language, RSI, Colorado) or MATLAB (Math Work,
Mass.) based GUI used to set up dozens of reconstruc-
tion parameters, to load sinogram data using CAPP (Clini-
cal Application Programming Package, CTI Knoxville, TN)
routines and to do some precomputations. Furthermore the
interpreter for IDL and MATLAB code needs a license key
during runtime so scheduling is not straightforward without
expensive recoding of all IDL and MATLAB code. We took
the following approach: Once the IDL bound computations
are complete, a module implemented in C writes all neces-
sary data to disk, and then creates and submits a batch job

to DQS using UNIX system callpopen() to communi-
cate withqsub and releases the license key. According to
its configurationqmaster attaches the reconstruction pro-
cess to an appropriate queue at a workstation that does not
exceed a predefined load threshold. Running the applica-
tion can be scheduled to any particular time, e.g. non office
hours. Within this context the program is treated as a serial
program setting up the parallel environment itself.

3.2. Load Balancing

Using a clinical NOW successfully for parallel process-
ing is tightly linked with the preservation of ownership of
all workstations. We evaluated the benefits of system ori-
ented load balancing and checkpointing but implemented
an application oriented adaptive load balancing mechanism
because of several reasons[3]:

slave != -1 ?

job != -1 ?

pvm_trecv(anymessage)

yes

exit program

yes

yes

no
proc_state[sender] = FREE

yes

no

yes

no

no

unpack(job number)

slave != -1 ?

slave = node_to_spawn()

message received ?

proc_state[slave]=TAKEN

received all jobs ?

no yes

no

proc_state[slave] = EXITED

unpack(slave number)

and resubmit

test for timeout

got_result[job number] = 1

received += 1

to DQS

working nodes ?

are there

respawn(slave)

TASK_EXIT

send job to slave

job = job_to_send()

slave = next_free_node()

RESULT

case type of message =

TIMEOFSEND[job]

store

Figure 4. Master Process Flow Chart

A key issue was to gain the user acceptance by releasing
used machines as quickly as possible. Writing checkpoints
and the migration of processes means saving the process
context to disk. The required time for this grows linearly
with the size of the process context and would need more
than one minute in our case. Saving process context and
migrating processes must be done when a load peak oc-
curs, but writing to disk via NFS increases the load even
further. Killing the process can be done immediately and
reconstructing this plane later will take less time than mi-
grating the process.

After setting up the parallel virtual machine the mas-
ter process checks for the next free node. It keeps a list
with the status of each node (FREE, TAKENor EXITED).
The sinograms are sent with the following heuristic: first
all sinograms which were never sent before, then it resends

the oldest ones without answer from the remote process, but
only if they are older than a heuristic threshold depending
on the number of iterations. This is done to avoid resending
sinogram data if a slow node has almost finished the recon-
struction and to avoid waiting infinitely for a reconstructed
image. Figure 4 shows a more detailed flow chart of the
master process.

3.3. Load monitoring

We identified CPU and interactive usage as useful load
indices for our environment of SGI workstations. These pa-
rameters are monitored by theloadw process. Figure 5
shows a flow chart ofloadw .

measure load

pvm_kill(PET)

no

yes

no

yes

pvm_notify(TASK_EXIT)

get parent ID

receive PET TID

no

TASK_EXIT

received ?

load

exceeded ?

load

exceeded ?

yes

yes

send SPAWN_NO

measure load

send SPAWN_OK

PET-DIED-LOOPPET-ALIVE-LOOP

no

SPAWN_REQUEST

received ?

Figure 5. loadw Process Flow Chart

We neglected capturing mouse and other events of the
X server under root privileges, because of strict security
policies, but the load monitoring processloadw would
react of course to X applications that cause a high CPU
load. For interactivity, we looked at the idle times of the
user terminals. Scanning through/etc/utmp gives infor-
mation about logged in users, user processes marked with
USERPROCESSand their open terminals which are found
as entries in/proc . Modification time of the terminal en-
tries equals the last keyboard event which is compared to
the system time.

To avoid disturbing other programs running on a partic-
ular machine without user interaction we looked atCPU
usageas another load index. Each process has an entry in
/proc with its process id (PID) and users are only allowed
to read entries belonging to their own processes for secu-
rity reasons. However under IRIX there is a second source
of information readable for everyone:/proc/pinfo 3. It

3the name may differ on other OS

providesloadw with the name of the program being exe-
cuted by the process and apr cpu termed value represent-
ing the recent CPU usage - a value which is normally used
by the kernel for scheduling.pr cpu is incremented each
time the system clock ticks and the process is found to be
executing. Every secondpr cpu is adjusted by a digital
decay filter.

Heuristics have shown thatpr cpu is smaller than 80
for single process being permanently on the run queue,
pr cpu is between 30 and 40 for two processes simulta-
neously on the run queue andpr cpu is less than ten for
system processes which are mostly idle.

loadw is operating in two different modes which could
be described by an deterministic finite automata with two
states. In statePET ALIVE it tries to determine whether
to stop the reconstruction process because load exceeds
the threshold or a keyboard event was registered. In state
PET DIED it responds toSPAWNREQUESTfrom the mas-
ter process and acknowledges or denies to restart a recon-
struction process depending on the load and time since the
last keyboard event. If the last keyboard event was more
thanti minutes ago it is assumed that there is no interactive
usage at the moment. The value forti is currently set to
two minutes, which is roughly the time to reconstruct one
plane, so even short times of noninteractivity, e.g. during a
phone call, are used for image reconstruction. If no recon-
struction process can be run due to extreme load conditions
on all machines, then after a period of time the application
reschedules itself to execute some hours laters and termi-
nates.

4. Future Work

The application described in this paper is used routinely
in our clinic with great success. There are more time con-
suming tasks in functional imaging, e.g. voxel by voxel
modelling of neuroreceptors in human brains using PET
tracers such as Diprenorphine, so image reconstruction was
only the first step. We currently evaluate the design of a
multithreaded version of our application oriented load lev-
eling system, in order to simplify the flow of control and
the integration into other applications by running different
tasks concurrently.

5. Conclusions

In this paper we presesented a general way to imple-
ment parallel reconstruction algorithms on a NOW. We have
shown that a data parallel implementation is only acceptable
if the ownership of workstations is preserved. Therefore we
defined the crucial load parameters for such an application
and described a suitable load balancing mechanism which is

easy to implement. Performance measurements have shown
high efficiency and almost linear speedup. Our implementa-
tion reduces the vast CPU times, so even very sophisticated
algorithms like PWLS, which provide much better image
quality, are feasible for routine now. Furthermore, the par-
allel implementation cuts down the requirements for main
memory.

6. Acknowledgement

We would like to thank R. Schaller, S. Becker, D. Schad,
W. Weber, and E. Dickmann for their help. This work
is part of an ongoing collaboration between the Lehrstuhl
für Rechnertechnik und Rechnerorganisation and the Klinik
und Poliklinik für Nuklearmedizin rechts der Isar. This
study was partly supported by the Deutsche Forschungsge-
meinschaft SFB 462, Sensomotorik.

References

[1] M. Defrise, P. E. Kinahan, D. W. Townsend, C. Michel, M. Si-
bomana, and D. F. Newport. Exact and Approximate Re-
binning Algorithms for 3-d PET Data.IEEE Transaction on
Medical Imaging, 16, April 1997.

[2] J. A. Fessler. Improved PET Quantification Using Penalized
Weighted Least-Squares Image Reconstruction.IEEE Trans-
action on Medical Imaging, 1992.

[3] U. Maier and G. Stellner. Distributed Resource Management
for Parallel Applications in Networks of Workstations. In
HPCN Europe 1997, volume 1225 ofLecture Notes in Com-
puter Science, pages 462–471. Springer-Verlag, 1997.

[4] L. Shepp and Y. Vardi. Maximum Likelihood Reconstruc-
tion for Emission Tomography.IEEE Transaction on Medical
Imaging, 1982.

[5] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek.
The PVM Concurrent Computing System: Evolution, Expe-
riences, and Trends.Parallel Computing, Vol. 20 (4), 1993.

[6] D. W. Townsend and M. Defrise. Image Reconstruction Meth-
ods in Positron Tomography. Technical report, CERN Euro-
pean Organization for Nuclear Research, 1993.

[7] J. Zaers, J. Doll, P. Schmidlin, G.Brix, and W. Lorenz. Par-
allele Implementation iterativer Rekonstruktionsverfahren f¨ur
die PET auf einem heterogenen Workstation-Cluster.Nuk-
learmedizin, 36:76–109, April 1997.

